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Abstract. The COVID-19 virus is still spreading around the world. Several SARS-CoV-2 variants have been

identified during this COVID-19 pandemic. In this study, we present a compartmental mathematical model using

ordinary differential equations to investigate the impact of four different SARS-CoV-2 variants on the transmission

of SARS-CoV-2 across India. The proposed mathematical model incorporates the alpha variant, beta variant,

gamma variant, and delta variant subpopulations apart from the typical susceptible, exposed, recovered, and dead

subpopulations. As part of the India pandemic, we used the model to determine the basic reproduction number (R0)

and the daily rates of infection, death, and recovery for each strain. Sensitivity analysis is employed to comprehend

the influence of estimated parameter values on the number of infections that result in four variants. Then, using

vaccine and therapy as the control variables, we define and analyse an optimum control problem. These optimal

controls are described by the Pontryagin’s Minimal Principle. Results showed that the combination of vaccination

and treatment strategies was most efficient in minimizing infection and enhancing recovery. The cost-effectiveness

analysis is used to determine the best control strategy to minimize infected individuals.
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1. INTRODUCTION

One of the deadliest and most severe pandemics in recent history is the SARS-CoV-2 pan-

demic, which was driven by the SARS-CoV-2 infection. Around 6.28 million COVID-19 deaths

and over half a billion confirmed SARS-CoV-2 cases were reported by the WHO [1] by May

2022, more than two years after the virus’s first documented pandemic in December 2019.

There have been multiple waves of the SARS-CoV-2 pandemic. These waves are mostly car-

ried by the reduction of non-pharmaceutical therapies and the development of novel variants of

concern (VOCs). Some SARS-CoV-2 variants are more contagious and severe in populations

than others variants. The World Health Organization (WHO) and the Centers for Disease Con-

trol and Prevention (CDC) [2] have classified the SARS-CoV-2 variants into three categories

[3] 1) a variant of concern 2) a variant of interest and 3) a variant of high consequence variant

of concern: The SARS-CoV-2 alpha, beta, gamma, delta, and omicron variants are categorized

as a variant of concern (VOCs.). These variations have a higher propensity to lead to severe

illness, avoid detection by tests, or resist antiviral therapy. In those who have had vaccinations

or have already contracted an infection, VOC is more contagious and more likely to result in

reinfections or emerging infections.

According to the World Health Organization, the alpha variant [4], formerly known as

B.1.1.7, was first discovered in the UK in September 2020, and by December 2020, it had

arrived in the US. The World Virus Network claims that at least 114 nations have been affected

by its proliferation. Around 60% of all SARS-COV-2 cases were caused by alpha. The beta

variant[5], formerly known as B.1.351, was initially identified as a variety of concerns in De-

cember 2020 after being found in South Africa in May 2020. Eight different mutations exist in

it, and these can alter how the virus infects human cells. According to Global Virus Network,

it has propagated to at least 48 nations and 23 US states. The gamma variation[6], commonly

known as P.1, first emerged in Brazil in November 2020. At the beginning of January 2021,

four passengers who had visited Brazil tested positive for the gamma variant in Japan. This

variant has been spotted in 74 different countries, according to the United Nations website. The

delta variant [7], formerly known as B.1.617.2, initially emerged in India in October 2020 and

was categorized as a variant of concern in May 2021. Over a short period, the Delta variant
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had reached more than 100 nations and had taken over as the worldwide standard. omicron

variant [8], also known as B.1.1.529, is a brand-new, severely mutated SARS-CoV-2 variant

that the World Health Organization has now classified as a VOC as of November 26, 2021. The

omicron variety was the first to be discovered in South Africa. Now it has been discovered

in at least 24 countries. A variant of Interest (VOIs) : The Epsilon (American), Zeta (Brazil-

ian), Eta (many countries), Theta (Philippines), Lota (American), Kappa (Indian), and Lambda

(Peruvian) variants of the SARS-CoV-2 coronavirus are recognized as variations of interests.

These variants have genetic traits that, in contrast to earlier forms of the virus, indicate higher

transmissibility, resistance to treatment or diagnostics, or more severe illness. A variant of high

consequence: Current vaccines do not protect the variation known as VOI. There are currently

no highly significant SARS-CoV-2 mutations. To analyze and comprehend the dynamics of

various outbreaks in different regions of the world, mathematical models are helpful and have

been utilized extensively[9, 10, 11]. Researchers have concentrated their attention on several

mathematical compartmental models, whether stochastic[12, 13] or deterministic in order to

explore the spread of SARS-COV-2, including the influence of the numerous SARS-CoV-2

variants on this spread, and to propose strategies to slow this spread. Most mathematical mod-

els study one single variant and examine the effects of vaccination [14, 15], hospitalization, and

quarantine [16, 17], as well as the effects on various age groups [18, 19]. Many mathemati-

cal models have been developed in recent months to examine the impact of several variants on

the spread of SARSCoV-2 when it became apparent how important distinct VOCs were in the

rapid rise in the number of SARS-CoV-2 cases in various regions. Yagan et al. [20] investi-

gated the efficiency of mask use in preventing the spread of COVID-19 in the context of viral

mutations using network models. Arrude et al [21] developed an SEIR model with multiple

viral strains and reinfection because of waning immunity. They compared the cost of infec-

tion control (lockdown) to the cost of increased infection levels in the healthcare system over

two years as they evaluated time-varying control tactics in the context of lockdown measures.

Using symptomatic and asymptomatic individuals, Mathilde Massard et al [22] constructed a

multi-strain epidemic model SARS-CoV-2 by using French data. To further understand the

SARS-CoV-2 transmission in Columbia, Gonzal et al.[23] expanded a two-strain SEIR model
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to include asymptomatic, hospitalized, and deceased people. The research analyzes the global

stability of a two-strain SEIR model with two general incidence rates, as well as a multi-strain

SEIR model with saturated incidence and treatment controls as in [24], which also addresses

an optimal control problem. In order to determine the best optimal strategies for reducing the

number of people infected with the various SARS-COV-2 variants, I Abdel Hak essounaini et

al [25] built a multi-strain model that included four SARS-COV-2 variants. Using the combina-

tion of vaccination and treatment controls, Ririt Andria Sari et al developed an SVEIR model

with a single variant [26] and Bouchaib Khajji et al. [27] constructed a two-strain model to

determine the best control approach. The most efficient way to stop any infectious disease is

by immunization. It is predicted that the vaccine programme [28] will avert about 2-3 mil-

lion fatalities annually. The effectiveness of SARS-CoV-2 vaccines is up to 95% in reducing

symptomatic SARS-CoV-2 diseases. The Oxford-AstraZeneca (Covishield )and Covaxin vac-

cines were first approved in India. The Covaxin, manufactured by Bharat Biotech in partnership

with the Indian Council of Medical Research, has a 78% effectiveness rate [29] and The vac-

cination Covishield, a version of OxfordAstraZeneca’s (ChAdOx1 nCoV-19), achieved a 67%

effectiveness rate [30]. Influenced by the importance of multistrain SARS-CoV-2 models and

their scarcity, we developed a novel multistrain model (SE1E2E3E4I1I2I3I4HRD model) by in-

corporating SARS-COV-2 alpha, beta, gamma, and delta variants. One of the main concerns

of policymakers, health authorities, and the government is the best use of control measures like

vaccinations or medicines. In order to minimize the infected population we present an optimal

control strategy associated with two kinds of controls. The first control signifies the vaccination

control on the susceptible population and the second control characterizes the treatment control

on the symptomatic infected population.

The article is structured as follows: We present an original mathematical model in Section

2 that depicts the dynamics of the population and the spread of the SARS-COV-2 variants.

We calculated the fundamental reproduction number and performed stability of the disease-free

equilibrium in Section 3. Using daily cumulative confirmed cases, we calibrated our mathemati-

cal model in in section 4 and sensitive analysis was also performed for model parameters of each

strain in section 5. we investigate the optimal control technique for the recommended model.
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Pontryagin’s maximum principle is employed to identify these optimal controls in section. The

behavior of the system in the presence of four variants, both with and without mitigation is

displayed in section 6. Finally, section 7 brings the article to a conclusion.

2. MATHEMATICAL MODEL WITH FOUR SARS-COV-2 VARIANTS

FIGURE 1. Schematic diagram of the sixteen compartments in the model

In this section, we propose a compartmental mathematical model to study the spread of four

SARS-COV-2 variants in India. This mathematical model has 16 compartments: the number

of individuals susceptible to the infection at time t S(t); the number of individuals exposed to

alpha, beta, gamma, and delta variants at time t, E1(t), E2(t), E3(t) and E4(t); the number of

asymptomatic individuals with alpha, beta, gamma and delta variants at time t, I1(t), I2(t), I3(t)

and I4(t); the number of symptomatic individuals with alpha, beta, gamma and delta variants at

time t, I1(t), I2(t), I3(t) and I4(t); the number of individuals hospitalized due to severe illness at

time t, H(t); the number of individuals recovered against infection at time t, R(t), and number

of individuals deceased with infection at time t, D(t).



6 A. VENKATESH, M. ANKAMMA RAO, D. K. K. VAMSI

Compartment S defines the population of susceptible people who are not infected but can be-

come ill. The recruitment rate denoted as Λ increases this compartment whereas the natural

death rate µ decreases it. As a result of its effective contact with those asymptomatic infected

and smptomatic infected individuals with the SARS-COV-2 ith variant at a rates of βAi and βIi ,

it is diminished by the rates βAi and βIi . Therefore
dS
dt = Λ−∑

4
i=1(βAiAi +βIiIi)

S
N −µS

Compartment Ei consists of those who have been exposed to the virus and are symptomless

carriers of the virus, with the potential to transmit the disease and become symptomatic infec-

tion. It is increases by susceptible S(t) individuals who are exposed at the rates βAi and βIi and

also decreases by natural rate µ . A portion σi of exposed individuals becomes asymptomatic in-

fected SARS-CoV-2 variant and remaining portion (1−σi) becomes symptomtic infected with

SARS-CoV-2 variant at a rate δ . It is also reduced by natural death rate µ . So that
dEi
dt = (βAiAi +βIiIi)

S
N − (µ +δ )Ei

Compartment Ai depicts individuals who are infected with SARS-CoV-2 variant but does not

shows any symptoms. It increases in size as the proportion σi of exposed individuals becomes

asymptomatic infected with SARS-CoV-2 variant at a rate δ . It diminishes by the rate ηi as

the number of asymptomatic infected individuals becomes symptomatic at the rate ηi and also

declines as some of them recover at a rate of γAi . Furthermore, this class experiences a reduction

by the natural mortality rate µ . Therefore
dAi
dt = σiδEi− (γAi +ηi +µ)Ai

Compartment Ii involves the individuals who are infected with SARS-CoV-2 variant and have

symptoms. This population increases at the rate δ as the remaining (1−σi) portion of exposed

individuals becomes symptomatic infected with SARS-CoV-2 variant at the rate δ and also in-

creases by the rate ηi at which the asymptomatic individuals becomes symptomatic infected. It

diminishes by gi as the number of infected individuals admitted to hospitals at a rate of gi due

to serious illnesses and also declines as some of them recover at a rate of γIi . Furthermore, this

class diminished by the both natural mortality rate µ and the infectious mortality rate µi caused

by the SARS-CoV-2 variant. Hence
dIi
dt = (1−σi)δEi +ηiAi− (gi + γIi +µi +µ)Ii
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Compartment G represents individuals who are in hospitals because of a severe infection. It

increases by the rate gi as symptomatic infected individuals with SARS-CoV-2 variant joins

hospital at a rate of gi. It declines by both the natural mortality rate µ and the symptomatic

infected with SARS-CoV-2 variant death rate µg As a result,
dG
dt = ∑

4
i=1 giIi− (γg +µg +µ)G

Compartment R includes of those who have recovered from the SARS-CoV-2 variant. It be-

comes larger at the rates γAi and γIi as the infected individuals with SARS-CoV-2 variant recov-

ered by the rates γAi and γIi and also increases by the rate γh at which the hospitalised individuals

are recovered. Furthermore it reduces by natural death rate µ . Therefore
dR
dt = ∑

4
i=1(γAiAi + γIiIi)+ γgG−µR

Compartment D contains individuals who passed away as a result of severe infection or treat-

ment that was ineffective. It increases by a mortality rate µi of symptomatic infected individuals

with SARS-CoV-2 variant and also rises by mortality rate µg of hospitalization individuals. So

that dD
dt = ∑

4
i=1 µiIi ++µgG

The Schematic diagram in Figure.1 depicts the proposed model. Using our assumptions and

Schematic diagram, the system of nonlinear differential equations for the model of SARS-CoV-

2 variants can be obtained as follows:

dS
dt

= Λ−
4

∑
i=1

(βAiAi +βIiIi)
S
N
−µS

dEi

dt
= (βAiAi +βIiIi)

S
N
− (µ +δ )Ei

dAi

dt
= σiδEi− (γAi +ηi +µ)Ai

dIi

dt
= (1−σi)δEi +ηiAi− (gi + γIi +µi +µ)Ii

dG
dt

=
4

∑
i=1

giIi− (γg +µg +µ)G

dR
dt

=
4

∑
i=1

(γAiAi + γIiIi)+ γgG−µR

dD
dt

=
4

∑
i=1

µiIi ++µgG(1)
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with the initial conditions

(2) S(0)≥ 0,Ei(0)≥ 0,Ai(0)≥ 0, Ii(0)≥ 0,G(0)≥ 0,R(0)≥ 0&D(0)≥ 0

The total human population N(t) at time t is specified by

N(t) = S(t) + E1(t) + E2(t) + E3(t) + E4(t) + A1(t) + A2(t) + A3(t) + A4(t) + I1(t) + I2(t) +

I3(t)+ I4(t)+G(t)+R(t)+D(t).

3. MODEL ANALYSIS

3.1 Positivity on the solutions

Theorem 1.

Ω = {(S(t),E1(t),A1(t), I1(t),E2(t),A2(t), I2(t),E3(t),A3(t), I3(t),E4(t),A4(t), I4(t),G(t),R(t),

D(t)) ∈ R16
+ : 0≤ (S,E1,A1, I1,E2,A2, I2,E3,A3, I3,E4,A4, I4,G,R,D)≤ Λ

µ
}

is positive invariant and an attracting set for system (1) if the initial conditions (2) holds.

proof. From the system (1), we have
ds
dt = Λ− (∑4

i=1(βAiAi +βIiIi)
1
N +µ)S

Let ψ(t)=(∑4
i=1(βAiAi +βIiIi)

1
N +µ)

Then ds
dt +ψS≥ 0

Multiplying above equation with exp(
∫ t

0 ψ(s)ds),we get
ds
dt exp(

∫ t
0 ψ(s)ds)+ψ(t)S(t)exp(

∫ t
0 ψ(s)ds)≥ 0

⇒ d
dt [S(t)exp(

∫ t
0 ψ(s)ds)]≥ 0

Integrating on both sides, we get

S(t)≥ S(0)exp(−
∫ t

0 ψ(s)ds)≥ 0

Therefore S(t)≥ 0 for all t > 0

From the system (1) we have
dEi
dt = (βiIi)

S
N +(µ +δi)Ei for i=1,2,3,4

Let Φ(t) = (µ +δi)

Then dEi
dt +ΦEi(t)≥ 0

Multiplying above equation with exp(
∫ t

0 Φ(s)ds),we get
dEi
dt exp(

∫ t
0 Φ(s)ds)+Φ(t)Ei(t)exp(

∫ t
0 Φ(s)ds)≥ 0

⇒ d
dt [Ei(t)exp(

∫ t
0 Φ(s)ds)]≥ 0
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Integrating on both sides, we get

Ei(t)≥ Ei(0)exp(−
∫ t

0 φ(s)ds)≥ 0

Therefore Ei(t)≥ 0 for all t > 0 and for i=1,2,3,4

Consequently, from the system (1), we have
dAi
dt = σiδEi− (γAi +ηi +µ)Ai

Let χ(t) = γAi +ηi +µ . Then
dAi
dt +χAi = 0 for i =1,2,3,4.

Multiplying above equation with exp(
∫ t

0 χ(s)ds),we get
dAi
dt exp(

∫ t
0 χ(s)ds)+χ(t)Ai(t)exp(

∫ t
0 χ(s)ds)≥ 0

⇒ d
dt [Ai(t)exp(

∫ t
0 χ(s)ds)]≥ 0

Hence Ai(t)≥ 0 for all t > 0 for i=1,2,3,4

Similarly the following inequalities can be easily obtained from the other equations of the sys-

tem (1)

Ii(t)≥ Ii(0)exp(−
∫ t

0(gi + γIi +µi +µ)(s)ds)≥ 0 for i=1,2,3,4

G(t)≥ G(0)exp(−
∫ t

0(γg +µg +µ)(s)ds)≥ 0 and

R(t)≥ R(0)exp(−
∫ t

0 µ(s)ds)≥ 0.

Since each Ii(t)≥ 0 and G(t)≥ 0, we have D(t)≥ 0

we have N(t) = S(t)+E1(t)+E2(t)+E3(t)+E4(t)+A1(t)+A2(t)+A3(t)+A4(t)+ I1(t)+

I2(t)+ I3(t)+ I4(t)+G(t)+R(t)+D(t)

differentiating N(t) with respect to t, and adding all equations in system(1)we get
dN
dt = Λ−µN

⇒dN
dt +µN = Λ

After solving we get

N(t) = Λ

µ
+(N(0)− Λ

µ
)e−µt for t ≥ 0

If N(0) = Λ

µ
then N(t) = Λ

µ

if N(0)> Λ

µ
, then N(t) asymptotically approaches Λ

µ
as t→ ∞.

Hence the solution set Ω of model (1) is positively invariant and constrained.

3.2 Basic reproduction number (R0)

The average number of secondary infections produced by single primary infection throughout
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the course of the infectious period in a totally susceptible population is known as the basic re-

production number (R0). The next-generation matrix approach [31, 32] is used to describe the

algebraic expression of R0 for system (2). Let F represent the derivatives of new infections and

let V represent the individual transfers to compartments.

Then

F =



(βA1A1 +βI1I1)
S
N

0

0

(βA2A2 +βI12I2)
S
N

0

0

(βA3A3 +βI3I3)
S
N

0

0

(βA4A4 +βI4I4)
S
N

0

0



& V =



(µ +δ )E1

−σ1δE1 +(γA1 +η1 +µ)A1

−(1−σ1)δE1−η1A1 +(g1 + γI1 +µ1 +µ)I1

(µ +δ )E2

−σ3δE3 +(γA3 +η3 +µ)A3

−(1−σ3)δE3−η3A3 +(g3 + γI3 +µ3 +µ)I3

(µ +δ )E3

−σ3δE3 +(γA3 +η3 +µ)A3

−(1−σ3)δE3−η3A3 +(g3 + γI3 +µ3 +µ)I3

(µ +δ )E4

−σ4δE4 +(γA4 +η4 +µ)A4

−(1−σ4)δE4−η4A4 +(g4 + γI4 +µ4 +µ)I4



.

Now the Jacobian matrices of F and V can be written as

F =



0
βA1 Λ

µ

βI1 Λ

µ
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0
βA2 Λ

µ

βI2 Λ

µ
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
βA3 Λ

µ

βI3 Λ

µ
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
βA4 Λ

µ

βI4 Λ

µ

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0


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V =



−(µ +δ ) 0 0 0 0 0 0 0 0 0 0 0

σ1δ −X1 0 0 0 0 0 0 0 0 0 0

(1−σ1)δ η1 −Y1 0 0 0 0 0 0 0 0 0

0 0 0 −(µ +δ ) 0 0 0 0 0 0 0 0

0 0 0 σ2δ −X2 0 0 0 0 0 0 0

0 0 0 (1−σ2)δ η2 −Y2 0 0 0 0 0 0

0 0 0 0 0 0 −(µ +δ ) 0 0 0 0 0

0 0 0 0 0 0 σ3δ −X3 0 0 0 0

0 0 0 0 0 0 (1−σ3)δ η3 −Y3 0 0 0

0 0 0 0 0 0 0 0 0 −(µ +δ ) 0 0

0 0 0 0 0 0 0 0 0 σ4δ −X4 0

0 0 0 0 0 0 0 0 0 (1−σ4)δ η4 −Y4



.

Where Xi = (γAi +ηi +µ) Yi = (gi + γIi +µi +µ) for i = 1,2,3,4.

FV−1 =



R01
βA1 Λ

X1µ

βI1 Λ

Y1µ
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 R02
βA2 Λ

X2µ

βI2 Λ

Y2µ
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 R03
βA3 Λ

X3µ

βI3 Λ

Y3µ
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 R04
βA4 Λ

X4µ

βI4 Λ

Y4µ

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0


where

R01 =
σ1δβA1 Λ

µ(µ+δ )(γA1+η1+µ) +
βI1 Λ(σ1δη1−(1−σ1)δ (γA1+η1+µ))

µ(µ+δ )(γA1+η1+µ)(g1+γI1+µ1+µ)

R02 =
σ2δβA2Λ

µ(µ+δ )(γA2+η2+µ) +
βI2Λ(σ2δη2−(1−σ2)δ (γA2+η2+µ))

µ(µ+δ )(γA2+η2+µ)(g2+γI2+µ2+µ)

R03 =
σ3δβA3Λ

µ(µ+δ )(γA3+η3+µ) +
βI3Λ(σ3δη3−(1−σ3)δ (γA3+η3+µ))

µ(µ+δ )(γA3+η3+µ)(g3+γI3+µ3+µ)
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R04 =
σ4δβA4Λ

µ(µ+δ )(γA4+η4+µ) +
βI4Λ(σ4δη4−(1−σ4)δ (γA4+η4+µ))

µ(µ+δ )(γA4+η4+µ)(g4+γI4+µ4+µ)

are biologically characterized as the effect of the controls used on the four SARS-CoV-2 vari-

ants. The fundamental reproductive number R0 is represented spectral radius of the next gener-

ation matrix FV−1, which is known by R0 = max{R01,R02,R03,R04}

3.3 Disease free equilibrium (E0)

we find the equilibrium point (E0) where the population is free of disease (i.e., E1 = E2 = E3 =

E4 =A1 = A2 = A3 = A4= I1 = I2 = I3 = I4 = H = R = D = 0) by setting the right hand side of

system (2) to zero. Then disease-free equilibrium is E0 = ( Λ

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ).

Theorem 2. The disease-free equilibrium of system (1) is locally asymptotically stable if

R0 < 1,and unstable if R0 > 1.

proof. The Jacobian matrix of the system (1) is given by

JE0 =



−µ 0 −βA1 −βI1 0 −βA2 −βI2 0 −βA3 −βI3 0 −βA4 −βI4 0 0

0 −(µ +δ ) 0 βA1 βI1 0 βA2 βI2 0 βA3 βI3 0 βA4 βI4 0

0 σ1δ −X1 0 0 0 0 0 0 0 0 0 0 0 0

0 (1−σ1)δ η1 −Y1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −(µ +δ ) 0 0 0 0 0 0 0 0 0 0

0 0 0 0 σ2δ −X2 0 0 0 0 0 0 0 0 0

0 0 0 0 (1−σ2)δ η2 −Y2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −(µ +δ ) 0 0 0 0 0 0 0

0 0 0 0 0 0 0 σ3δ −X3 0 0 0 0 0 0

0 0 0 0 0 0 0 (1−σ3)δ η3 −Y3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −(µ +δ ) 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 σ4δ −X4 0 0

0 0 0 0 0 0 0 0 0 0 (1−σ4)δ η4 −Y4 0 0

0 0 0 g1 0 0 g2 0 0 g3 0 0 g4 −Z 0

0 0 γA1 γI1 0 γA2 γI2 0 γA3 γI3 0 γA4 γI4 γg µ


.

Where Xi = (γAi +ηi +µ), Yi = (gi + γIi +µi +µ) and Z = (γg +µg +µ) for i = 1,2,3,4.

Then -µ , -µ , -(γg + µg + µ) are three eigen values of jacobian matrix and remaining 12 eigen

values can be determined from the following matrix.
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−(µ +δ ) βA1 βI1 0 βA2 βI2 0 βA3 βI3 0 βA4 βI4

σ1δ −X1 0 0 0 0 0 0 0 0 0 0

(1−σ1)δ η1 −Y1 0 0 0 0 0 0 0 0 0

0 0 0 −(µ +δ ) 0 0 0 0 0 0 0 0

0 0 0 σ2δ −X2 0 0 0 0 0 0 0

0 0 0 (1−σ2)δ η2 −Y2 0 0 0 0 0 0

0 0 0 0 0 0 −(µ +δ ) 0 0 0 0 0

0 0 0 0 0 0 σ3δ −X3 0 0 0 0

0 0 0 0 0 0 (1−σ3)δ η3 −Y3 0 0 0

0 0 0 0 0 0 0 0 0 −(µ +δ ) 0 0

0 0 0 0 0 0 0 0 0 σ4δ −X4 0

0 0 0 0 0 0 0 0 0 (1−σ4)δ η4 −Y4



.

The determinant of this matrix yields an 12th degree equation in λ , and analytically solving

this equation requires extensive calculations. So that we use numerical methods [33] to obtain

the roots because it is difficult to calculate the roots of higher-order equations analytically. By

using Routh–Hurwitz Criteria [34], this disease-free equilibrium is locally asymptotically stable

if R0 < 1 and unstable R0 > 1.

4. MODEL CALBIRATION

The results are more accurate if a model is well-fitted, which involves analyzing the fit

accuracy of the model to the data. We used the SARS-CoV-2 data for India [35], which was

collected between March 1, 2020, and December 20, 2021, for this investigation. The timeline

of the alpha, beta, gamma, and delta variants in India is depicted in[36, 37]. By fitting the cu-

mulative confirmed cases of the reported data in Matlab and using the least squares approach(

lsqnonlin function), the 8 parameters of our proposed model have been determined. Table 1

represents the estimated and model parameter values for each variant data set. Figure.2 illus-

trates the fitted model with the cumulative confirmed SARS-CoV-2 cases for the alpha, beta,

gamma, and delta variants. The red curve shows the model solution, and the blue curve depicts

the reported data.
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TABLE 1. Estimated parameter values for model (1)

Parameter value References parameter value References

Λ varies - - - -

δ [0.071,0.33] [38, 39] - - -

σ1 [0,1] [39, 40] γA1 0.1511 [42, 47]

σ2 [0,1] [39, 40] γA2 0.1591 [42, 47]

σ3 [0,1] [39, 40] γA3 0.1672 [42, 47]

σ4 [0,1] [39, 40] γA4 0.1734 [42, 47]

βA1 0.2168 Fitted γI1 0.1401 [48, 49]

βA2 0.2331 Fitted γI2 0.1212 [48, 49]

βA3 0.2437 Fitted γI3 0.1405 [50]

βA4 0.2693 Fitted γI4 0.1715 [51]

βI1 0.3168 Fitted γg 0.01233 [45]

βI2 0.3331 Fitted µ1 0.001012 [46, 52]

βI3 0.3411 Fitted µ2 0.001122 [46, 52]

βI4 0.3632 Fitted µ3 0.001473 [41, 42]

η1 0.01435 [41, 42] µ4 0.017091 [41, 42]

η2 0.01979 [41, 42] µg 0.001393 [41, 42]

η3 0.01663 [41, 42] µ 0.0000391 [53]

η4 0.01537 [41, 42] R01 1.1087 Fitted

g1 0.01435 [43] R02 1.1128 Fitted

g2 0.01979 [44] R03 1.1973 Fitted

g3 0.01663 [43] R04 1.2646 Fitted

g4 0.01537 [45] R0 1.2646 Fitted
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FIGURE 2. Plots showing the fitted model along with real SARS-CoV-2 cases

for the alpha, beta, gamma, and delta variants in (a), (b), (c), and (d), respectively.

5. SENSITIVITY ANALYSIS

Sensitivity analysis is crucial in identifying the importance of various parameters in disease

transmission. It aids in comprehending how the reproduction number value changes depend-

ing on various factors. H.S. Rodrigues et al.[54] presents a thorough study of the sensitivity

to dengue fever. The ratio of the variable’s relative change to the parameter’s relative change

is known as the normalized forward sensitivity index of a variable with respect to a parameter.

Partial derivatives can also be used to define the sensitivity index when the variable is a dif-

ferentiable function of the parameter. The differentiability of R0 with respect to the particular
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parameter q determines the normalized forward sensitivity index of R0, which may be calculated

as Γ
R0

q = ∂R0
∂q ×

p
R0
.
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FIGURE 3. Normalized forward sensitivity indices of basic reproduction num-

ber with respect to various parameters for a) alpha variant, b) beta variant, c)

gamma variant, and d) delta variant

Figure 3 shows the basic reproduction number’s normalized forward sensitivities for the al-

pha, beta, gamma, and delta variants. According to Figure.3(a), the SARS-COV-2 alpha variant

disease transmission rates βA1 and βI1 of asymptomatic and symptomatic infected individuals

have positive correlations with R01, whereas the recovery rates γA1 and γI1 of asymptomatic and

symptomatic infected individuals have negative correlations with R01. This means that the alpha

variant’s reproduction number R01 enhanced by rising the rates of βA1 and βI1 , but slowed down
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by rising the rates γA1 and γI1 . Figure.3(b) demonstrates that the disease transmission rate βA2 of

beta variant and the conversion rate η2 of asymptomatic infected individuals with beta variant

to symptomatic infected individuals with beta variant have positive correlation with R02 while

the recovery rates γA2 and γI2 have negative correlations with R02. Therefore, the reproduction

number R02 increases as the rates βA2 and η2 rises and decreases as the rates γA2 and γI2 increase.

Figure. 3(c) indicates that the disease transmission rates βA3 and βI3 of infected individuals with

gamma variant have positive correlations with R03 and the rates of recoveries γA3 and γI3 of in-

fected individuals have negative correlation with R03. This implies that reproduction number

R03 increases as βA3 and βI3 rise and slow down as γA3 and γI3 rise. Figure.3(d) reveals that the

disease transmission rate βA4 of the symptomatic infected individuals with delta variant and the

rate η4 at which asymptomatic infected individuals becomes symptomatic infected with delta

variant show positive correlation with R04 and the hospitalization rate g4 and recovery rate γI4

of symptomatic infected individuals with delta variant shows negative correlation with R04. As

a result, the reproduction number R04 rises with rising of the rates βA4 and η4 whereas R04 falls

with rising of g4 and γI4 rates.

6. OPTIMAL CONTROL

6.1 Optimal control problem

There are numerous applications for optimal control in biology and pharmacology. It has largely

been employed to study compartmental models in epidemiology. The risk of infection can be

decreased by making the best use of various control measures such as Vaccination, treatment,

mask use, hand washing, surface sanitization, and non-pharmaceutical interventions (public

health education, isolation, and quarantine). Our primary objective is to reduce the number of

contagious individuals with SARS-CoV-2 variants over a period of time [0, T] by applying the

best intervention techniques. To accomplish these objectives, we provide two control variables

1) vaccination for susceptible and 2)treatment for infected and hospitalized individuals.

Vaccinated strategy for susceptible individuals: Vaccination is the most efficient technique

for controlling infectious diseases. In order to stimulate the immune system of the susceptible

subpopulation to recognize the pathogen and eradicate any associated microorganisms that it

may come into contact with in the future, vaccines are administered to this subpopulation. This

prevents the disease from spreading among susceptible people. The SARS-CoV-2 vaccines
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have demonstrated up to 95% efficiency in preventing symptomatic infection. India licensed

the BBV152 (Covaxin) vaccine produced by Bharat Biotech in Hyderabad and the Oxford-

AstraZeneca (Covishield) vaccine produced by the Serum Institute of India in Pune in January

2021. According to a recent study [55, 56, 57], using multiple vaccinations together led to

substantial improvements. The first control indicates the effort of vaccinating susceptible indi-

viduals by presuming that all susceptible individuals who have received vaccination are shifted

directly to the removed class. We assume that a susceptible individual will receive both of these

vaccines. we introduce these vaccination in the form of ζ u(t) where ζ is vaccination rate and

u(t) is control variable that lying in between 0 and 1.

Treatment strategy for infected and hospitalized individuals: Treatment is provided to the

infected and hospitalized subpopulations in order to lessen disease severity and limit infection

transmission. According to studies in [58], the best treatment approach to lessen the impact of

SARS-CoV-2 is the combination of immunotherapy and antiviral medications. So the second

control that we take into account in this scenario is the treatment of the infected and hospital-

ized population. These treatments could involve the administration of immunomodulators like

INF or zinc to strengthen the immune response or any recommended antiviral medications like

remdesivir, arbidol, etc. that prevent viral propagation. We define the treatment for asymp-

tomatic infected and symptomatic individuals with SARS-CoV-2 alpha, beta, gamma and delta

variants in the form κAivAi(t), κIivIi(t) where κAi , κIi are the treatment rates and vAi(t), vIi(t) are

the control variables. Also we introduce a treatment for hospitalization individuals in the form

κgvG(t) whereκg is treatment rate and vG(t) is the control variable. Here the control variables

range from 0 to 1, where 1 corresponds to a full recovery after treatment and 0 corresponds to

no recovery.

Let v = (vA1,vA2 ,vA3,vA4 ,vI1,vI2,vI3,vI4,vg)

Thus the admissible set of all controls is defined as

Uad = {u(t),v(t) : 0≤ u(t),v(t)≤ 1,∀t ∈ [0,T ] }.

With the objective of minimizing the cost functional, we now propose and describe the optimal



OPTIMAL CONTROL MODEL SIMULATION FOR COVID-19 INFECTION 19

control problem using the above discussed control strategies as follows:

dS
dt

= Λ−
4

∑
i=1

(βAiAi +βIiIi)
S
N
−ζ u(t)S−µS

dEi

dt
= (βAiAi +βIiIi)

S
N
− (µ +δ )Ei

dAi

dt
= σiδEi− (γAi +ηi +κAivAi(t)+µ)Ai

dIi

dt
= (1−σi)δEi +ηiAi− (gi + γIi +κIivIi(t)+µi +µ)Ii

dG
dt

=
4

∑
i=1

giIi− (γg +κgvG(t)+µg +µ)G

dR
dt

=
4

∑
i=1

(γAiAi + γIiIi)+ γgG+ζ u(t)S+
4

∑
i=1

κAivAi(t)Ai(t)+
4

∑
i=1

κIivIi(t)Ii(t)+κgvG(t)G(t)−µR

dD
dt

=
4

∑
i=1

µiIi +µgG(3)

subject to minimize the objective functional

(4) J =
∫ T

0
(

4

∑
i=1

(Ai + Ii)+
B
2

u2 +
4

∑
i=1

(
CAi

2
v2

Ai
+

CIi

2
v2

Ii
)+

CG

2
v2

G)dt

with the primary conditions expressed in Eq.(2). Here, the objective functional J depicts the

total cost incurred, which is the sum of the costs listed in the integrand:

L = ∑
4
i=1(Ai + Ii)+

B
2 u2 +∑

4
i=1(

CAi
2 v2

Ai
+

CIi
2 v2

Ii
)+ CG

2 v2
G

indicates the cost’s current value at any time t or Lagrangian. All the parameters B, CAi , CIi

and CG for i = 1, 2, 3, 4 are non-negative and are employed as weight constants to balance

the integrand’s units. Additionally, they provide the estimation of the relative costs of the con-

trol functions over [0, T], which includes vaccine, treatment, and diagnosis expenses, etc. The

control functions u∗(t), v∗i (t), v∗Ai
(t), v∗Ii

(t) and v∗G(t) occur in the admissible control set U that

primarily minimized the objective functional J .

The Hamiltonian function H defined by

H = ∑
4
i=1(Ai + Ii)+

B
2 u2 +∑

4
i=1(

CAi
2 v2

Ai
+

CIi
2 v2

Ii
)+ CG

2 v2
G +λS

dS
dt +∑

4
i=1 λEi

dEi
dt +∑

4
i=1 λAi

dAi
dt +

∑
4
i=1 λIi

dIi
dt +λG

dG
dt +λR

dR
dt +λD

dD
dt

where λS, λEi , λAi , λIi , λG, λR and λD are the adjoint variables for i=1,2,3,4.

Theorem 3. There exist 10-tuple of optimal controls (u∗(t), v∗A1
(t), v∗A2

(t), v∗A3
(t), v∗A4

(t),v∗I1
(t),

v∗I2
(t), v∗I3

(t), v∗I4
(t), v∗G(t) ) in Uad that minimizes the objective functional
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J (u∗(t),v∗(t),) = min
u(t),v(t)∈Uad

J (u(t),v(t) corresponding to the control system (3)–(4).

proof. This theorem will be proved using [59, 60]. We have already established in Section

2 that, under the initial conditions 2 given, all solutions to 1 are nonnegative and uniformly

bounded. It is clear that the objective functional is non-negative, and this indicates that the ob-

jective functional is bounded. By definition, the set of control variables, U, V, and W in Uad is

convex and closed. The integrand of the functional ∑
4
i=1(Ai+ Ii)+

B
2 u2+∑

4
i=1(

CAi
2 v2

Ai
+

CIi
2 v2

Ii
)+

Cg
2 v2

G is convex on the control set Uad and the state variables are bounded. As there are optimal

controls for minimizing the functional subject of equations 3–4, we use Pontryagin’s maximum

principle [61, 62] to derive the necessary conditions to find the optimal solutions as follows:

There exists a nontrivial vector function λ = λ1, λ2, λ3,..., λn if (z, u) is an optimal solution of

an optimal control problem and it satisfies the following equality conditions:
dz
dt =

∂H(t,z,u,λ )
∂λ

, 0 = ∂H(t,z,u,λ )
∂λ

, and dλ

dt = ∂H(t,z,u,λ )
∂λ

.

Theorem 4. If the couple (S∗,E∗i ,A
∗
i , I
∗
i ,G

∗,R∗,D∗) is the solution of the system (3) related to

an optimal controls u∗(t),v∗(t) ∈Uad , then there exist adjoint functions λS, λEi , λAi , λIi , λG, λR

and λD satisfying the following equations:
dλS
dt =−∂H

∂S = λs ∑
4
i=1(βAiAi+βIiIi+ζ u(t)+µ) 1

N +−∑
4
i=1 λEi(βAiAi+βIiIi)

1
N +(λS−λR)u(t)

dλEi
dt =−∂H

∂Ei
= (µ +δ )λEi−σiδλAi− (1−σi)δλIi

dλAi
dt =−∂H

∂ Ii
=−1+(λS−λEi)βAi

S
N +λAi(γAi +ηi+κAivAi(t)+µ)−λIiηi−λR(γAi +κAivAi(t))

dλIi
dt = −∂H

∂ Ii
= −1 + (λS − λEi)βIi

S
N + λIi(γAi + gi + κIivIi(t) + µi + µ) − λGgi − λR(γIi +

κIivIi(t))−λDµg

dλH
dt =−∂H

∂G = λG(γg +µg +κgvG +µ)−λR(γg +κGvG)−λDµg

dλR
dt =−∂H

∂R = µλR

dλD
dt = 0

with the transversality conditions at time T: λS(T ) = 0, λEi(T ) = 0, λAi(T ) = 0, λIi(T ) = 0,

λG(T ) = 0, λR(T ) = 0 and λD(T ) = 0.

Moreover for t ∈ [0,T ], the optimal controls u∗(t), and v∗Ai
(t), v∗Ii

(t) and v∗G(t) determined by

u∗(t) = min{1,max{0, (λS−λR)ζ S
B }},

v∗Ai
(t) = min{1,max{0, (λAi−λR)κAi Ai

CAi
}},

v∗Ii
(t) = min{1,max{0, (λIi−λR)κIi Ii

CIi
}} and
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v∗G(t) = min{1,max{0, (λG−λR)κgG
CG

}}

proof. The Hamiltonian function H for this optimal control system is defined by

H =∑
4
i=1(Ai+Ii)+

B
2 u2+∑

4
i=1(

CAi
2 v2

Ai
+

CIi
2 v2

Ii
)+

Cg
2 v2

G+λS(Λ−∑
4
i=1(βAiAi+βIiIi)

S
N−ζ u(t)−

µS)+∑
4
i=1 λEi((βAiAi+βIiIi)

S
N −(µ +δ )Ei)+∑

4
i=1 λAi(σiδEi−(γAi +ηi+κAivAi(t)+µ)Ai)+

∑
4
i=1 λIi((1−σi)δEi +ηiAi− (gi + γIi + κIivIi(t)+ µi + µ)Ii)+ λG(∑

4
i=1 giIi− (γg + κgvG(t)+

µg+µ)G)+λR(∑
4
i=1(γAiAi+γIiIi)+γgG+ζ u(t)+∑

4
i=1(κAivAi(t)+κIivIi(t))+κgvG(t)−µ)+

λD(∑
4
i=1 µiIi ++µgG)

Using Pontryagin’s maximal principle, the following canonical expressions are satisfied by the

co-state variables :
dλS
dt =−∂H

∂S , λS(T ) = 0,
dλEi

dt =−∂H
∂Ei

, λEi(T ) = 0,
dλAi

dt =−∂H
∂Ai

, λAi(T ) = 0,
dλIi
dt =−∂H

∂ Ii
, λIi(T ) = 0,

dλH
dt =−∂H

∂H , λG(T ) = 0,
dλR
dt =−∂H

∂R , λR(T ) = 0.
dλD
dt =−∂H

∂D , λD(T ) = 0.

Now, the optimality conditions ∂H
∂u = 0, ∂H

∂vAi
= 0, ∂H

∂vIi
= 0 and ∂H

∂vG
= 0 are used to illustrate

the optimal controls u∗(t), v∗Ai
(t), v∗Ii

(t) and v∗G(t) where i=1,2,3,4.
∂H
∂u = Piui−λSζ S+λRζ S = 0

⇒ u = (λS−λR)ζiS
B

∂H
∂vAi

=CAivAi−λAiκAiAi +λRκAiAi = 0

⇒ vAi =
(λAi−λR)κAi Ai

CAi
∂H
∂vIi

=CIivIi−λIiκIiIi +λRκIiIi = 0

⇒ vIi =
(λIi−λR)κIi Ii

CIi
∂H
∂vG

=CGvG−λGκgG+λRκgG = 0

⇒ vG =
(λG−λR)κgG

CG

The equations u∗(t), v∗Ai
(t), v∗Ii

(t) and v∗G(t) can be easily obtained using the bounds of the

controls in Uad .
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6.2 Optimal control model simulation

In this section, we conduct a numerical analysis to comprehend the effectiveness of vaccination

and treatment strategies over time. This is achieved by investigating the influence of optimal

controls on the dynamics of the system (3). we apply the fourth-order Runge-Kutta method

to study the numerical simulation of the system of differential equations (3) with the help of

MATLAB software. Using forward difference approximation, system (3) was solved. then,

the adjoint system (4) was resolved using backward difference approximation because of the

transversality constraints. For the simulation, we use a period of 300 days. We use the initial

conditions S(0) = 1215263184, E1(0) = 47000, A1(0) = 1, I1(0) = 1, E2(0) = 43000, I2(0) =

19429, A2(0) = 21602, E3(0) = 40500, A3(0) = 50034, I3(0) = 45928, E4(0) = 40000, A4(0) =

27086, I4(0) = 17015, G(0) = 5000, R(0) = 1000 and D(0)=200 and the parameters listed in

Table 1 to solve the controlled system(3) and the related adjoint system(4). The positive weight

constant B is taken as 106 based on the analysis in[58]. For the treatment of the infected and

hospitalised populations, we assume the treatment rate for each the variant is 0.3 and that the

values of weight constants CAi , CIi for i=1,2,3,4 and Cg are 1000, 1000 and 500 respectively.

Because we assume that all hospital facilities are available, the weight constant associated with

the total cost of applying the treatment strategy for the hospitalised population is considered to

be lower than that for treating the infected population with the four variants of SARS-CoV-2.

Three different strategies were implemented in the numerical simulations. We plot the graphs

for each variant in each strategy by combining the asymptomatic infected and symptomatic

infected individuals.

Strategy A: We analyse the impact of the SARS-COV-2 vaccination for the susceptible pop-

ulations. The control u control is used to fulfill these objectives. Figure 4 showed the significant

differences in the populations with SARS-COV-2 alpha, beta, gamma, and delta variant infec-

tions in the presence of control and in the absence of controls. Here the number of infected

population with alpha variant decreases from 7.71 × 106 to 3.47 × 106, with beta variant re-

duces from 1.83 × 107 to 0.75 × 107, with gamma variant reduces from 4.35 × 107 to 2.11 ×

107 and delta variant reduces from 5.72 × 107 to 2.27 × 107 after the control was executed.
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FIGURE 4. Comparisons between the infected individuals with SARS-COV-2

alpha variant, beta variant, gamma variant, and delta variant in relation to the

control u(t).

Strategy B: we evaluate the impact of optimal treatment for infected individuals with SARS-

COV-2 alpha, beta, gamma and delta variants in reducing the infected individuals. The only

control used to achieve this is v. Figure 5 demonstrated the statistically significant differences

between the SARS-COV-2 alpha, beta, gamma, and delta variant infected populations with

control u and the case when there is no control. Here, at the conclusion of the application of

control v the number of infected population with the alpha variant decreases from 7.71 × 106

to 4.21 × 106, with beta variant decreases from 1.83 × 107 to 1.01 × 107 , with gamma variant

decreases from 4.35 × 107 to 2.83 × 107 and delta variant decreases from 5.72 × 107 to 3.46

× 107.
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FIGURE 5. Comparisons between the infected individuals with SARS-COV-2

alpha variant, beta variant, gamma variant, and delta variant in relation to the

control v(t).

Strategy C: We examine the effectiveness of SARS-COV-2 vaccine for the susceptible pop-

ulation, and the impact of optimal treatment for infected individuals with SARS-COV-2 alpha,

beta, gamma and delta variants in reducing the infected individuals. By combining the controls

u and v, these objectives can be attained. The SARS-COV-2 alpha, beta, gamma, and delta

variant infected populations with controls u and v were significantly different from those with

no controls, as shown in Figure 6. Here the number of infected population with alpha variant

falls from 7.71× 106 to 1.59× 106, with beta variant falls from 1.83× 107 to 0.34× 107, with
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gamma variant decreases 4.35 × 107 to 0.95 × 107 and delta variant falls from 5.72 × 107 to

1.55 × 107 at the end of the implementation of the controls u and v.
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FIGURE 6. Comparisons of the corresponding to the infected individuals with

(a) alpha variant (b) beta variant (c) gamma variant and (d) delta variant with

respect to controls u(t) and v(t).

The combination of two controls, u and v is more effective than the single control u and

single control v in reducing the number of SARS-COV-2 alpha, beta, gamma, and delta infected

individuals, as shown in the figures above 4, 5 and 6.

6.3 Cost-effectiveness analysis

We analyse and evaluate the four strategies cost-effectiveness in order to determine the most

effective cost-effective strategy. In order to study cost-effectiveness analyses, the incremental

cost effectiveness ratio (ICER) is used [61, 62]. Any two different disease-prevention strategies
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can be compared using ICER if they have different costs and health outcomes. The ICER of

any two different strategies i and j is calculated as follows:

ICER =
Difference in total cost of strategies i and j

Difference in total averted infections of strategies i and j

The total cost for each combined effort of the control strategies is computed from the ob-

jective functional 4, while the total number of infections averted is determined by comparing

the number of infected individuals without and with control measures. The numerical results

for the control measures are shown in Table 2 and are arranged in increasing order of infection

averted.

TABLE 2. Total averted infections and total

costs for strategies A, B and C

Strategy Total averted infections (TA) Total cost (TC)

B 4.01 ×106 4.85 ×105

A 4.75 ×107 4.21 ×105

C 5.42 ×107 3.57 ×105

The ICER values are calculated as by computing the following formula for any two distinct

strategies, i and j, where strategy j is more successful than strategy i:

ICER(i) =
Total cost in strategy i

Total averted infections in strategy i

ICER( j) =
Difference in total cost in strategies i and j

Difference in total averted infections in strategies i and j

The fact that strategy i has a high ICER shows that it is both more expensive and less efficient

than strategy j. The lower ICER for strategy i shows that it is strongly dominant.

The ICER for strategies C and B is calculated, and the results are compared in Table 3.
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TABLE 3. Total infection averted, total cost and ICER

Strategy Total averted infections (TA) Total cost (TC) ICER

B 4.01 ×107 4.85 ×105 0.0086

C 5.42 ×107 3.57 ×105 0.0065

ICER(C) = 3.57×105

5.42×107 = 0.0065 and ICER(B) == 1.25×105

1.41×107 = 0.0089

Since ICER(C)< ICER(B), Strategy C is less efficient than strategy B. As a result, option B is

taken out of the competition.

Now, as shown in Table 4, the strategies C and A are compared.

TABLE 4. Total infection averted, total cost and ICER

Strategy Total averted infections (TA) Total cost (TC)

A 4.75 ×107 4.21 ×105 0.0096

C 5.42 ×107 3.57 ×105 0.0065

ICER(C) = 3.57×105

5.42×107 = 0.0065 and ICER(A) == 0.64×105

0.67×107 = 0.0096

Due to the fact that ICER(C)< ICER(A), strategy C is less effective than strategy A. Following

that, option C is eliminated from the list of possibilities.

Based on this, we get to the conclusion that the strategy C which includes the use of vaccina-

tion for susceptible individuals as well as treatment for infected individuals with SARS-COV-2

alpha, beta, gamma, and delta variants has a least ICER and is therefore the most effective

strategy.

7. CONCLUSION

To better understand how various viruses move within and between individuals, mathe-

matical modelling in association with mathematical analysis is a useful technique. Thus, under-

standing the dynamics of numerous infectious diseases is possible. In light of the complexity

of how viruses spread in a population, mathematical models often can provide insights that are

difficult to anticipate. In this study, we developed a deterministic model to study the transmis-

sion dynamics of four different SARS-CoV-2 variants, each of which is infectious differently.
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First, the proposed model’s positivity and boundedness are verified, and then the model’s local

stability analysis is carried out by employing the next-generation matrix approach. We deter-

mined that the fundamental reproduction number is defined by the maximum of the following

four threshold quantities: R01, R02, R03, and R04. A thorough analysis of sensitivity is per-

formed in this work by using the normalized forward sensitivity index of the basic reproduction

number for four SARS-COV-2 variants independently. Limiting contact, sanitizing, isolating,

and hospitalization all have a significant impact on the dynamics of SARS-CoV-2 transmission

and can substantially slow the spread of SARS-CoV-2 variants. So, it is essential to encourage

the population to get the vaccine and visit hospitals for treatment. Due to these factors, we

implement an optimum control problem for the proposed model over the period of 300 days

that considered the effects of vaccination and treatment strategies on four SARS-CoV-2 vari-

ants transmission. Numerical simulations for four SARS-CoV-2 variants are performed with

the combination of single control strategies and two control strategies. The numerical analy-

sis demonstrates that every strategy has the ability to reduce the spread of the disease. It was

observed that the combination of vaccination and treatment strategies gave the best outcome in

reducing the peaks of infection with four variants. Additionally, the cost-effectiveness analy-

sis reveals that the strategy C, which includes vaccination for the susceptible population and

treatment for SARS-COV-2 infected individuals with alpha, beta, gamma, and delta, is the most

effective. We believe that this research will assist policymakers to better understand how vac-

cination and treatment work as control measures among SARS-CoV-2 infected population with

alpha, beta, gamma, and delta variants. It will also assist in the development of strategies that

will effectively reduce the COVID-19 pandemic’s spread.
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