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1. INTRODUCTION

Food chains are significant environmental phenomena in several academic fields, including
ecological science, applied mathematics, engineering, and economics. In a food chain model
species, energy and resources flow in a single direction; however, food webs are complex because
they comprise multiple food chains [1]. In a feeding chain, various trophic levels have been seen.
Many types of organisms, including producers, consumers, and decomposers, can be found in the
stimulation phases. On the other hand, a formation-wise lattice architecture is used in a food web.
To describe the food chain as a system of differential equations, mathematical analysis, and
modeling techniques could be employed. A food web is a conglomeration of food chains, although
food chains are referred to as "food chains" in ecology [2-3].

Another intriguing aspect of the prey-predator relationship is cannibalism. When an animal
consumes members of its own species, this behavior is known as cannibalism or intraspecific
predation [4]. There has been a lot of discussion on how cannibalism affects environmental strategy
for decades [5]. Cannibalism is influenced by a number of crucial variables, including population
density, temperature, population size, developmental stage, and more [6]. Some researchers have
looked into the mathematical representation of cannibalism, see for example [7-9]. It is intriguing
to explore a prey-predator model with cannibalism because many animals in nature exhibit
cannibalistic behaviors. Cannibalism has been observed in a wide range of animal species,
including carnivore mammals, frogs, monkeys, spiders, fish, and insects, see [10]-[14].

In addition to cannibalism, the ecological term for the behavior of prey that hides after being
trapped and attacked by predators is a refuge. Many prey species use the refuge strategy to ward
off predators. Sea urchins conceal their young from crab predators in articulated coralline algae,
while Daphnia hides its young from crab predators in shallow lakes in the Mediterranean [15-16].
In addition to prey's natural behavior, humans can help prey by creating conservation forests [17],
natural areas, wildlife reserves, or even basic security. The mathematical model of prey-predator
with prey refuge has also been the subject of many investigations [18-21].

Recent studies have shown that predators affect refuge prey populations in ways other than just
killing the prey; they also instill fear in the prey, which reduces the prey birth rate [22-24].

Predator-induced fear keeps prey animals out of open settings, denying them the freedom to carry
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out regular activities like mating. As a result, their capacity for reproduction is decreased by their
fear of predators. It is critical to consider the price of anxiety as a decrease in reproduction. Wang
et al. published a prey-predator model that took into account the effect of fear on prey reproduction
[22]. Additionally, it was explained how a high level of fear may stabilize the system by ruling out
the possibility of periodic fixes. Panday et al. [23] also looked into the impacts of fear using a
Holling type-II functional response and a tri-trophic food chain model. Since the system displays
chaotic behavior for smaller values of both of these variables, they came to the conclusion that
chaotic oscillations may be controlled by increasing the fear parameters. A prey refuge is a great
way to reduce the possibility that predators may use their victim's biomass excessively. But
Abdulghafour and Naji [24] constructed and investigated a mathematical model of a prey-predator
system including infectious diseases in the prey population. They believed that prey serves as a
constant refuge from predators' exploitation and hunting as a defense mechanism.

This research proposes and investigates a three-species food chain model with cannabilism at
the second level while considering the aforementioned. The next section contains the model
formulation. Section 3 addresses the solution's characteristics, nevertheless. The analysis of
stability and persistence is examined in Section 4. Section 5 examines local bifurcation, while
Section 6 provides a numerical simulation analysis of the system. Finally, the last section provided

the conclusions.

2. MODEL FORMULATION
Recently, Andulghafour and Naji [20] proposed and studied a mathematical model of prey-

predator incorporating fear cost, predator-dependent refuge, and cannibalism given by

d_X_X( r —dl—bX— al(l—cY)Y)'

ar = \1+fy K1+X(1—cY) (1)
a _ aX(1-cy) . . e(1-m)Yy
dar — Y (K1+X(1—CY) +as —dy K2+(1—m)Y)'

where X(T) and Y(T) are the population densities of the prey and the predator at the time T
respectively. Since the environment contains many species that interact with each other in a food
web and food chain forms. Therefore, in this section, system (1) will be extended so that it contains
a top predator that represents their population density at time T by Z(T) consumed the predator

species in the system (1) according to Holling type II functional response. Hence the modified
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model that represents a food chain can be written as:

d—X—X( r —dl—bx—w) = Xf,(X,Y,2),

ar ~ © \1+fy Ki+(1—-cY)X
av _ a,(1-cY)Xx _ _ e(1-m)Y _ a,(1-m)Z '\ _
ar (K1+(1—CY)X +a; —dy Ky +(1—m)Y K3+(1_m)y) =YfLXY,2), )

Z - A (—aS(l_m)Y ds) = Zf3(X, Y,Z),

ar ~ “ \ks+(1-m)y
where X(0) =0, Y(0) =0, and Z(0) = 0, and all the coefficients are non-negative constants

and can be described in Table (1).

Table 1: parameters description.

Parameter  Description

r The prey birth rate

dy The prey’s natural death rate

b The prey intraspecific competition

f The prey’s fear level, which is involved in the fear function #
a, The intermediate predator’s attack rate

K The middle predator’s half-saturation constant.

The prey’s refuge rate; hence the refuge amount is cXY, which leaves X(1 — cY) of the prey

c €[0,1]
available to be hunted by the predator
a, The conversion rate of prey biomass into middle predator biomass.
as The conversion rate of cannibalism into middle predator birth
d, The middle predator’s natural death rate
e The cannibalism rate in the middle predator.
K, The half-saturation constant of cannibalism

m € [0,1] The middle predator’s refuge rate

ay The middle predator’s attack rate.
ds The top predator’s natural death rate.
K3 The top predator’s half-saturation constant.

as The conversion rate of middle predator’s biomass into top predator biomass.
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3. PROPERTIES OF THE SOLUTION

Obviously, the interaction functions of the system (2) F = (F, F,, F3) = (Xf1,Yf1,Zf,) are
continuous and have continuous partial derivatives on the domain R3 = {(X,Y,2) € R3:X(0) >
0,Y(0) = 0,Z(0) = 0}. Therefore, by the fundamental theorem of existence and uniqueness,
system (2) with a specific initial value has a unique solution in its domain. The system's positivity
and boundedness in theoretical ecology establish its physiologically well-behaved form. The
results that follow ensure the positivity and boundedness of the system's (2) solutions.
Theorem 1: The positive cone (int. R3) is invariant for the system (2).
Proof. By using a similar argument to that given in lemma (2.1) [25]. It is sufficient to prove that
for all T € [0,7], X(T) >0, Y(T) >0, and Z(T) > 0, where 7 is any positive real number.
Hence, using a contradiction will yield that.
Suppose the opposite, then X(T) > 0, Y(T) > 0, Z(T) > 0 forall T € [0, 7,], and at least one
of X(ty), Y(7y), and Z(ty) must vanish, where 7, exists with 0 < 7, < 7. Therefore system

(2) gives us
T
X(T) = X(0) exp (f, £i(X,Y,Z)aT)
T
Y(1) = Y(0) exp (f; f(X.Y,Z)dT)
T
Z(T) = Z(0) exp (f, fo(X,Y,2)dT)
Since f;(X,Y,Z),i = 1,2,3 are defined and continuous on [0, 7,], then there exists L = 0 such

that for all T € [0, 7,]:

X(T) = X(0) exp ( [ AK,Y, Z)dT) > X(0) exp(—7,L)

Y(T) = Y(0) exp ( [ Hexy, Z)dT) > Y(0) exp(—7,L)

Z(T) = Z(0) exp ( [y, Z)dT) > 7(0) exp(—T,L)
Therefore as T — Ty, it is obtained

X(ty) = X(0) exp(—1,L)

Y(79) 2 Y(0) exp(—7,L)
Z(to) = Z(0) exp(=7oL)

This contradicts the fact that at least one of X(7,), Y(7,), and Z(7,) must die out. Hence for all
T €[0,7], X(t) >0, Y(t) > 0,and Z(t) > 0, which completes the proof.
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Theorem 2: All system’s (2) solutions are uniformly bounded.

Proof: According to the first equation of system (2), it is obtained that
X < X — bx?
dT
Therefore, simple computation yields that: X < % as T — oo. Now, define the N = X + %Y +
2

2% 7 then it is obtained that:
az0as

dN a, a as r?
g 2rX—rX—a—2(d2 — a3)Y—a2a5d3Z < 27— uN,

where pu = min{r,d, — as,ds}. Thus, solving the above differential inequality it obtained that

2
N < Z#Lb, as T — oo. Therefore, the proof is complete.

4. STABILITY ANALYSIS AND PERSISTENCE

This section discusses the presence of every potential equilibrium point as well as the stability
analysis of each one. The system's persistence constraints are then established (2). It has been
determined that system (2) contains five potential equilibrium points, and the prerequisites for their
existence and form are given below.
The vanishing equilibrium point denoted by p, = (0,0,0) always exists.

The first axial equilibrium point, which is denoted by p; = (X, 0,0), where

7 — T4
X==, (3)

exists always due to the prey survival condition, r —d; > 0.

The second axial equilibrium point denoted by p, = (0, Y, 0) where

Ky(az—dy)

Y= (1—m)(e—az+dy)’

(4)
exists provided that the following conditions are satisfied.

0<az—d,<e. ®)
The prey-free equilibrium point, which is represented by p; = (0,Y, Z), where

G _ d3K3
(1_m) (as—d3) (6)
Ksas[(az—d;)(K,(as—d3)+d3Ks3)—edsKs] (°

(1-m)(as—d3z)as(Kz(as—ds)+dsK3)

7=
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exists in the positive quadrant of YZ —plane provided the following conditions are met.
d3 < as, (7)
ed;K; < (az — dy)(Ky(as — d3) + d3K3). €))
The top predator-free equilibrium point denoted by p, = (X,Y,0), where

K1[(1—m)7(—e+a3—d2)+a3K2—dez] (9)

X= (1-cV)[(1-m)¥(e—a—az+d;)—Kz(az+az—dy)]’

while Y is a positive root of the following fifth-order polynomial equation
AsYS + A Y + AY3 + A, Y2+ A Y + Ay =0, (10)
where

As = —(1-m)*c*fay[(e — ay) — (a3 — dy)]* <0,
Ay = —c(1-m)?a;(c—2f)(e — ap — az + dy)?
+2c?K,fa, (1 —m)(a, +as —dy)(e —ay, —az +dy)
A; = (1 -m)*[a,(2c — f)(e — a, — az + dy)* — cfayd K (e — a; — az + d,)]
+2(1 —m)ca;Ky(c—2f)(e —a, —az +d,)(a, +a; —dy) ,
—c*fai(a; + az — dy)*K;

A, = (1 -m)?[—as(e — ax)* + (e — a)(2a,a3 — 2a,d; + craKy) — aq(az — dy)?
—crayK;(az — d;) — bfa,Kf (e — az + d,)]
—(1=m)*(c - flayd,Ki[e — ap — az + d,]
+(1 —m)K,[2a,(2¢c — f) (a5 — eaz + 2a, — 2a,d, — 2asd,) ,
+cfaydiKi(a, + az —dy)] + 2a,K,(2c — f)[a3(1 —m) + edy(1 —m)
—ea, + d5(1 —m)] + ca,(c — 2f)[-a3K$ — 2a,a;
—a3K? + 2a,d,K? + 2a3d,K? — d3KZ]
Ay = aKi(1—m)?[-r(e—ay, —az; +dy) +d(e —a, —az + dy)
—bKi(e —a, —az +dy)] + K,(1 —m)[2a,a,(e — a,)
+2a,a3(e — 2a, — a3) — 2a,d,(e — 2a, — 2a3 + d,)
—cra Ky (az + az — dy) + bf a, K7 (az — dy)] ’
+a,d1 K1 K> (c — f)(1 —m)[a; + az — d3]
+a,K3 (2¢c = f)(az + az — dy)?
Ay = K1 K, (1 = m)(r — dy)ay(a, + a3 — dy) + K{K,ba,(1 — m)[az — dy]
—K7a,(a; + az — d,)?
Obviously, the point p, exists uniquely in the positive quadrant of the XY —plane provided that

the following conditions are met

(1-m)Y(—e + a3 —dy) + azK, — d,K, > 0 } (an

(1-m)Y(e—a, —az +dy) — Ky(a, +as —d,) >0

With one set of the following sets of conditions
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Ay, < 0,45 < 0,4, < 0,4, < 0,4, > 0.
Ay > 0,45 > 0,4, > 0,4, > 0,4, > 0.
Ay < 0,45 < 0,4, <0,A; # 0,40 > 0.{ a2)
Ay, < 0,45 < 0,4, # 0,4, > 0,4, > 0.

Ay < 0,45 # 0,4, > 0,4, > 0,4, > 0.
Ay # 0,45 > 0,4, > 0,4, > 0,4, > 0.)

The positive equilibrium point denoted by ps = (X, Y, Z), where

5o d3K3
~ (1-m)(as—ds)’
- K3+(1-m)Y [ a;(1-c)X _ __e(1-m)Y ] ’ (13)
2= Taem lk+a—cnx 93 2 k+(1-m)P

while X represents the unique positive root of the second-order polynomial equation
B,X*+ B, X+ B, =0, (14)
where
B, = b(1 —m)*(as — d3)* — bd3K3;(1 —m)*(c — f)(as — d3)?
—bcfd3K3 (1 —m)(as — ds).
B, = —(1 -m)*(as — d3)*[r — d, — bK,]
+d3K3(1 — m)?[(cr + bfKy)(as — d3)* — aéd;(c — f)]
+2asd,d3K3(c — £)(1 — m)? — d;d3K;(c — f)(1 —m)?
—cfd,d3K3 (1 —m)(as — ds).

By = —K;(1 = m)*(r — dy)(as — d3)* — Cfaldng3
+K3(1 — m)?d;(as — d3)?*[a; + fd,K;]
—a1d§K32(c - A —m)(as — d3).

Obviously, the point ps exists uniquely in the positive cone (int. R3) provided that the following
conditions are met

as—d; >0

az —d;

ay (1—C}7))?

hd eG-m?__ ot (15)
Ki+(1-chX

T Kp+t(1-m)¥
with one set of the following sets of conditions

B, >0,B, < 0}

B, <0,By >0 (16)
In the following, the linearization technique is used to study the stability of the system (2). Then

the Jacobian matrix of the system (2) at the point (X,Y,Z) can be written
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ofr ofh of
X ax T f X ay X 9z
_| oy o % |_1,
J = Y ax Y ay t /2 9z - [aU]3><3’
6f3 af3 af3
| Z % Z=> Z- o+ f3]
where

_r _ _a(1-cn)Y _ a,(1-cY)?Y )
Q1 = Ty bX —d, Ki+(1—cY)X + X( b+ (K1 +(1—cY)X)2)’

—x '_ fr  cXy(1-cY)a, cYaq __(A-cnay ]
12 = 4| A+fY)2  (K1+(1—-cY)X)2 = Ki+(1-cY)X  Kq+(1—-cY)x)’
a13 - O,

—yl[- X(1-cY)?a, (1-cY)a, ]
21 = (K1+(1-cV)X)2 ' Ki+(1-cY)X]

_ a(1-cV)X —d. — e(1-m)Y _ a,(1-m)zZ
Az2 = Ki+(1—-cY)X as 2 Kp+(1-m)Y Kz3+(1-m)Y

[caz(l—cY)X2 _ cayX e(1-m)?y
(K1+(1-cY)X)2  Ki+X(1—cY) = (Kp+(1-m)Y)2 ’
__e(1-m) a,(1-m)?z ]
Ko+(1-m)Y = (Kz+(1-m)Y)2

— a4(1—m)Y
A23 = Kz +(1-m)Y’
a31 = O,

_ Z[— (1-m)?vas (1-m)as ]
A32 = (K3+(1-m)Y)2 ' Kz+(1-m)Y |’

_ a5(1—m)Y _
433 = K r(—myy 3

Thus, the Jacobian matrix at the equilibrium point p, can be written as

T — dl 0 0
J(po) = 0 as; —d, 0
0 0 —d3

Hence the eigenvalues of J(p,) are given by

101 =Tr—- dl: AOZ =daz — dz, and 103 = _d3.

(7)

(18)

(19)

Therefore, all the eigenvalues are negative and p, is stable node provided that the following

conditions are met.
r< dl'
as; <d,.

Thus, the Jacobian matrix at the equilibrium point p; is determined as.

(20)
€2y
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—r +d, (r_bdl) (—fr — L) 0

T—d1+K1b
( ) = . ap(r—dy) . 22
0 0 —d]
So, the eigenvalues of J(p;) will be written as
—d
Mi=—(—dy), Mip=a3—d; + %a and A;3 = —ds. (23)

Obviously, these eigenvalues are negative provided that the following condition holds.

ax(r-dy)
3 r—d1+K1b

<d,. (24)

Clearly, when the equilibrium point p, is stable node the equilibrium point p; dose not exist.

Now, the Jacobian matrix at the equilibrium point p, is determined as.

r 5 a(1-cr)¥
1+f7 dy K, 0 0 |
_ az(1-c)y e(1-m)2y? _ e(1-m)¥ a,(1-m)Y
J(p2) = Ky (Kz+(1-m)Y)2  K,+(1-m)Y Kz3+(1-m)Y (25)
a5(1—m)? _
l 0 0 K3+(1-m)Y d3J
Then the eigenvalues of J(p,) are given by:
_ . r o a(1-cP)Y
Aoy = 1+f7 dy Ky
_ _e(1-m?Y2  e(1-m)Y
Azz = (K2+(1-m)T)2  Kp+(1-m)Y [ (26)
_ a5(1—m)17 _
327 ka+(1-m)Y 3

Consequently, the eigenvalues of J(p,) are negative and hence p, is a stable node point

provided that the following conditions are statisfied.

r al(l—c?)?
7 <d;+ o (27)
e(1-m)?v? e(1-m)Y (28)
(Kz+(1-m)V)2 ~ K+(1-m)Y’
as(1-m)Y
K3+(1-m)¥ d3. (29)
The Jacobian matrix at the equilibrium point ps; is computed as:
r a,(1-cY)?
e 0 0
_ a(1-cY)¥ o __e(l-m)K, as(1-m)?2 _ as(1-m)¥Y
J(ps) = K1 Y( (K2+(1-m)¥)? + (K3+(1—m)}7)2) K3+(1-m)? [ (30)
0 7 %“5’{32] 0
(K3 +(1-m)?)

The characteristic equation can be written as follows:
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T g @@=y 2 _ _
(1+ - di = ,1) (A2 =T, +D;) =0, G1)
where
T — A(_ e(1-m)K, as(1-m)?Z )
1= K+(1-m))?  (Kz+(1-m)7)2)’

D1 _ a,(1-m)Y Z (1-m)asK3 ]

Kz+(1-m)Y | (K3+(1-m)Y)2

Therefore, all the eigenvalues of J(p3) have negative real parts and hence p5 is a stable point if

the following conditions are satisfied.

r Y(1-cP)ay

7 <d;+ X (32)
a,(1-m)?2 e(1-m)K, (33)
(Kz+(1-m)¥)? ~ (Kp+(1-m)¥)?’
Now, the Jacobian matrix at the equilibrium point p, is witten as:
v a,(1-c¥)?7 v I L a1 X(1-c¥)?+K,(1-2cV)ay
X( b+ (K1+X(1—c}7))2) X[ (1+£7)2 (K1 +X(1-c7))2 ] 0
_ ~s[ (1-cV)Kqia, v cXayKq __e(1-m)K, _ as(1-m)Y
J(pa) = Y (K1+X(1—c}7))2] Y( (K1+X(1-c¥))? (K2+(1—m)17)2) K3+(1-m)Y | (34)
_ as(1-m)¥Y
0 0 ds + K3+(1-m)¥
The characteristic equation of J(p,) can be written as
a4 Sy ) 2 _ -
(—ds + e = A) (P =TpA+ D) =0, (35)

where

_v(_ a;(1-c¥)?¥ ¥ ca K1 X e(1-m)K,
T = X( b+ (K1+)?(1—c17))2) Y ((K1+)?(1—c1?))2 + (K2+(1—m)?)2)’

_ vl a,(1-cY)?y¥ _ caK X __e(1-m)K,
D, = XY( b+ (K1+)?(1—c1?))2) ( (K1 +X(1—-cY))?2 (K2+(1—m)1?)2)

fr a1(1—c7)2)?+a11<1(1—2c?)][ (1-cY)K;a, ]
+f¥)? (K1 +X(1-cV))? (K1 +X(1—-c¥))2

+XV [(1
Consequently, all the eigenvalues of the J(p,) will have negative real parts and makes p, a

stable point if the following conditions are met.

as(1-m)¥

K3+(1-m)Y ds. (36)
a;(1-c¥)?Xy > ca, K, XY e(1-m)K,¥Y
——— < bX + —, 37
(K1+)?(1—c17))2 (K1+)?(1—c17))2 (Ka+(1-m)Y)? 7)
2Kica, ¥ fr a;(1-cV)?2X+Kqa,4 (38)

(K +(1-cV)X)2 (1+fY)2 (K1+(1=-c)X)2 °

The Jacobian matrix of the system (2) at the positive equilibrium point can be written as:
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J(@s) = [aij] (39)
where

_v(_ a;(1-c¥)?¥
d11 = X( b+ (K1+(1—c1?))?)2)’

5 [ fr al(l—c?)z)?+(1—2617)a11{1]
U2 = 2|~ e (K1 +(1—-c7)X)? ’
q13 =0,
U [ (1—CY)a2K1
21 =Y _(K1+(1—c?))?)2]’
¥ [ ca K1 X __e(1-m)K, as(1-m)?Z ]
22 = 1| (K1+(1-cD)X)?2  K+(1-m)¥)?2  (Kz+(1-m)7)2)
_ a4(1—m)17
23 = ~ (o semy
q31 = Ov
_ 7 [_(A-m)asks ]
B2 = 2 | ra-mnz |
q33 = 0.
Therefore, the characteristic equation of J(ps) can be written as
13 + Gllz + Gzl + G3 = 0, (40)
where
G1 = —(q11 + 922,
Gz = 411922 — 912921 — 9239325
Gz = 411923932,
with

A= G1G; — G3 = —(q11 + 922)[911922 — 912921] + 922923932

Accordingly, the stability conditions of ps can be determined through the following theorem.
Theorem 3: The positive equilibrium point ps of the system (2) is locally asymptotically stable

provided the following sufficient conditions are met.

Y(1-cP)?a,
K+ (A—cHRE b. (41)
2a,K,c¥ fr a,(1-cP)?2X+a.K, (42)
(K1+(1-cX)2 ~ (1+f7)2 (K1+(1-cHX)2 -~
as(1-m)?Z ca K1 % e(1-m)K, (43)

(K3+(1-m)¥)2 (K1+(1-cHX)2  (Kp+(1-m)Y)?’
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Proof. According to the Routh- Hurwitz criterion the proof follows if and only if G; > 0, G; >
0, and A> 0 are met. Direct computation shows that these requirements are satisfied under the

given conditions, and hence the proof is done.

While stable coexistence is the capacity of species to coexist forever in the absence of external
perturbations, persistence can be defined as the length of time that a species remains in a
community before local extinction takes place. It follows mathematically that there are no
boundary attractors in the solution's omega limit set. Therefore, an investigation of the boundary
plane dynamics is carried out in the following.

It is clear that system (2) has two subsystems that fall in the positive quadrant of the YZ —plane
and XY —plane respectively. At the same time, there is no subsystem in the XZ —plane. These

subsystems can be described respectively:

ar _ 5 el-m)yy  a,(1-m)Z\ _
ar Y(a3 dy K;+(1-m)Y K3+(1_m)y) =Yf.(Y,2), “
d_Z_Z(aS(l_m)Y_d)_Zf (YZ) ( )
ar Kz +(1-m)Y 3) = 4J12\1,4),
ax _ L _ai(1-ev)y )\ _
E =X (1+fY dl bX K1+(1—CY)X) - XfZl(Xl Y); (45)
ay a,(1-cY)Xx _ _ e(1-m)y \ _
E - (K1+(1—CY)X ol a3 dz K2+(1_m)y) - YfZZ(XI Y)F

Straightforward computation shows that the subsystem (44) has the equilibrium points p;q =
(0,0), p1; = (Y,0), and py, = (¥,2). At the same time, the subsystem (45) has the equilibrium

points p,o = (0,0), pp; = (X,0),and p,, = (X,Y). Itis easy to verify that all these equilibrium
points are simply projections of their corresponding equilibrium points of system (2) and have the
same form with existing conditions.

Consequently, to investigate the persistence of the system (2), it is necessary to investigate the

dynamics in the interior of positive quadrants of YZ —plane and XY —plane respectively.
Define the Dulac functions as D;(Y,Z) = é and D,(X,Y) = x_ly Clearly the Dulac functions

D,(Y,Z) >0, D,(X,Y) > 0, and they are C' functions in the int.R% of the YZ —plane and

XY —plane respectively. Furthermore, direct computation gives that


https://www.google.com/search?sxsrf=AJOqlzU9xNZWVeu2j2tMXbgzNUMwiGAmLw:1673541500255&q=the+Routh-Huartz+criterion&nfpr=1&sa=X&ved=2ahUKEwi2r471u8L8AhW1gv0HHeiOBWcQvgUoAXoECAcQAg
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_0(D1 f11) |, 90Dy f12) _ _ eK,(1-m) as(1-m)?
A(Y,Z) = ay T 9z  Z[K+(1-m)Y]?2  [Ks+(1-m)Y]Z’

_ 9Dz f21) | 0D2f2) _ b a;(1-cv)®? azKic _ eKp(1-m)
A, Y) = ax + Y Y [Ki+(1-cV)X]?2  [Ki+(1-cV)X]2  X[Kp,+(1-m)Y]?

Then the exprations A(Y,Z) and A(X,Y) do not identically zero in the int.R% of the

YZ —plane and XY —plane and they do not change sign under the following conditions:

as,(1-m)?z eK,(1-m)
[K3+(1-m)Y]? ~ [Kp+(1-m)Y]?’

(46)

—cv)2 _
a;(1—cy) <2+ azK;c + eK,(1-m) . (47)

[K1+(1—cY)X]? Y  [Ki+(1-c)X]?  X[K,+(1-m)Y]?

According to the Dulac-Bendixson criterion [28], for all trajectories meeting conditions (46)-(47),
there is no closed curve lying in the int.R% of the YZ —plane and XY —plane. Moreover, the
unique equilibrium points in the int.R% ofthe YZ —plane and XY —plane that is determined by
p12 and p,, will therefore be globally asymptotically stable whenever they are locally
asymptotically stable, according to the Poincare-Bendixon theorem [28].

Theorem 4: Assume that conditions (46)-(47) are satisfied and the following conditions are met

then system (2) is uniformly persistent.

d, <. (48)
d, < as + % (49)
ds < min (e oy | (50
d, + ?(1—I(c1?)a1 1+rf?' (51)

Proof: Define the function ¢(X,Y,Z) = X?1Y?2Zbs where b;,Vj = 1,2,3 are positive constants.
Obviously ¢@(X,Y,Z) >0 for all (X,Y,Z) € int.RY and ¢(X,Y,Z) >0 when X -0 or
Y - 0 or Z — 0. Then by utilizing the average Lyapunov method [26], it is obtained that:

QOX,Y,2) = o XYz _ b, [ —d, — bX a;(1-cY)Y ]

e(X,Y,2) 1+fY K1+(1—CY)X
a,(1-cY)X _ _ e(1-m)Y _ a,(1-m)zZ
+b [K1+(1 Y)X-l_a3 dz Ko+(1-m)Y K3+(1—m)Y]
a5(1 m)Y
+b [K3+(1 —my 3]

Thus, the proof is done if Q(E) > 0 for any boundary equilibrium point E, with suitable choice
of constants b; > 0, b, > 0, and b; > 0.
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Q(po) = by(r — dy) + by(az — dy) + b3(—ds) .

-d
Q(p1) = b, (% +az — dz) + b3(—ds) .
. ro _a;(1-ch)¥ as(1-m¥
Q(pz) = by [1+f17 d, Ky ] + bs [K3+(1—m)7 d3]'
1-cP)Y
Q(ps3) = by [#f? —d; — %}

Q(ps) = b3 [asu__mﬁ d3]-

K3z+(1-m)Y -

Clearly, by using the given conditions with suitable choice of the positive constants it is obtained
that Q(p;) > 0 forall i = 0,1, ...,4. Hence the proof is complete.
In the following theorems, the global stability of the above mentioned equilibrium points is studied.
Theorem 5: The vanishing equilibrium point is a global asymptotic stable whenever it is locally
asymptotically stable.
Proof. Consider the following candidate Lyapunov function

LX,Y,Z)=X+Y+Z.
Clearly, Lo:R3 > R is a C! positive definite function so that Ly(0,0,0) =0 and
Lo(X,Y,Z) >0 for all {(X,Y,Z)eR3:X>0,Y>0,Z=>0} with (X,Y,Z) # (0,0,0) .
Direct computation shows that:

(a1—az)(1-cY)XY

dbo _ X _ — px2 _ _
AT~ 1+4fY d, X — bX Ki+(1—cY)X +(as — dy)Y
_ e(1-m)Y? _(a—as)A-m)yyz daZ
Ky +(1-m)Y K3 +(1-m)Y 34

Biologically, it is well known that a; — a, > 0, and a, — as > 0, hence it is obtained that

20 < —(dy — )X = (d; — az)Y — dsZ.
Therefore, under the local stability conditions (20)-(21), % is negative definite. Hence, the

vanishing equilibrium point is globally asymptotically stable.
Theorem 6: The first axial equilibrium point is a global asymptotically stable provided that the

following condition is met.

rfKi+a
as + ——

X <d,. (52)

1

Proof. Consider the following candidate Lyapunov function
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L (X,Y,Z) = (X—)?—)?lnf—?) +Y+7Z,

Clearly, L;:R3 >R is a C! positive definite function so that L;(X,0,0) =0 and
L(X,Y,Z) >0 for all {(X,Y,Z)ER::X>0Y>0,2>0} with (X,¥,2) % (X,0,0) .

Direct computation shows that:

aL, _  TfY 2 (a;—ax)(1-cY)XY | a;(1-cY)XY
dr ~ 1+fY T X=X —bX - X)* - K1+(1-cY)X Ki+(1—cY)X
_ _ e(1-m)y? _(ag—as)A-m)yyz
+az —d)Y Kp+(1-m)Y Ks+(1-m)Y dsZ.
Then
dL1 aIX

< —b(X — X)? —(dz—a3—er——)Y dsZ.

. . dLy . . . .
Obviously, condition (52) guarantees that ﬁ is negative definite. Hence, the first axial

equilibrium point is a globally asymptotically stable.
Theorem 7: The second axial equilibrium point is a global asymptotically stable provided that

condition (20) and the following condition are met.

LMy g, (53)
K3

Proof. Consider the following candidate Lyapunov function

LZ(X,Y,Z)=X+(Y ¥ —¥n )+Z,
Clearly, L,:R3 - R is a C! positive definite function so that LZ(O, Y, 0) =0 and

L,(X,Y,Z) >0 for all {(X,Y,Z)ER3:X=0,Y>0,Z=0} with (X,Y,2)=(0,7,0).

Direct computation shows that:

(a1-ax)(1-cY)XY a,(1-cY)XY _ (ag—as)(1-m)vz

aly _ _ 2
ar 1+fY d, X — DX Ki+(1-cY)X Ki+(1-cY)X K3+(1-m)Y
_ e(l—m)Kz(Y—7)2 a4(1—m)?Z_d 7
(Ko+(1-m)Y)(Kp+(1-m)¥) ' Kz+(1-m)Y 34
Then
dL2 . e(1-m)K,(v-7)* _ _a,(1-m)¥Y
< —(dy =X (Kp+(1-m)Y) (Kz+(1-m)¥) (d3 Ks )Z'

Obviously, conditions (20) and (53) guarantee that % is negative definite. Hence, the second

axial equilibrium point is globally asymptotically stable.
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Theorem 8: The prey-free equilibrium point is a global asymptotically stable provided that

condition (20) and the following condition are met.

as(1-m)?Z e(1-m)K,
K3(K3+(1-m)Y) ~ (Kp+(1-m)Ymax) (K2 +(1-m)Y)’

(54)
where all the new symbols are given in the proof.
Proof. Consider the following candidate Lyapunov function
~ ~ Y 5 5 Z
LXv,2) =X+ (Y =7 =) +n (Z2-2-2m),
where n, is a positive constant to be determined. Clearly, L;:R3 —» Risa C! positive definite

function so that L3(O,?,2) =0 and L3(X,Y,Z) >0 for all {(X,Y,Z)ER3:X>0,Y >

0,Z>0} with (X,Y,Z) # (O, Y,Z ) Direct computation shows that:

dL3 _ rX
dT ~ 1+fY

(a1—azx)(1-cY)XY _ a,(1-cY)XY
Ki+(1—-cY)X Ki+(1-cY)X
_ [ e(1-m)K, _ a4(1—m)22 (Y _ ?)2
(K2+(1-m)(K+(1-m)Y) (K3+(1-m)Y)(K3+(1-m)Y)
_ (1-m)[as(K3+(1-m)¥)-n,a5K3] v _ 5
(K3+(1-m)Y)(K3+(1-m)Y) (Y Y)(Z Z)

—dyX — bX? —

as(K3+(1-m)Y)

Then, by choosing n; = =“———— and maximizing the right-hand side, it is obtained that
543
als — _cd. — _ e(1-m)k, _a,(1-m)’2 _o\2
dr < (dl T)X [(KZ+(1_m)Ymax)(K2+(1_m)7) K3(K3+(1—m)17)] (Y Y) ’ (55)

where Y., represents the upper bound of the Y.

Obviously, conditions (20) and (54) guarantee that % is negative semi definite, which leads to
the prey-free equilibrium point is a stable point. Hence, the proof results from equation (55) and
Lyapunov—Lasalle’s invariance principle [27].

Theorem 9: The top predator-free equilibrium point is globally asymptotically stable if the

following conditions are met.

a2K217 aszb
XK (Ki+(1-cH)X)  a;(1-ch)X (56)
as(1-m)Y < d3, (57)
K3
912% < 4911922, (58)

where all the new symbols are given in the proof.

Proof. Consider the following candidate Lyapunov function
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~ ~ X P 5 Y
LaX,Y,2) =ny (X =X = &%)+ (Y =7 = 7In3) + 2,
where n, is a positive constant to be determined. Clearly, L,:R3 —» Ris a C! positive definite
function so that L,(X,¥,0) =0 and L,(X,Y,Z) >0 for all {(X,¥,Z)eR}:X >0,V >
0,Z =0} with (X,Y,Z) # (X,¥,0). Direct computation shows that:

S =y (x = X) (Lo — dy — bx — 200

dr 1+fY Ky +(1—cY)X
R, ay(1-cY)X _ _ e(1-m)Y _ a,(1-m)z
+(Y Y) (K1+(1—CY)X taz—d, Kp+(1-m)Y K3+(1—m)Y)

as(l—m)Y _
+Z (K3+(1—m)Y d3)'

Using some mathematical mainupolation gives that

dL, nyrf > = SN2 npa;K;(1-cY—c)(X-X)(Y-Y)
dar -7 (1+fY)(1+fY) (X N X) (Y - Y) N an(X - X) B (K1+(1=-cX) (K1 +(1-cHX)
nya, X(1-cY)(1-c¥)(X-X)(Y-Y) nya,;¥(1-cy)(1—c¥)(X-X)?
(K +(1—en)X) (K +(1-cP)X) (K1 +(1—cY)X)(Ky +(1—cP)X)
aK;(1—-cY)(X-X)(Y-Y) _ aycK X(Y-Y)? e(1-m)K,(Y-Y)?

(Ki+(1=-c)X)(K1+(1-cX)  (Ki+(1-cY)X)(K1+(1-cP)X) (Kp+(1-m)Y)(Ky+(1-m)Y)
as(1-m)YZ  a,(1-m)YZ  as(1-m)YZ
- - d3Z
K3+(1-m)Y  K3+(1-m)Y  Kz+(1-m)Y

Then, by choosing n, = #K;?)X, and maximizing the right-hand side, it is obtained that
(1-
% _ aszb _ Clzl{z}7 _ =\ 2 _ _ 614,(].—7’",)}7
dar < [a1(1—c17))? )?Kl(K1+(1—c17))?)] (X X) [d3 K3 ]Z
_ @Ky rf a1Kq1(1—cY—c¥) ] ¥ 5
a;(1-c¥)X [(1+fY)(1+f17) + (K1+(A—c)X)(K1+(1—c)X) (X X)(Y Y)

_ azck; X e(1-m)K, )2
[(K1+(1—CY)X)(K1+(1—67))?) + (K2+(1—m)Y)(K2+(1—m)17)] (y-7)

Using the conditions (56) and (58) lead to:

e < [~ %) + Gy~ V)] [y~ 20 7

where

_ aszb a2K2Y
911 T AR XK, (Kot (1—cHX)’

_ ay K, [ rf a K1 (1—cY—cY)
912 = a1 (1-cX LA+fY)A+fY)  (Ki+(1-cV)X)(K1+(1-cHX)P

_ acKX + e(1-m)K,
922 = (K1+(1=c)X) (K1 +(1=cPX) | (Kp+(1-m)Y)(Kp+(1-m)P)"

. o dLy . . .
Obviously, condition (57) guarantees that ﬁ is negative definite. Hence, the top predator-free

equilibrium point is a globally asymptotically stable under the given conditions. Hence the proof
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is complete.
Theorem 10: The positive equilibrium point is a globally asymptotically stable if the following

conditions are met.

(59)

a,(1-m)?Z a;cK. X e(1-m)K, 60
K3§3 (K1+Xmax)§1 (K> +(1—m)Ymax)§2’ ( )
hyo® < 4hy1hg, (61)

where all the new symbols are given in the proof.

Proof. Consider the following candidate Lyapunov function
N '¢ N ¢ 5 5. Z
LsX,Y,2) =y, (X=X = &%)+ (Y =7 = FIn3) +y,(2 - Z - ZIn%),
where y; and y, are positive constants to be determined. Clearly, Ls: R3 —» Risa C! positive
definite function so that L,(X,¥,Z) =0 and L,(X,Y,Z) >0 for all {(X,Y,Z) e R}:X >

0,Y>0,Z>0} with (X,Y,2) # (X,7,Z). Direct computation shows that:

s — _ [ylrf ha (K1 —cKyY — CK1Y +(1—-cY)(1- CY)X)] (X X)(Y Y)

ar BoBy BB,

—y [b -~ “1 A-cn(1- cY)X] (x-%)"+ :2 A-cN(X-X)(r-7)
(a-m) (1-m)?z 512 —m)B . s
— [azlgi +£ 1327;12 K, a4 1133;: Z] (Y . Y) _ a4(1 in)B3 (Y _ Y)(Z _ Z)
y as(1-m)K.
2 53333 2(y-7)(z - Z)

where By =1+fY, Bp=1+fY, Bi=K,+(1-c")X, B,=K,+ (1-c"X, B, =K, +
1-m)Y, B,=K,+(1-m)Y, B;=K;+(1-m)Y,and B; = K5 + (1 —m)Y.

(42

Thus, by choosing y; = % and y; =7 11?
1 503

with maximizing the right-hand side, it is obtained

that

dLs

< [ B2 (e, T+ (1 - ) (1 - DX | (X - X) (¥ - 7)

a13030 BlB

a
~2[b -2 (1- )R] (x - %)
azcKy X e(1-m)K, as(1-m)2Z 2
— [(K1+Xmax)§1 (Kg+(1-mM)Ymax)Ba  KabBs ] (Y — Y) )

where X, and Y., represent the upper bound of the X and Y respectively. Using the
conditions (59) - (61) lead to:
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T < R (= 8) Ry = D)) (62

where
N —_ ~7\¥
by = 2[b -2 (1-cP)X],
Moo = aycK. X e(1-m)K, _ as,(1-m)?Z
22— (K1+Xmax)B1 (K2+(1-m)Yimax) B2 K3B;3

_ Grf | NG v _ T
hiy = 2+ og (—cKiV + (1= V)1 - cP)X).

. dLs . . . ) iy S .
Obviously, ﬁ is negative sime definite, which leads to that, the positive equilibrium point is a

stable point. Hence, the proof results from equation (62) and Lyapunov—Lasalle’s invariance

principle [27].

5. LOCAL BIFURCATION

The present section investigates the influence of the varying parameters on the qualitative
dynamics of the system (2) near the non-hyperbolic. An application to the Sotomayor theorem [27]
for local bifurcation is performed.

Rewrite the system (2) as the following vector norm

S =FX9), X=XY,2)7, F= (X£.(X,0),Yf,(X,9), Zf,(X,9)) . (63)

where ¥ € R is the bifurcation parameter and f;(X,9) forall i = 1,2,3 are given in the system

(2). Therefore, for any vector of the form V = (v, v,,v3)7T, the following expressions can be

determined
DZF(X’ 7.9)(V, V) = [Ci1]3>(19 (64)
where
_2[=bX3(=1+cY)3+(=1+cY)?(3bX2~Ya;)K1 —3bX (- 1+cY)Kf +bK? v}
€11 = (X(1—-cY)+K;)3
+ (_ fr alKl(X—cXY+K1—2cYK1)) v
(1+fY)2 (X(1—cY)+K;)3 172 ’
fzr CalKl(X‘I'Kl) ) 2
+2X ((1+fY)3 (X(1—cY)+Kq)3 V2
_ 20K [Y(=1+¢Y)*vi+[X (= 1+cY)+(=1+2¢Y)Kq vy va+cX (X +K1)vE]
€21 = (X(1—cY)+K;)3
_ _ eK?v, 4K ((—1+m)Zv2+(Y—mY+K3)v3))
2(1-m)v, ((Y—mY+K2)3 ((-1+m)Y—K3)3
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_ 2(-1+m)asK3vz[(—1+m)Zv,+(Y —mY +K3)vs]
€31 = ((-1+m)Y—K3)3 :

While
DSF(Xﬂ?)(V, V, V) = [di1]3><19 (65)

where
d _ 6f2rvi (A+fY)v1—fXvy)
= (1+f1)*

6a1K1[Y (~14cY)3v3 +(—1+cY) (X (—1+cY)+(—143cY)Kq )v2vy]
(X(1=cY)+Ky)*

6a1K1[c(X?(~1+cY)+2cXYK1 +KZ)v1 02 +c2X 2 (X +K1)v3 |
(X(1=cY)+Kq)*

d _ 6a2K [~V (=1+cY)303 —(—1+cY)[X (—1+cY) +(—1+3cY) K [viv, |

21— (X(1—cY)+Kq)*
6a,K1[—c(X?(—1+cY)+2cXY Ky +KZ)v,v5 —c2 X% (X +K1)v3

+

2

+

T X(A—=cY)+Kq)* >
+6(—1+ m)2v2 [ eK2v, a4 K3 ((—14m)Zvy+(Y —mY +K3)v3)
2 [((1-m)Y+K,)* (1-m)Y+K3)*

6(—1+m)2asKz v [(—1+m)Zv,+(Y—mY+K3)vs]
(1-m)Y+K3)*

d3; = — .
Theorem 11: Assume that condition (21) holds, then when the parameter r passes through r =
d, = (r"), the system (2) undergoes a transcritical bifurcation at the vanishing equilibrium point.

Proof. When r = d; = (r*) the Jacobian matrix becomes

0 0 0
Jo =](po,77) = [0 az—d; 0 ]
0 O _d3

Clearly, J, has the eigenvalues A1y, = 0, A9, = az — d,, and Ay3 = —dj5. Clearly, condition (21)
guarantees that Ay, < 0. Hence, the eigenvectors of J, and Jo! corresponding Ay; = 0 can be
written as Vo = (Vg1, Vo2, Vo3) T and Uy = (U, Ugy, Ug3) T respectively, where

V, = (1,0,0)T, U, = (1,0,0)T.

Moreover, with the use of equation (64), it is obtained that

1:”’ x 0 T *
FE=l o | = F.(po,7) =| 0| = Ug Fr(po, ) =0
0
0

1
DF,(py,7*). Vo = <0> = U, [DF.(py, 7).-Vo] = 1
0
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—2b
DZF(pO»T*)(Vo;Vo) = ( 0 ) = UOT[DZF(pOIr*)(VOIVO)] = —2b
0

Then, as the parameter r crosses through r*, the Sotomayor theorem makes the system (2)

undergo a transcritical bifurcation at the equilibrium point pj.

Theorem 12: When the parameter d, passes through d, = a; + % = (d3), the system (2)
—¢1 1

undergoes a transcritical bifurcation at the first axial equilibrium point.

Proof. When d, = d; the Jacobian matrix becomes

—rd, SR (—fr-—2) 0

J1=1(py,d3) = 0 0 0
0 0 —d3

Clearly, J; has the eigenvalues A;; = —r+d; <0, A4, =0, and A;3 = —d3. Hence, the
eigenvectors of J; and ]1T corresponding A;, = 0 canbe writtenas V; = (vy4, V15, v33)"T and

U, = (u11,u12,u13)T respectively, where
T
V1 - (_ (% t T—d:l-ll-Klb) ’ 1’0) :(plﬂ 1)0)T9 Ul = (O,l,O)T.

Moreover, with the use of equation (64), it is obtained that

0 0
Fdz - (_Y> = Fdz (p1,d3) = <0> - UlTFdz (p1,dz) = 0

0 0
0 T
DFq,(py,d3).Vy = | =1 | = U [DFg,(py,d3).Vy| = —1
0
—2bp? — LS ¥ (F2r 4 Sk
2bpy =2 (fr + ()?+K1)2) pr+2X (f Tt ()?+K1)2)
DZF(pl; d;)(Vy, Vy) = _ 2a2Ki(=p1tcX) 2(1— m)i
(X+K1)? K,

0
Therefore, it is obtained that:

2a,K1(—p1+cX) 2e(1-m)
— — — *
(X+K1)? Ko

UlT[DZF(PL d;)(V, V)] = 0

Then, as the parameter d, crosses through d5, the Sotomayor theorem makes the system (2)
undergo a transcritical bifurcation at the equilibrium point p;.

Theorem 13: Assume that conditions (27)-(28) are staisfied, then when the parameter d; passes

a5(1—m)17
K3+(1-m)Y

through d; = = (d3), the system (2) undergoes a transcritical bifurcation at the second
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axial equilibrium point.

Proof. As d; = d3 the Jacobian matrix becomes

ro _a1(1—67)7
1+f7 1 Ky 0 0
Jo =J(py,d3) = a,(1-c7)¥ e(1-m)?7%  e(1-m)¥ a,(1-m)¥ |.
Ky (Kx+(1-m)Y)2  K,+(1-m)Y Kz+(1-m)Y
0 0 0
—_~V\V _ 2v2 _ v
Clearly, J, has the eigenvalues A,; = S d, —M, Ayp = eQ-mjr _ _el-my

14fY K, (Kx+(1-m)Y)2  K,+(1-m)Y’
are negative due to conditions (27)-(28). While 1,3 = 0. Hence, the eigenvectors of J, and ]2T
corresponding A,3 = 0 can be written as V, = (Vp1, V22, V53)T and U, = (upq, Upp, Upz)T

respectively, where

(o aaor@-mp?  \T T o T
V2 =10 1 _(OJPZI 1) 5 UZ - (01011) .

" ek, (K3+(1-m)Y)’

Moreover, with the use of equation (64), it is obtained that

0 0
Fd3 - ( 0 ) = Fds(pz; d;) - <O> - UZTFds(pZ'd;) =0

-7 0
0 T
DF,,(p;,d3).V, =( 0 | = U, [DFd3(p2,d§).v2] =—-1
-1
0
_ _ eK3p, asK3
DR (py, d) (Vo V) = | ~20 =m0z (s + )

2(1-m)asKzpy
((1-m)Y+K3)?

Therefore, it is obtained that:

T % 2(1-m)asK3p
Uz [D*F(p2, d3)(Vo, V2l = { ooFar
Then, as the parameter d; crosses through d3, the Sotomayor theorem makes the system (2)
undergo a transcritical bifurcation at the equilibrium point p,.

Theorem 14: Assume that condition (33) is staisfied, then when the parameter d; passes through

d, = 1:7 - al(lK_—CY)y = (dj), the system (2) undergoes a transcritical bifurcation at the prey-free
1

equilibrium point provided that the following condition is met.
—a,(1 —c?)?? + bKZ # 0. (66)

Otherwise, a Pitchfork bifurcation takes place.
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Proof. As d; = dj the Jacobian matrix becomes

0 0 0
az(l—c?)? ? ( e(1-m)K, n a4(1—m)22 ) a4(1—m)?
J:=J(ps,d) =| © Ky +(1—mN)’  (Kz+(1-m)P)’ Ks+(1-m)? |,
~[ a-myask
0 7 [Lasle 0
(K3+(1-m)Y)

Clearly, J; has the eigenvalues A3; =0, while A3, = %+ %\/ T,> — 4D, , and A3z = % —

%\/ T,*> — 4D; have negative real parts due to condition (33), where T; and D, are given in

equation (31). Hence, the eigenvectors of J; and ]3T corresponding A3; = 0 can be written as
V3 = (V3q, V33, V33)T and Uz = (uszq,Usy,us3)T respectively, where

ay(1-c) (K3 +(1-m)P)

K1a4(1—m)

T
v = (1,0, ) =(1,0,p3)". U = (1,0,0)".

Moreover, with the use of equation (64), it is obtained that

—-X 0
Fd1 - ( 0 ) = Fdl(p3, di) = <0> - U3'I‘Fd1(p3’di) =0

0 0
-1 .
DFdl(Ps:dI)-V3 =10 | = U; [DFdl(Ps,dD-Vﬂ =-1
0
_ 2[~a;(1-c?)?P+bK?]
Kf
DZF(p3, d;)(v:)), V3) == _ 2a2(1—c17)2}7
Kf
0

Therefore, by using condition (66), it is obtained that:

2[-(1-c?)?Pa; +bK?]
2
Kj

U;"[D%F(ps, d})(Vs, V3)] = — #0

Then, as the parameter d, crosses through dj, the Sotomayor theorem makes the system (2)
undergo a transcritical bifurcation at the equilibrium point p;. Otherwise, it is obtained with the

help of equation (65) that

_ 6(11?(1—6'?)3
K3
DgF(pBJdI)(V& V3, Vg) = 6a,¥(1—cY)3
K3}

0

Therefore, it is obtained that:
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6a,Y(1-c?)3
3
Ki

U;T[D3F(ps, d;)(Vs, V5, V3)] = #0

Hence, a pitchfork bifurcation takes place in the sence of Sotomayor theorem and the proof'is done.

Theorem 15: Assume that conditions (37)-(38) are staisfied, then when the parameter as passes

d3(K3+(1-m)Y)

through ag = -

= (as), the system (2) undergoes a transcritical bifurcation at the top

predator-free equilibrium point.

Proof. As as = a: the Jacobian matrix becomes

X ( b+ M) X, [ fr al)\?(l—c?)2+K1(1—207)a1] 0
. (K +X(1-cP))’ A+1%° (K1 +X(1—cP))’
]4 N ](p4, aS) - 14 [ e ] 14 (_ cXagky __e(l-mKy ) — as(1-m)¥ |-
l (K1+)?(1_c?))2 (K1+)?(1—c)7))2 (Kz+(1—m)7)2 K3+(1_m)7J
0 0 0

Clearly, J, = (bl-j)3x3 has the eigenvalues A4, = % +% T,> — 4D, , and A,y = % -

%\/ T,* — 4D,, which have negative real parts due to conditions (37)-(38), where T, and D, are

given in equation (35). while 443 = 0. Hence, the eigenvectors of J, and ]4T corresponding
A4z = 0 can be written as V, = (V41, Vap, Va3)T and Uy = (Ugq, Usp, Uss) T respectively, where

v4- = (,04; Ps, 1)T, U4 = (O,O,l)T,

where
bqiob bqob
Dy = 12_ 23 = Dazbas o g
by1b22—b12b2; D,
bqi1b bqi1b
ps = — 11_23 = _bubas
by1b32—b12b2y D,

Moreover, with the use of equation (64), it is obtained that

0
0
Fas = (1—1(31)YZ = Fas (p4’a§) - (0> - U4TF‘15 (D4, a;) =0
K3+(1—m)Y 0
0
DFa_5 (p4, as).V4, = (1—9?1)? = U4T[DF¢15 (p4l aS)'V4-] = K3+(1‘rilm)17

DZF(M: as)(Vy, Vy) = [ci1(pa, a5)]3x1 >

where



26
AHMED SAMI ABDULGHAFOUR, RAID KAMEL NAJI

( = 2[bX3(1-c¥)3+(1-cY)?(3bX%-Ya,)K +3bX(1—cV)KZ+bK3 | p3
€111Ps, As) = (X(1—cP)+K1)?
_ f‘r _ alKl(X—CXY‘l‘Kl—ZCYKl))
+ ( (1+£7)? (X(1=cV)+K;)3 PaPs ’

~ f?r calKl(X+K1)) 2
+2X((1+f17)3 (X(1-cV)+Ky)3) 5

20, K, [V (1-c¥)?pf —[X(1—c¥)+(1-2¢V)K1]paps+cX (X +K1)pE]
(X(1—-cV)+K,)3

B _ eKZps a4 K3 ’
2(1=m)ps (((1—m)17+1<2)3 + ((l—m)?+K3)2)

C21(pg,a3) = —

2(1-m)asK3ps

c31 (P4, as) = (1—m)V+K3)2"

Therefore, it is obtained that:

T . 2(1-m)asKzp
U, [D*F(py,az)(Vy, V)] = ((1T175+K33)25

Then, as the parameter as passes through as, the Sotomayor theorem makes the system (2)
undergo a transcritical bifurcation at the equilibrium point p,.

Theorem 16: Assume that conditions (42)-(43) are satisfied, then when the parameter b passes

a;(1-cV)?¥

thI'Ollgh b= m

= (b*), the system (2) undergoes a saddle-node bifurcation at the

positive equilibrium point.

Proof. As b = b* the Jacobian matrix becomes

0 g2 O
Js =J(ps,b*) =921 922 923,
0 g3 O

where q;;;1,j = 1,2,3 are given in equation (39). Obviously, by using equation (40), Js has the

eigenvalues

As1 =0, 4s; =%+%,’G12 —4G,, As3 =%—%,’G12 —4G,,

where G; = —qq,, and G, = —q12921 — 423932 are positive under the conditions (42)-(43).
Hence the eigenvalues As,, and As; have negative real parts. Moreover, the eigenvectors of Js
and Js© corresponding As; =0 can be written as Vs = (Vsy,Vsy Vs3)T and Ug =
(usq, usp, us3)T respectively, where

V5 = (1!0! p6)T9 U4 = (1;0; P7)T,

where p6=—%>0 and p7=—zﬁ>0.
23 32

Moreover, with the use of equation (64), it is obtained that
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_XZ _XZ
Fp =< 0 ) = F,(ps, b") =< 0 > = Us"Fy(ps,b*) = X2 #0
0 0

{ 2b*[(1-cP)3 X3 +2K1 (1—cP)2X2+KZ(1-cT)X]
B (XR(1—cT)+K1)3
D?F,(ps, b*)(V5, V) = 20K, 7(1=cP)? ,
X(1-cV)+Kq)3
0

Therefore, it is obtained that:

(1-c?)3%3+2K;(1—c7)2X2+K2(1-cP)X]

(X(1-cP)+K; )3 #0

Us" [D?F, (ps, b*) (Vs, V)] = — 2b°]

Then, as the parameter b passes through b*, the Sotomayor theorem makes the system (2)

undergo a saddle-node bifurcation at the equilibrium point ps.

6. NUMERICAL SIMULATION

In the following, an investigation of the system's dynamics (2) is carried out using numerical
simulation depending on the next set of hypothetical parameter values. The objective is to validate
the theoretical finding and understand the influence of the varying parameter values on the

system’s dynamics.

r=1,f=02d, =01,b=02a, =0.75c=04K =1,a, = 0.5a; = 0.15,} -
d, = 01,e=025m=05a,=05K, =1,Ks =1,as = 0.4,ds = 0.1 (67)

System (2) has an asymptotically stable positive equilibrium point for the set of data (67), as
depicted in Figure (1). As you can see from the figures, the red star symbolizes the point of

attraction for which system (2)'s solution is intended.

(@ 45 : — 0 :
—Prey
4 Predator
44 \ 15 — Top-predator| |
5 34 3
g S
EER £25
R — T
& 82
NN g
1.5F
0
3 L Ly
2 . 0.5
1 3
2 0 : - - -
Predator 01 Prey 0 100 200 300 400 500

Time
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3 . i _(© . . 4 . i (&

Top-predator

Predator

Prey

Top-predator

0 03 i s 2 23 3

Predator
Fig. 1. The trajectories of the system (2), utilizing the set of data (67), starting from different initial
points. (a) Phase portrait that approached to ps = (3.38,0.66,1.83). (b) Time series. (¢) Projection
of phase portrait on XY —plane. (d) Projection of phase portrait on XZ —plane. (e) Projection of

phase portrait on YZ —plane.

In the following, depending on the result shown in figure (1), the influence of varying the
parameter values on the stability of the positive equilibrium point is investigated. For the parameter
r in the ranges r € (0,0.46], r € (0.46,0.52], r € (0.52,1.34], and r > 1.34 the solution of
system (2) approaches asymptotically to p,, ps, ps, and periodic dynamics respectively, see

figure (2) for the selected values of 7.
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@® ; | )

34
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::‘Q: 24 3 Predator
) 3, 3 — Top-predator
NN &
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1
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Predator 09 Pres 0 100 200 300 400 500
. Time

Fig. 2. The trajectories of the system (2), utilizing the set of data (67) with different values of r,
starting from different initial points. (a) Phase portrait for r = 0.45 that approached to p, =
(0,0.52,0). (b) Time series for r = 0.45. (c¢) Phase portrait for r = 0.51 that approached to
ps = (0.03,0.63,0) . (d) Time series for r = 0.51. (¢) Phase portrait for r = 0.75 that
approached to ps = (2.08,0.66,1.54). (f) Time series for r = 0.75. (g) Stable limit cycle for r =
1.5. (h) Time series for r = 1.5.

Now, the influence of varying the parameter f on the system's dynamics (2) is studied in two
cases, first when the system (2) has a stable coexistence point and second when the system has a
stable limit cycle. In the first case, it is observed that, for f € [0,1.76], f € (1.76,2.51],and f >
2.52 the solution of system (2) approaches asymptotically to ps, p4, and p,, respectively. On
the other hand, in the second case, it is observed that rising the value of f stabilizes the system
so that the solution approaches asymptotically the ps. Moreover, rising the parameter further leads
to extinction in top predators first and then extinction in prey species, and then the system's (2)

solution stabilized at p,, see figure (3) for an explanation of the selected values of f.
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Fig. 3. The trajectory of the system (2), utilizing the set of data (67) with different values of f,
when r=1 and r =1.5. (a) Phase portrait for r =1; f =1 that approached to ps =
(1.67,0.66,1.4). (b) Time series for r = 1; f = 1. (¢) Phase portrait for r = 1; f = 2 that
approached to p, = (0.02,0.61,0). (d) Time series for r = 1; f = 2. (e) Phase portrait for r =
1; f = 3 that approached to p, = (0,0.5,0). (f) Time series for r = 1; f = 3. (g) Phase portrait
for r = 1.5; f = 0.5 that approached to ps = (4.71,0.66,2). (h) Time series for r = 1.5; f =
0.5.

It is observed that, when the system indergoes a periodic dynamics as for r = 1.5 in figure (2g)
increasing f in the ranges f € (0,0.3), f € [0.3,3.4], f € [3.4,5], and f > 5 the solution of
system (2) approaches to stable limit cycle, ps, p4, and p,, respectively, as shown in figure (3g)
for f = 0.5. For the parameters d;, and a4, they have a similar influence on the system’s (2)
solution as that obtained for f in the first case. Now, the influence of varying the parameter b
on the system’s (2) dynamics is studied in figure (4) below at a selected values. It is obtained that
for the ranges b € (0,0.13), and b > 0.13 the solution approaches a stable limit cycle, and ps

respectively.
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Fig. 4. The trajectory of the system (2), utilizing the set of data (67) with different values of b. (a)

Stable limit cycle for b = 0.1. (b) Time series for b = 0.1. (c) Phase portrait for b = 0.5 that

approached to ps = (1.17,0.66,1.16). (d) Time series for b = 0.5.

Note that, a similar impact on the system’s (2) dynamics, as shown by the parameter b, is obtained

when the parameter value c¢ varies. For the parameter K; in the ranges K; € (0,0.14], K; €

(0.14,0.53], K; > 0.53, it is observed that the system’s (2) solution approaches asymptotically to

p,, stable limit cycle, and ps respectively, as shown in figure (5) for the selected parameter values.
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Fig. 5. The trajectory of the system (2), utilizing the set of data (67) with different values of Kj.
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(a) Phase portrait for K; = 0.1 that approached to p, = (0,0.5,0). (b) Time series for K; = 0.1.
(c) Stable limit cycle for K; = 0.5. (d) Time series for K; = 0.5. (e) Phase portrait for K; = 2
that approached to ps = (3.51,0.66,1.43). (f) Time series for K; = 2.

For the parameter a; in the ranges a; € (0,0.26], and az > 0.26 the system’s (2) solution
approaches asymptotically to ps and stable limit cycle respectively, as shown in figure (6) at the

selected values of as.

(b)

Top-predator
Top-predator

2
Predator ' 1 Prev Predator 0 1 Prey

Fig. 6. The trajectory of the system (2), utilizing the set of data (67) with different values of as;.
(a) Phase portrait for a; = 0.2 that approached to ps = (3.38,0.66,2.1). (b) Stable limit cycle

for az = 0.3.

Note that, a similar impact on the system’s (2) dynamics, as shown by the parameter a;, is
obtained when the parameter value K, varies. For the parameter d, intheranges d, € (0,0.44],
d, € (0.44,0.55], d, >0.55, it is observed that the system’s (2) solution approaches
asymptotically to ps, p4, and p; respectively, as shown in figure (7) for the selected parameter

values.
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(a) Phase portrait for d, = 0.3 that approached to ps = (3.38,0.66,0.76). (b) Time series for
d, = 0.3. (c) Phase portrait for d, = 0.5 that approached to p, = (3.93,0.34,0). (d) Time series
for d, = 0.5. (e) Phase portrait for d, = 0.6 that approached to p; = (4.5,0,0). (f) Time series
for d, = 0.6.

For the parameter e intheranges e € (0,0.13], e € (0.13,1.61],and e > 1.61 the system’s (2)
solution approaches asymptotically to stable limit cycle, ps, and p, respectively, see figure (8)

for the selected values of the paramere e.
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Fig. 8. The trajectory of the system (2), utilizing the set of data (67) with different values of e. (a)
Stable limit cycle for e = 0.1. (b) Time series for e = 0.1. (c) Phase portrait for e = 0.5 that
approached to ps = (3.38,0.66,1.5). (d) Time series for e = 0.5. (e) Phase portrait for e = 1.75
that approached to p, = (3.47,0.61,0). (f) Time series for e = 1.75.

For the parameters K3, ds, and m, they have a similar influence on the system’s (2) solution as
that obtained for e in the first case. Now, the influence of varying the parameter as on the
system’s (2) dynamics is studied in figure (9) below at a selected values of as, so that for the

ranges as € (0,0.18], and b € (0.18,0.5] the solution approaches p,, and ps respectively.
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Fig. 9. The trajectory of the system (2), utilizing the set of data (67) with different values of as.
(a) Phase portrait for as = 0.1 that approached to p, = (2.31,2.28,0). (b) Time series for as =
0.1. (c) Phase portrait for as = 0.3 that approached to ps = (2.83,1,1.68). (d) Time series for
as = 0.3.
The influence of the rest of the parameter values on the dynamics of the system (2) using the data
(67) 1s summarized in table (2) below. However, for the data (67) with r = 0.09, and a3 = 0.09

it is observed that, the system (2) approaches asymptotically to p, = (0,0,0) as shown in figure
(10).
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Fig. 10. The trajectory of the system (2), utilizing the set of data (67) with r = 0.09, and a; =
0.09. (a) Phase portrait approached to p,. (b) Time series.
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Clearly, for the data used in figure (10), the conditions (20)-(21) are satisfied and hence the stability
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of py is confirmed.

Table 2: The dynamics of system (2) as a function of the specific parameter with rest of parameters as given in (67)

Parameter Range The dynamics
d, € (0,0.52] The system (2) approaches asymptotically to psg
dy d, € (0.52,0.58] The system (2) approaches asymptotically to p,
d; > 0.58 The system (2) approaches asymptotically to p,
a; € (0,2.01] The system (2) approaches asymptotically to ps
- a; > 2.01 The system (2) approaches asymptotically to p,
c € (0,0.17] The system (2) approaches asymptotically to limit cycle
‘ c €(0.17,1] The system (2) approaches asymptotically to ps
a, a, € (0,a4] The system (2) approaches asymptotically to ps
ay a, >0 The system (2) approaches asymptotically to ps
m € (0,0.32] The system (2) approaches asymptotically to limit cycle
m m € (0.32,0.86] The system (2) approaches asymptotically to ps
m € (0.86,1] The system (2) approaches asymptotically to p,
K, € (0,2.47] The system (2) approaches asymptotically to ps
e K, > 2.47 The system (2) approaches asymptotically to limit cycle
K5 € (0,0.81] The system (2) approaches asymptotically to limit cycle
K, K3 € (0.81,3.42] The system (2) approaches asymptotically to ps
K; > 3.43 The system (2) approaches asymptotically to p,
d; € (0,0.06] The system (2) approaches asymptotically to limit cycle
ds d; € (0.06,0.21] The system (2) approaches asymptotically to ps

ds > 0.22

The system (2) approaches asymptotically to p,

7. CONCLUSIONS

This work proposes and investigates a three-species food chain model including fear cost, predator-
dependent refuge, and cannibalism at the second level. Food consumption between stages of the

food chain is designed using the Holling type II functional response. The solution's entire
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collection of characteristics was investigated. It is noted that the system has six nonnegative

equilibrium points. Each one's stability analysis is looked into locally. The system's persistence

requirements have been identified. The transcritical bifurcation of system (2) is demonstrated to

occur close to the boundary equilibrium point, with the pitchfork bifurcation occurring possibly

also at the prey-free equilibrium point. Saddle-node bifurcation is, nevertheless, discovered close

to the positive equilibrium point. Finally, the model is investigated numerically using a

hypothetical set of parameter values to confirm the obtained finding and understand the impact of

varying the parameters on the system’s (2) dynamics. The following results were obtained

numerically depending on the parameter values (67).

The prey birth rate has three bifurcation points. As its value increases, the system (2) loses
its stability at the positive equilibrium point and transfers to periodic dynamics through
Hopf bifurcation. On the other hand, decreasing its value leads to extinction in the top
predator first and then in the prey so that the solution approaches the second axial
equilibrium point through the top predator-free equilibrium point.

The prey’s fear level (similarly the prey’s natural death rate and the intermediate predator’s
attack rate) causes extinction in the top predator first and then in the prey when its value
exceeds a specific value. On the other hand, when the system undergoes periodic dynamics,
it is observed that increasing the prey’s fear level stabilizes the system at the positive
equilibrium point.

The prey intraspecific competition (similarly the prey’s refuge rate and the middle
predator’s half-saturation constant) has a stabilizing effect on the system’s dynamics.

The conversion rate of cannibalism into middle predator birth (similarly the half-saturation
constant of cannibalism) has a destabilizing effect on the system’s dynamics.

The middle predator’s natural death rate causes extinction in the system and the solution
ultimately approaches the first axial equilibrium point.

The cannibalism rate in the middle predator (similarly the middle predator’s refuge rate,
the top predator’s natural death rate, and the top predator’s half-saturation constant) has a
stabilizing effect on the system’s dynamics up to a threshold value and then the persistence

of the system (2) is lost through extinction in top predator.
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e The conversion rate of middle predator’s biomass into top predator biomass makes the

system persist at the positive equilibrium point.
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