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Abstract. In this work, we look at the vaccine and condom Nipah virus model using an optimum control analysis.

We implemented measures to limit infection dissemination and control. We examine four distinct controls: per-

sonal protection, rapid testing, burying infected pigs, and therapy control. We construct an ideal control model and

demonstrate the mathematical results using the suggested controls. The results of optimum control suggest that

measures can be useful in decreasing infected individuals and increasing the health of society.
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1. INTRODUCTION

The Nipah Virus (NiV) is a transmissible from animal virus which may trigger deadly en-

cephalitis and serious lung conditions in humans. It is a contagious virus that primarily affects

Pteropodidae fruit bats, but it can also impact swine and humans. During an epidemic among
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Malaysian swine producers in 1999, the Nipah virus was detected. There have been no new

cases recorded in Malaysia since 1999. It was discovered in Bangladesh in 2001, and outbreaks

have occurred practically every year thereafter. East India has also been ravaged by the illness

on a regular basis. The virus has been discovered in the recognized native reservoir (Ptero-

pus bat species) as well as a variety of additional bat species in Cambodia, Ghana, Indonesia,

Madagascar, the Philippines, and Thailand [14].

Humans are affected with the virus through interaction with sick animals especially pigs or

their bodily secretions, or through ingestion of contaminated food items.Close contact with an

infected person may result in from person to person. spread, particularly in hospital settings.

According to Tan et al [15] ,patients hospitalized to the University Hospital in Kuala Lumpur

and their family members served as the study’s subjects. 110 people from 14 houses were

analyzed. Asymptomatic Nipah infection was seen in 30 out of 110 (27%) of the household

members.

Although no drugs or vaccines are presently available for treatment, a phase 1 clinical re-

search of a Nipah virus vaccine candidate (HeV-sG-V) began in February 2020 [13]. The vac-

cine will be administered to normal individuals aged 18 to 49 to test its effectiveness and safety

in triggering an immune response [13].

During NiV epidemics in South Asian nations, interactions between animals, people, and

the environment were very important [2]. Numerous variables influence human-animal inter-

actions, including prolonged droughts, reduced animal habitats as a result of deforestation,

manmade fires that destroy forests in Indonesia, and pig rearing mixed with farmland. [1] .

For the study of the dynamics of disease spread, researchers have developed mathematical

models like the one in[7],[8],[6], which has changed our knowledge of these contagious ill-

nesses and aided in the development of sufficient and effective countermeasures. Biswas inves-

tigated disease mechanisms by employing the SIR fundamental mathematical model. He inves-

tigated this model further and investigated potential control and avoidance techniques with an

optimum solution [10],[9] and [3]. Sultana [4] used optimum control theory to create a quantita-

tive study of Nipah viral infections.Control tactics in their work included raising consciousness

and providing treatment. They proved the presence of optimum controls, and the ideal controls
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are defined using Pontryagin’s utmost concept. According to the numerical modeling, the opti-

mum control method is far more effective at reducing infectious people and the associated costs

of both measures. Furthermore, Mondal et al[16] propose and evaluate a mathematical model

for Nipah viral management with vital mechanics. They [11], [16] include the quarantine of

contagious people based on the existence of isolation facilities alongside monitoring coverage.

According to the numerical modeling, better sanitation and confinement of infectious people are

sufficient to contain Nipah viral spread. As Nipah virus control plans,Omede et al [12] weighed

avoidance measures to keep people in the vulnerable area from coming into contact with the

virus, Nipah virus treatment for people in the area that is infectious compartment, and Nipah

virus treatment for people in the curative area.

The fundamental purpose of this research is to investigate the four control techniques; per-

sonal prevention(pp), rapid testing, burying infected piglets, and therapy control in the vaccines

and condoms Nipah virus model. This paper is structured as follows: Section 2, Methodology

of NiV model. In Section 3, Existence of the optimal control of NiV. Section 4, optimal control

numerical simulation. Section 5, discussion and conclusion.

2. METHODOLOGY OF NIV MODEL

From the humans and pigs population, we have Sp(t): the number of pigs who are not yet

infected with the NiV at time t, but may get it if they come into contact with other infected

pigs or eat contaminated fruits, Ep(t): the number of pigs that have come into contact with

the infectious agent or pathogen that causes the Nipah virus, Ip(t): the number of pigs that

are capable of transmitting the virus to others including human, S(t): susceptible with respect

to human beings, Sv(t): the susceptible persons who are vaccinated, Su(t): the susceptible

persons who are not yet vaccinated, Svc(t):the susceptible persons who are vaccinated and use

condoms, Svn(t): the susceptible persons who are vaccinated and do not use condoms, Suc(t):

the susceptible persons who are not yet vaccinated and use condoms, Sun(t): the susceptible

persons who are not yet vaccinated and do not care for condoms, E(t): people that are in

touch with the infectious agent(human and pigs) or pathogen that causes the Nipah virus, I(t):

people that are capable of transmitting the virus to others, C(t): they are people who have been

infected with the virus but do not develop any symptoms of the disease, and still carry and
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transmit the virus to others, Ii(t): they are isolated individuals undergoing treatment who are

capable of transmitting the virus to others, It(t): they are not isolated but undergoing treatment

as individuals that are capable of transmitting the virus to others, R(t): they are individuals who

have recovered from the Nipah virus and are capable of contacting the virus again, D(t): the

bodies of those who died due to the virus.

We assume the following: Natural sickness recovery can take place because of powerful

antibodies[12]. Casual touching of the dead bodies will expose the individuals to the virus

[17]. There is an interaction between the farmer and the infectious pigs[5]. Since they are

continuously watched, medical personnel safeguard themselves against the virus, and infection

can happen in a therapy class, isolated individuals do not aid in the spread of NiV[12]. The

general public has easy access to and can afford condoms, an infected isolation facility, and

vaccinations[5]. After some time, people who have recovered become susceptible to infection

once more.

TABLE 2.1. Describe the Variables

parameters Parameter Description

Λp The proportion of new pigs introduced

σ Exposure rate of pigs

ρ The rate at which infected pigs become exposed

Λ Human resource recruitment level

χ1 Rate of vulnerable non-vaccinated peoplee

χ2 Vaccination coverage among vulnerable populations

η1 The fraction of unvaccinated vulnerable people who use condoms

η2 The fraction of unvaccinated vulnerable people who do not use condoms.

τ1 The fraction of vaccinated people who use condoms

τ2 The fraction of vaccinated vulnerable people who do not use condoms

Γ3 Infection force on Snc

Γ4 Infection force on Sun

Γ1 Infection force on Svc

Γ2 Infection force on Svn
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κ The rate at which an exposed population becomes infected

θ The proportion of the exposed population who becomes a NiV carrier

ψ1 Rate of isolation of infected people having treatment

ψ2 Treatment rate of infected persons

γ1 Recovery rate from the disease therapy class

γ2 Recovery rate from the infectious isolated undergoing treatment class

γ3 The NiV carrier recovery rate

γ4 The infectious recovery rate

ε Rate of susceptibility among recovered persons

δ1 Illness-related death rate in NiV-Carriers

δ2 Illness-related death rate in infectious population

δ3 Illness-related death rate in infectious isolated people undergoing treatment

δ4 Illness-related death rate in infectious people undergoing treatment

δd Illness-related death rate in infectious pigs

µd The rate at which deceased bodies are disposed of (burial/cremation)

µp Pig mortality rate

µ Natural death rate

We assume the following: Natural sickness recovery can take place because of powerful

antibodies [12]. Casual touching of the dead bodies will expose the individuals to the virus

[17]. There is an interaction between the farmer and the infectious pigs[5]. Since they are

continuously watched, medical personnel safeguard themselves against the virus, and infection

can happen in a therapy class, isolated individuals do not aid in the spread of NiV [12]. The

general public has easy access to and can afford condoms, an infected isolation facility, and

vaccinations[5]. After some time, people who have recovered become susceptible to infection

once more.

The above formulations and assumptions result in the deterministic system of nonlinear

ordinary differential equations that characterize the dynamics of Nipah virus infection spread

in two groups.
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dS
dt

= Λ− (χ1 +χ2 +µ)S+ εR

dSv

dt
= χ2S− (τ1 + τ2 +µ)Sv

dSu

dt
= χ1S− (η1 +η2 +µ)Su

dSvc

dt
= τ1Sv− (Γ1 +µ)Svc

dSvn

dt
= τ2Sv− (Γ2 +µ)Svn

dSuc

dt
= η1Su− (Γ3 +µ)Suc

dSun

dt
= η2Su− (Γ4 +µ)Sun

dE
dt

= Γ2Svn +Γ4Sun +Γ3Suc +Γ1Svc− (µ +θ +κ)E(2.1)

dC
dt

= θE− (γ3 +µ +δ1)C

dI
dt

= κ E− (ψ1 +ψ2 +µ +δ2 + γ4)I

dIit

dt
= ψ1I− (γ2 +µ +δ3)Iit

dIt
dt

= ψ2I− (γ1 +µ +δ4)It

dR
dt

= γ2Iit + γ4I + γ1It + γ3C−µR− εR

dD
dt

= δ4It +δ3Iit +δ1C+δ2I−µdD

dSp

dt
= Λp− (σ +µp)Sp

dEp

dt
= σSp− (ρ +µp)Ep

dIp

dt
= ρEp− (µp +δp)Ip

Such that

Γ1 = β1

(
a1Ip

Np
+

a2C+a3I +a4It +a5D
N

)
, Γ2 = β2

(
b1Ip

Np
+

b2C+b3I +b4It +b5D
N

)
.

Γ3 = β3

(
q1Ip

Np
+

q2C+q3I +q4It +q5D
N

)
, Γ4 = β4

(
z1Ip

Np
+

z2C+ z3I + z4It + z5D
N

)
.
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2.1. Optimal Control Procedure. The Nipah viral model is subjected to optimum manage-

ment theory given in (2.1).We examine four distinct controls to reduce Nipah viral infection

and further spread in the population. The following definition applies to these controls: The

safety control u1 calls for reducing interaction with contagious persons, including dead victims

of the Nipah virus, cleaning hands frequently, using hand sanitizer, and wearing masks. Further,

Avoid meeting and limit their movement in areas with a high number of cases. Rapid testing of

people in the vulnerable stage to detect Nipah virus carriers (C) and symptomatic individuals

constitutes the second control u2. To further reduce the infection, the people should be isolated

or confined to their house after recognition through testing. The control u3 is burying infected

piglet. The fourth control u4 is the therapy control. The use of Ribavirin and any other sub-

stances that can boast immune system especial different species of vegetables. Also bitter kola

could also be very relevant. Following is a system of optimal control issue that may result from

the talk above:

dS
dt

= Λ− (χ1 +χ2 +µ)S+ εR

dSv

dt
= χ2S− (τ1 + τ2 +µ)Sv

dSu

dt
= χ1S− (η1 +η2 +µ)Su

dSvc

dt
= τ1Sv− (Γ1 +µ)Svc

dSvn

dt
= τ2Sv− (Γ2 +µ)Svn

dSuc

dt
= η1Su− (1−u1)Γ3Suc−µSuc

dSun

dt
= η2Su− (1−u1)Γ4Sun−µSun

dE
dt

= Γ2Svn +(1−u1)Γ4Sun +(1−u1)Γ3Suc +Γ1Svc− (u2 +µ +θ +κ)E(2.2)

dC
dt

= (u2 +θ)E− (u4 + γ3 +µ +δ1)C

dI
dt

= κE− (ψ1 +ψ2 +µ +δ2 + γ4 +u4)I

dIit

dt
= ψ1I− (u4 + γ2 +µ +δ3)Iit
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dIt
dt

= ψ2I− (u4 + γ1 +µ +δ4)It

dR
dt

= (It + Iit + I)u4 + γ2Iit + γ4I + γ1It + γ3C−µR− εR

dD
dt

= δ4It +δ3Iit +δ1C+δ2I−µdD

dSp

dt
= Λp− (1−u3)σSp−µpSp

dEp

dt
= (1−u3)σSp− (ρ +µp)Ep

dIp

dt
= ρEp− (µp +δp)Ip

with the initial conditions S(0) ≥ 0,Su(0) ≥ 0,Sv(0) ≥ 0,Suc(0) ≥ 0,Sun(0) ≥ 0,Svc(0) ≥

0,Svn(0) ≥ 0,E(0) ≥ 0,C(0) ≥ 0, I(0) ≥ 0, Iit(0) ≥ 0, It(0) ≥ 0,D(0) ≥ 0,R(0) ≥ 0,Sp(0) ≥

0,Ep(0)≥ 0, Ip(0)≥ 0

Our goals are to decrease the overall number of contagious people in the community and the

costs associated with protective gear, vaccine production and dissemination, quick testing, and

treatment at predetermined intervals. We reduce the target function provided by,

(2.3)

J(ui,Ω1) =
∫ T

0

(
A1E +A2C+A3I +A4Iit +A5It +A6D+

1
2
[k1u2

1 + k2u2
2 + k3u2

3 + k4u2
4]

)
dt

where i = 1,2,3,4, and T is final time, Ω1 stands for the collection of all contagious compart-

ments, Ai, i = 1, ..,6 represents the sections’ non-negative weight values E,C, I, Iit , It ,D respec-

tively and k1,k2,k3,k4 are the weight constant for the control variable u1,u2,u3,u4 respectively.

The weights k1,k2,k3,k4 which are constant parameters for u1,u2,u3,u4 will standardized using

the optimal control condition.

The variables defined above have bounds on Lebesgue integrable functions. We strive for

optimum settings u∗i for i=1,...4, such that J(u∗i ) = min(J(ui,Ω1)) where ui ∈U the control set

defined as

(2.4) U = {(ui) : [o,T ]−→ [0,1],(ui), is Lebesgue measureable}
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We explain the terms in the integrand in (2.3) above as follows: The term A1E +A2C+A3I+

A4Iit +A5It +A6D indicates the expense involved with tracking infectious people. The term

k1u2
1 + k3u2

3 reflects the expense of all kinds of protection against infectious people and pigs.

The term k2u2
2 reflects the expense of all types of rapid testing of exposed people. The term

k4u2
4 indicates the total expense of all kinds of therapy for all infected people in the infectious

groups.

3. EXISTENCE OF THE OPTIMAL CONTROL FOR NIPAH VIRUS MODEL

3.1. Existence of the State. From the equation (2.2), we have

dN
dt

= Λ−µS−µSu−µSv−µSuc−µSun−µSvc−µSvn−µE−µC−δ1C−µI

− δ2I−µIit−δ3Iit−µIt−δ4It−µR

= Λ−µS−µSu−µSv−µSuc−µSun−µSvc−µSvn−µE−µC−µI

− µIit−µIt−µR−δ4It−δ1C−δ3Iit−δ2I

= Λ−µN−δ4It−δ1C−δ3Iit−δ2I

≤ Λ−µN(t),(3.1)

(3.2)
dD
dt

= δ4It +δ3Iit +δ1C+δ2I−µdD

Solving (3.1), we obtain

N(t) ≤ Λ

µ
+

(
N(0)− Λ

µ

)
e−µt(3.3)

where the N(0) = N0 is the initial value of the total populations. As t −→ ∞ in (3.3), the

population size N(t) approaches
Λ

µ
, ie

0≤ N(t)≤ Λ

µ

S(t)+Su(t)+Sv(t)+Suc(t)+Sun(t)+Svc(t)+Svn(t)+E(t)+C(t)+ I(t)

+ Iit(t)+ It(t)+R(t) ≤ Λ

µ
=⇒ S(t) ≤ Λ

µ
, ..., I(t) ≤ Λ

µ
, Iit(t) ≤

Λ

µ
, It(t) ≤

Λ

µ
, ..., R(t) ≤ Λ

µ
as

t ≥ 0.
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Therefore,

dD
dt

= δ4It +δ3Iit +δ1C+δ2I−µdD

≤ (δ4 +δ3 +δ1 +δ2)
Λ

µ
−µdD(3.4)

implies D(t)≤ (δ4 +δ3 +δ1 +δ2)
Λ

µdµ
and

dNp

dt
= Λp−µpSp−µpEp−µpIp−δpIp

= Λp−µpNp(t)−δpIp

≤ Λp−µpNp(t)(3.5)

implies Np(t)≤
Λp

µp
.

Finally the system (2.2) is bounded and the solutions exist.

3.2. Existence of the Objective Functional. Pontryagin’s optimal concept reduces the state

system (2.2) to an issue of reducing the Langrangian L and Hamiltonian H with regard to

(u1,u2,u3,u4) at each position. The integrand of the goal functional makes up the Langra-

gian of the management problem, which is the Hamitonian enhanced with penalty terms for

control restrictions and is given by

L = A1E +A2C+A3I +A4Iit +A5It +A6D+
1
2
[k1u2

1 + k2u2
2 + k3u2

3 + k4u2
4]

We look for the lagrangian’s minimal number. This can be done by specifying the Hamilton-

ian H for the control problem, comprised of the integrand of the function with the goal and the

result of the inner product of the right hand sides of the state equations and the co-state variables

or adjoint variables λi, i = 1, ..17 with respect to state variable as

H = A1E +A2C+A3I +A4Iit +A5It +A6D+
1
2
[k1u2

1 + k2u2
2 + k3u2

3 + k4u2
4]

+ λ1 {Λ− (χ1 +χ2 +µ)S+ εR)}+λ2 {χ2S− (τ1 + τ2 +µ)Sv}

+ λ3 {χ1S− (η1 +η2 +µ)Su}+λ4 {τ1Sv− (Γ1 +µ)Svc}

+ λ5 {τ2Sv− (Γ2 +µ)Svn}+λ6 {η1Su− (1−u1)Γ3Suc−µSuc}

+ λ7 {η2Su− (1−u1)Γ4Sun−µSun}(3.6)
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+ λ8 {Γ2Svn +(1−u1)Γ4Sun +(1−u1)Γ3Suc +Γ1Svc− (u2 +µ +θ +κ)E}

+ λ9 {(u2 +θ)E− (u4 + γ3 +µ +δ1)C}+λ10 {κE− (ψ1 +ψ2 +µ +δ2 + γ4 +u4)I}

+ λ11 {ψ1I− (u4 + γ2 +µ +δ3)Iit}+λ12 {ψ2I− (u4 + γ1 +µ +δ4)It}

+ λ13 {(I + It + Iit)u4 + γ2Iit + γ4I + γ1It + γ3C+u2C−µR− εR}

+ λ14 {δ4It +δ3Iit +δ1C+δ2I−µdD}

+ λ15
{

Λp− (1−u3)σSp +µpSp
}
+λ16

{
(1−u3)σSp− (ρ +µp)Ep

}
+ λ17

{
ρEp− (µp +δp)Ip

}
The system’s status and control variables (2.2) have positive values. Convex and closed

characterize the control set U . The presence of optimal control is demonstrated by Corollary

4.1 in [18] because the integrand of the objective cost function U given by (2.2) is a convex

function of (u1,u2,u3,u4) on the control set U . As a result, there are positive integers ξ1,ξ2 and

varsigma such that

J(u1,u2,u3,u4)≥ ξ1
(
|u1|2 + |u2|2 + |u3|2 + |u4|2

) ς

2 −ξ2(3.7)

where ξ1, ξ2 > 0, and ς > 1

Since the answers are bounded, the state system’s Lipschitz condition is satisfied. Consider-

ing that the state variables are constrained, this proves the presence of an optimum control.

3.3. An Optimal Control’s Characteristics. The essential criteria for Pontryagin’s Optimal

Concept serves as the foundation for the important standards for optimal management [19]. The

systems (2.2) and (2.1) are reduced by this idea. to the problem of reducing a Hamiltonian H

pointwise with respect to the constraints ui, : i = 1,2,3,4. The set of adjoint equations can be

derived using the correct partial derivatives of H with regard to the state variables.

Theorem 3.1. The given optimal controls u∗i and solutions S(t)∗,Sv(t)∗,Su(t)∗,Svc(t)∗,Svn(t)∗,

Suc(t)∗,Sun(t)∗,E(t)∗,C(t)∗, I(t)∗, Iit(t)∗, It(t)∗,R(t)∗,D(t)∗,Sp(t)∗,Ep(t)∗, I∗p of the control

system (4.409)-(4.425) that minimizes J(u∗i ) over U. Then there exists adjoint variables λi

satisfying

∂λi

dt
=−∂H

∂ i
(3.8)
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with the transversality conditions,

λi(T ) = 0(3.9)

i = S(t),Sv(t),Su(t),Svc(t),Svn(t),Suc(t),Sun(t),E(t),C(t), I(t), Iit(t), It(t),R(t),

D(t),Sp(t),Ep(t), Ip

The optimality condition is given by

∂H
dui

= 0, i = 1,2,3,4(3.10)

Furthermore, we have the controls u∗i ,

u∗1 = min
{

1,max
[

0,
λ8 (SucΓ3 +SunΓ4)−Sucλ6Γ3−Sunλ7Γ4

k1

]}
(3.11)

u∗2 = min
{

1,max
[

0,
E(λ8−λ9)−λ13C

k2

]}
(3.12)

u∗3 = min
{

1,max
[

0,
Spσ(λ16−λ15)

k3

]}
(3.13)

u∗4 = min
{

1,max
[

0,
Iλ10 + Iitλ11 + Itλ12−λ13(I + It + Iit)

k4

]}
(3.14)

Proof. The findings from the [18] cases provide proof that an optimal control issue exists. Dif-

ferentiating H with regard to each state variable results in the system ruling the adjoint variables.

Consequently, the adjoint system is expressed as,

λ̇1 =−
∂H
∂S

= λ1 (χ1 +χ2 +µ)−χ1λ3−χ2λ2

λ̇2 =−
∂H
∂Sv

= λ2 (µ + τ1 + τ2)−λ4τ1−λ5τ2

λ̇3 =−
∂H
∂Su

= λ3 (η1 +η2 +µ)−η1λ6−η2λ7

λ̇4 =−
∂H
∂Svc

= λ4 (Γ1 +µ)−λ8Γ1

λ̇5 =−
∂H
∂Svn

= λ5 (Γ2 +µ)−λ8Γ2

λ̇6 =−
∂H
∂Suc

= λ6 (1−u1)(Γ3 +µ)−λ8 (1−u1)Γ3
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λ̇7 =−
∂H
∂Sun

= λ7 (1−u1)(Γ4 +µ)−λ8 (1−u1)Γ4

λ̇8 =−
∂H
∂E

=−A1−λ10κ +λ8 (κ +µ +θ +u2)−λ9 (θ +u2)

λ̇9 =−
∂H
∂C

=−A2−δ1λ14− (γ3 +u4)λ13

−λ8

(
Sucβ3q2 (1−u1)

N
+

Sunβ4z2 (1−u1)

N
+

Svca2β1

N
+

Svnb2β2

N

)
+λ9 (δ1 + γ3 +u4 +µ)

+
Sucβ3λ6q2 (1−u1)

N
+

Sunβ4λ7z2 (1−u1)

N
+

Svca2β1λ4

N
+

Svnb2β2λ5

N

λ̇10 =−
∂H
∂ I

=−A3−δ2λ14− (γ4 +u4)λ13 +λ10 (δ2 + γ4 +u4 +µ +ψ1 +ψ2)−λ11ψ1

−λ12ψ2−λ8

(
Sucβ3q3 (1−u1)

N
+

Sunβ4z3 (1−u1)

N
+

Svca3β1

N
+

Svnb3β2

N

)
+

Sucβ3λ6q3 (1−u1)

N
+

Sunβ4λ7z3 (1−u1)

N
+

Svca3β1λ4

N
+

Svnb3β2λ5

N

λ̇11 =−
∂H
∂ Iit

=−A4−δ3λ14− (γ2 +u4)λ13 +λ11 (δ3 + γ2 +u4 +µ)

λ̇12 =−
∂H
∂ It

=−A5−δ4λ14− (γ1 +u4)λ13 +λ12 (δ4 + γ1 +u4 +µ)

−λ8

(
Sucβ3q4 (1−u1)

N
+

Sunβ4z4 (1−u1)

N
+

Svca4β1

N
+

Svnb4β2

N

)
+

Sucβ3λ6q4 (1−u1)

N
+

Sunβ4λ7z4 (1−u1)

N
+

Svca4β1λ4

N
+

Svnb4β2λ5

N

λ̇13 =−
∂H
∂R

= ελ1 +λ13 (ε +µ)

λ̇14 =−
∂H
∂D

=−A6 +λ14µ3−λ8

(
Sucβ3q5 (1−u1)

N
+

Sunβ4z5 (1−u1)

N
+

Svca5β1

N
+

Svnb5β2

N

)
+

Sucβ3λ6q5 (1−u1)

N
+

Sunβ4λ7z5 (1−u1)

N
+

Svca5β1λ4

N
+

Svnb5β2λ5

N

λ̇15 =−
∂H
∂Sp

= λ15 (µ2 +σ(1−u3))−λ16σ(1−u3)

λ̇16 =−
∂H
∂Ep

= λ16 (µ2 +ρ)−λ17ρ

λ̇17 =−
∂H
∂ Ip

= λ17 (δ5 +µ2)−λ8

(
Sucβ3q1 (1−u1)

N p
+

Sunβ4z1 (1−u1)

N p
+

Svca1β1

N p
+

Svnb1β2

N p

)
+

Sucβ3λ6q1 (1−u1)

N p
+

Sunβ4λ7z1 (1−u1)

N p
+

Svca1β1λ4

N p
+

Svnb1β2λ5

N p

With the transversality conditions at time T : λ1(T ) = λ2(T ) = ...= λ17(T ) = 0
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For t ∈ [0,T ], the optimal controls u1,u2,u3, and u4 can be solved from the optimality condi-

tion

∂H
dui

= 0, i = 1,2,3,4

∂H
∂u1

= Sucλ6Γ3 +Sunλ7Γ4 +1.0k1u1−λ8 (SucΓ3 +Sunβ3) = 0

∂H
∂u2

= Cλ13−Eλ8 +Eλ9 +1.0k2u2 = 0

∂H
∂u3

= Spλ15σ −Spλ16σ +1.0k3u3 = 0

∂H
∂u4

= −Cλ9− Iλ10− Iitλ11− Itλ12 +1.0k4u4 +λ13 (I + Iit + It) = 0

where

Γ3 = β3

(
I pq1

N p
+

Cq2 +Dq5 + Iq3 + Itq4

N

)
Γ4 = β4

(
I pz1

N p
+

Cz2 +Dz5 + Iz3 + Itz4

N

)
Substituting

u1 = u∗1, u2 = u∗2, u3 = u∗3, u4 = u∗4

and solving for the optimal control (u∗1,u
∗
2,u
∗
3,u
∗
4) we obtain

u∗1 =
λ8 (SucΓ3 +SunΓ4)−Sucλ6Γ3−Sunλ7Γ4

k1

u∗2 =
E(λ8−λ9)−λ13C

k2

u∗3 =
Spσ(λ16−λ15)

k3

u∗4 =
Iλ10 + Iitλ11 + Itλ12−λ13(I + It + Iit)

k4

Hence, the required optimal control condition is obtained as

u∗1 = min
{

1,max
[

0,
λ8 (SucΓ3 +SunΓ4)−Sucλ6Γ3−Sunλ7Γ4

k1

]}
u∗2 = min

{
1,max

[
0,

E(λ8−λ9)−λ13C
k2

]}
u∗3 = min

{
1,max

[
0,

Spσ(λ16−λ15)

k3

]}
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u∗4 = min
{

1,max
[

0,
Iλ10 + Iitλ11 + Itλ12−λ13(I + It + Iit)

k4

]}
It is discovered that the optimality requirements derived by considering the derivatives of the

Hamiltonian (3.6) with regard to the controls only hold in the innermost regions of the control

set U . �

4. OPTIMAL CONTROL MODEL NUMERICAL SIMULATIONS

The Python programming language is used in this part to implement numerical answers to

the optimum system. We looked at four factors that rely on the neighbors of the state variables:

u1,u2,u3,and u4. We run the model both with and without supervision, and then we contrast

the outcomes. Because the limits are not completely effective, we took into account their num-

ber values between zero(0) and one(1): u1,u2,u3, and u4. The parameter values used in the

models are displayed in Tables 4.1 and 4.2. The visually optimized system’s numerical answer,

obtained using Python software, is displayed below. Unlike state variables, which have starting

conditions, adjoint variables have final conditions [[5], [9]].
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(A) (B)

(C) (D)

(E) (F)

FIGURE 4.1. The solution of the model
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Parameters Value Source

χ1 0.33 Estimated

χ2 0.62 [5]

θ 0.486 [5]

κ 0.715 [5]

τ1 0.008 Estimated

τ2 0.019 Estimated

η1 0.45 Estimated

η2 0.39 Estimated

ψ1 0.825 Estimated

ψ2 0.342 Estimated

γ1 0.8 Inferred from [9]

γ2 0.5 Inferred from [9]

γ3 0.09 Inferred from [9]

γ4 0.1 [9]

β1 0.1134 Inferred from [9]

β2 0.3969 Inferred from [9]

β3 0.4455 Inferred from [9]

β4 0.7209 Inferred from [9]

δ1 0.02 Inferred from [9]

ρ 0.56 [5]

σ 0.75 [5]

TABLE 4.1. Description of the

parameters

Parameters Value Source

δ2 0.15 [9]

δ3 0.0171 Inferred from [9]

δ4 0.2 Inferred from [9]

a1 0.58 Inferred from [9]

a2 0.513 Inferred from [9]

a3 0.486 Inferred from [9]

a4 0.513 Inferred from [9]

a5 0.000288 Inferred from [9]

b1 0.69 Inferred from [9]

b2 0.522 Inferred from [9]

b3 0.513 Inferred from [9]

b4 0.504 Inferred from [9]

b5 0.000324 Inferred from [9]

q1 0.75 Inferred from [9]

q2 0.4617 Inferred from [9]

q3 0.531 Inferred from [9]

q4 0.513 Inferred from [9]

q5 0.000648 Inferred from [9]

ε 0.03 Estimated

z2 0.4374 Inferred from [9]

z3 0.504 Inferred from [9]

z4 0.513 Inferred from [9]

z5 0.000648 Inferred from [9]

µp 0.00081 Estimated

µ 0.0003421 [17]

TABLE 4.2. Description of the

parameter
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(A) Protection control

u1 6= 0,u2 = u3 = u4 =

0

(B) Rapid testing u2 6=

0,u1 = u3 = u4 = 0

(C) Burying infected

pigs u3 6= 0,u1 = u2 =

u4 = 0

(D) Therapy control

u4 6= 0,u1 = u3 = u2 =

0

(E) Combing controls

u2 = u1 = u3 = u4 6= 0

FIGURE 4.2. Simulations Showing The Effect of Controls u1,u2,u3,u4 on

Infectious Human Population I
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(A) Protection control

u1 6= 0,u2 = u3 = u4 =

0

(B) Rapid testing u2 6=

0,u1 = u3 = u4 = 0

(C) Burying infected

pigs u3 6= 0,u1 = u2 =

u4 = 0

(D) Therapy control

u4 6= 0,u1 = u3 = u2 =

0

(E) Combing controls

u2 = u1 = u3 = u4 6= 0

FIGURE 4.3. Simulations Showing The Effect of Controls u1,u2,u3,u4 on

NiV carriers( Asymptotic) Population C
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(A) Protection control

u1 6= 0,u2 = u3 = u4 =

0

(B) Rapid testing u2 6=

0,u1 = u3 = u4 = 0

(C) Burying infected

pigs u3 6= 0,u1 = u2 =

u4 = 0

(D) Therapy control

u4 6= 0,u1 = u3 = u2 =

0

(E) Combing controls

u2 = u1 = u3 = u4 6= 0

FIGURE 4.4. Simulations Showing The Effect of Controls u1,u2,u3,u4 on

Dead bodies Population I
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Figure 4.1 depicts the schematic solutions of the model system. Figures 4.1(A) and 4.1(C)

plainly show the importance of vaccine in a vulnerable community. Furthermore, figure 4.1(C)

shows the fact that combining vaccine and condom use are beneficial management strategy for

reducing NiV transmission. Furthermore, as demonstrated in figure 4.1(D), asymptomatic peo-

ple are more infectious than symptomatic persons. This is because infectious people are more

likely to go for healthcare assistance and be diagnosed with the illness, which can help hinder

further spread of the disease through treatment or isolation measures, whereas asymptomatic

people are more likely to interact with others without taking precautions or visiting a doctor

because they do not show symptoms figure 4.1(E). This shows that, without vaccination and the

use of condom, so many people are exposed to disease

Figures 4.2, 4.3 and 4.4 depict the impact of various control measures, including therapy

controls, burying sick piglets, fast testing, and protection, on the infectious population I and

NiV carriers (asymptomatic) population C, respectively. Each measure helps to contain the

spread of NiV by lowering the population’s proportion of NiV carriers (asymptomatic) and

infectious individuals and dead bodies population. However, as shown in figure 4.2(E), 4.3

(e) and 4.4 (e), there is a substantial effect when combining the four controls at once. Such

results are also experienced when apply to the exposed E as it drastically reduces the exposed

individuals.

4.1. Conclusion and Recommendation. Public health policymakers, especially those in

Cambodia, Ghana, Indonesia, Madagascar, the Philippines, and Thailand who are at risk for

infection due to confirmation that the virus has been discovered in known natural reservoirs

(Pteropus bat species) and many other bat species, will benefit from the availability of methods

that can be used to determine the best way to stop the spread of Nipah Virus [14].

In this study, we investigated the optimal combination of personal protection, quick testing,

burying sick pigs, and therapy control methods to restrict infection spread in the vaccine and

condom Nipah virus model. The goal function of the optimal control issue was then defined.

We create a vaccine and condom Nipah virus model and display the pictorial results. The

four control strategy have been examined in the form of personal protection control(prevention)

which involves minimizing the contact among the infectious people including death body of
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Nipah virus individuals, restrict traveling where the cases are high, washing hands regularly

using sanitizer and masks. Secondly, rapid testing of individuals to identify the Nipah virus

carriers (C) and the infectious individuals for isolation and treatment. Thirdly, is burying sick

pigs and finally the therapy control. We explored the presence of optimum control and then used

the Hamiltonian and the Pontryagin’s maximum principle to accomplish our goal. A contrast

between a control plan with and without one is being watched. The impact of control factors is

very noticeable in decreasing the number of infected people and controlling disease dynamics.

The models show that the optimum combination of the four controls is very important for Nipah

virus eradication. However, we recommend fast production of vaccine and its implementation

with the use of condom.
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