
Available online at http://scik.org

Commun. Math. Biol. Neurosci. 2023, 2023:117

https://doi.org/10.28919/cmbn/8071

ISSN: 2052-2541

AN INTEGER PROGRAMMING MODEL FOR PREDICTING MULTI-SHAPES OF
3D PROTEIN STRUCTURE MODEL

ALAA FAHIM1,∗, NEHAD ABDELRAHEEM2

1Mathematics Department, faculty of science, Assuit University, Egypt

2Faculty of Computers and Information, Assuit University, Egypt

Copyright © 2023 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Protein structure prediction is using bioinformatics and computational science tools is a vital part of

medication discovery and infection expectation, but calculating the structure of a folded protein is a difficult task.

In this paper, we predict protein structure of hydrophobic-polar lattice models in three dimensions. The considered

problem is treated as an integer programming problem. The model finds multiple optimal shapes with the same

minimal energy of the protein. Optimization is performed by Tabu search and the sequences are investigated by

blending two fundamental techniques: strengthening and enhancement. The effectiveness of our strategy was

confirmed in comparison with existing approaches benchmark protein sequences.
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1. INTRODUCTION

Protein folding [1] is an interesting topic and it is picked by Given an amino-acid sequence,

Protein Structure Prediction (PSP) seeks the optimal form that minimize the energy of the folded

protein. Combining bioinformatics and computational science, the PSP problem is integral part
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of drug discovery and disease expectations. Accordingly, the PSP problem has attracted much

attention over the past 30 years.

Chan [2] presented a visualization method of PSP and demonstrated its superiority over other

examined techniques in protein folding. They investigated the hyrophobic-polar (HP) model

[3], which divides the 20 amino acids into two classes of residue: hydrophobic (nonpolar)

and hydrophilic (polar). Protein information is usually acquired by X-ray crystallography and

nuclear magnetic resonance, but these methods are costly and time consuming.

The three- dimenional (3D) structures of HP proteins have been predicted by various al-

gorithms, including (but not limited to) memetic Algorithm [4], GA (Genetic Algorithms)[5],

TS (Tabu Search)[5]. Each strategy captures the protein structure in a characteristic way. For

example, GA perform biologically inspired operations such as mutation, mutation, crossover,

and selection, whereas TS attempt to balance the intensification and diversification of the search

procedures. To this end, TS alter its decision rules to empower the best move mixes and arrange-

ment. As another procedure in 3D PSP problem, we introduced a mathematical formulation of

the integer programming problem. Mathematical treatments of HP models have been rarely

attempted owing to the difficulty of the establishing the integer programming formulation of

3D HP models with side chains [6]. The present paper, develop a simple, understandable, and

time-saving integer programming for the PSP problem.

The integer programming problem managed by TS is called HP-TS. TS [7] uses a versatile

memory and conduct a responsive investigation; that balance diversification against intensi-

fication. The diversification methodology relies upon the neighborhood structure of the TS

technique. The TS tree covers most districts in the search space and maintains an assorted va-

riety of sequences. Furthermore, a Tabu List (TL) widens the interest of the search in unvisited

regions of the solution space, preventing trapping of the solution in local minima. To refine the

currently best solutions, our strategy adds a pattern search method at the last stage. We also

execute two techniques Attract H strategies that control the movements of some promising H

nodes to accelerate the procedure toward the best solution.

The reminder of the paper is organized as follows. Section 2 (”HP Lattice Model”) introduces

some principle definitions related to the PSP problem. Section 3 introduces our HP model
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reformulated as a whole integer programming problem model. Section 4 presents the TS and

implementation of the HP model. Section 5 discuss the consequences of the HP-TS strategy and

compare performance of the proposed technique and other strategies. Conclusions are drawn in

Section 6.

2. PRELIMINARIES

This section highlights the basic elements, and background of our proposed methods.

2.1. HP Lattice Model. Protein consist of 20 amino acids divided into two classes depending

on their hydrophobicity: hydrophobic (H) and polar (P) as mentioned above. Hydrophobic

amino acids tend to aggregate while excluding water to minimize the energy of the protein

structure. The lattice model configures a sequence of H and P amino acids and determines the

shape of the protein’s conformation.

The HP model is the most thoroughly examined strategy for evaluating protein structure (see

Figure 1). HP models can determine the compliance of the genuine protein, the local minimal

structure, and the global minimal structure. These features reflect how the protein adapts to

avoid the internal hydrophobic monomers.

The 3D lattice HP model has been solved by metaheuristics such as like GA [8, 9, 10],

memetic algorithms [4], evolutionary methods [11], ant colony optimization [12], and an im-

proved TS method [13, 14]. Mathematical models of our problem have been proposed in few

papers [15, 16], but our formulation is simpler than than these methods, and finds a more accu-

rate , solution within a shorter runtime. Our method also finds multiple shapes that optimize the

protein structure.

2.1.1. Protein Structure. Our PSP method proceeds in three steps as follows.

• A general; protein is written as S = {s1, ...,sn}, with si = {H,P}, where n denotes the

number of amino acids in the chain and S vector explores the arrangement of the H and

P monomers.

• To explore the search space, we define a direction vector X of length n2. the forward,

leftward, rightward, upward, and downward directions by 0, 1, 2, 3, and 4, respectively.
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• Coordinate every node in HP model with (x,y,z) coordinatesof every node in the HP

model are stored in matrix M. The coordinate of the first two mers are (0,0,0), and

(1,0,0), respectively.

FIGURE 1. Example of an HP lattice model

For example, the HP model in Figure 1 shows that the black and white nodes denote H and P

monomers, respectively. Lattice model in Figure 1 can be expressed as,

• S = {HPPHPPHPHPPHP},

• Direction vector X = {4,4,1,2,2,3,2,0,3,3,2},

• M matrix of coordinate nodes (see Table 1).

TABLE 1. Coordinate nodes in HP model

MX 0 1 1 0 0 –1 –1 –1 0 1 1 0 0

My 0 0 0 0 1 1 0 –1 –1 –1 –1 –1 –2

Mz 0 0 –1 –1 –1 –1 –1 –1 –1 –1 0 0 0

3. INTEGER PROGRAMMING FORMULATION OF THE PSP PROBLEM

The PSP problem can be written as the following integer programming problem:

max ∑l,k ylk,

where ylk =

 1, i f‖Ml−Mk‖= 1

0, others.

Where l = {1, . . . ,n−2} and k = {l +2, . . . ,n}.

The problem is subjected to three constraints: an overlapping constraint that forbids overlap

of any two mers in the protein structure, a connectivity constraint is to the connectivity of the
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protein after one mer move, and the boundary constraint that limits the length of the protein

thus avoiding a straight graph of HP lattice.

• Overlapping constraint

‖Mi−M j‖ ≥ 1.

where i = {1, . . . ,n−1} and j = {i+1, . . . ,n}.

• Connectivity constraint

‖Mi−Mi+1‖= 1.

where i = {1, . . . ,n−1}.

• Bounding constraint

length(X)< Pbound,

length(Y )< Pbound,

length(Z)< Pbound

where Pbound = n/3; and length(X) , length(Y ) and length(Z) are the lengths of the

HP model in the x,y, and z direction, respectively.

Using, the penalty methodology [17], we transformed this constrained problem into a series

of unconstrained problems. The unconstrained solutions of these problems should converge to

those of the constrained problem.

4. TABU SEARCH

The TS is a heuristic methodology proposed by Glover [18] that solves combinatorial opti-

mization problems using adaptive memory highlights[18, 19, 20]. With its TL, adaptive mem-

ory enables the search process, prevents trapping in local optimal solutions, and successfully

explores the solution space. The TL includes permitted neighboring solutions and excludes

solutions that fail the conditions. A tabu method begins with an initial solution X , creates

neighbors, and moves to the nearest available neighboring solution N(X). The best solution is

selected as a filter solution Xc. If Xc satisfies the ambition rule, it supplants the current solu-

tion X and is added to TL Tlist ; otherwise, the present solution X is supplanted by the current
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best solution X ′, (E(X) = min{E(X) | X ∈ N(X), X ∈ Tlist}) and Tabu list will contain X ′. In

general,Tlist is the first-in-first-out memory with limited length, meaning that solutions found in

the early stage might not be searched. at later staged Tlist is constructed using the simple de-

scend method. This technique allows moves only to neighbor solutions that improve the current

value of the objective function. In TS procedures that incorporate longer-term considerations,

N(x) may, include non-customary solutions such as those found and assessed in past pursuits, or

those distinguished as high-quality neighbors of these past solutions. In this context, TS can be

viewed as a unique neighborhood strategy. in which the area of x is not a static, but can change

depending on the search history N(x) then becomes a modified neighborhood.

4.1. Basic Data Structure. The (x,y,z) coordinates of each node in the lattice model are in-

cluded in the M matrix. In addition, the data of the nodes adjacent to each node in the sixth

direction upward, downward, leftward, rightward, forward, and backward directions are stored

in a matrix called UDLRFB matrix.

The UDLRFB matrix reveals the locations around each node. The locations around the nodes

in Figure 1 are given in Table 2.

TABLE 2. Basic data sturcture of the nodes in Figure 1

Nodes M UDLRFB Matrix

S coordinate Upward Downward Leftward Rightward Forward Backward

H (0,0,0) 0 12 2 0 0 4

P (1,0,0) 0 11 0 1 0 3

P (1,0,−1) 0 10 0 4 2 0

H (0,0,−1) 5 9 3 7 1 0

P (0,1,−1) 0 4 0 6 0 0

P (−1,1,−1) 0 7 0 9 0 0

H (−1,0,−1) 6 8 4 0 0 0

P (−1,−1,−1) 7 0 8 0 0 0

H (0,−1,−1) 4 0 10 8 12 0

P (1,−1,−1) 3 0 0 9 11 0

P (1,−1,0) 2 0 0 12 0 10

H (0,−1,0) 1 13 11 0 0 9

P (0,−2,0) 12 0 0 0 0 0
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4.2. Initial Solution. The initial solution X is generated by selecting random values of length

n-1, where n is the sequence length of the lattice, The values range from 0 to 4. For example,

suppose that X={0, 1, 2, 3, 1, 4, 2,..., 4 }. The method is outlined in Procedure 4.1 below.

Procedure 4.1. Initial Solution

1. Initialize the coordinates of the first and second nodes as (0,0,0) and (1,0,0) respectively.

2. For i = 1 to n−1 do Step 3.

3. Take value Xi from 0 to 4 following a normal distribution.

4.3. Neighborhood Local Structure. The main task of TS is generating the neighborhood

structure. In our method, the neighborhood structure is generated by the following steps.

4.3.1. Random Direction Change. The Random Direction Change (RDC) diversifies the

search process. One or more entries Xi are selected from the direction vector X and their values

are changed. For example, if Xi = 0 (i.e. Xi poised to move in the forward direction), its new

value is selected from {0,1,2,3, . . . ,4}.

Procedure 4.2. RDC

1. For i = 1 to num-nodes do Steps 2 and 3.

2. Select a random number r from 1, . . . ,n−2.

3. Take a value of Xr from [0,4].

4.3.2. Construct Tree of Neighbourhood. A tree of the neighborhood is constructed on two

main levels. In level 1, the RDC method (Procedure 4.2) generates Ntrial solutions to increase

the diversity of the current solutions. In level 2, the RDC method generates η solution from

every previous solution and selects best Ntrial solution among all available solutions. The

neighborhood construction is outlined in Procedure 4.3, and a generated neighborhood tree is

presented in Figure 2.

Procedure 4.3. Construct a tree of the neighborhood

1. Generate one solution by Procedure 4.1.

2. Generate Ntrial solutions by the RDC method (Procedure 4.2).

3. Sort all available solutions and select the best Ntrial solution.
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4. Generate η solutions for every previous solutions by theRDC method and repeat Step 3.

5. Repeat Steps 2 to 4 until the termination condition id satisfied.

FIGURE 2. Tree of the neighbourhood structure

4.4. Intensification. The intensification process is important for extracting the most elite so-

lution because it encourages searching of the most promising localities in the search space. In

the protein folding problem, intensification assist the Attract H method, describe below.

4.4.1. Attract H Method. This process guides the locations of the H nodes by moving each H

node toward other H nodes, as near as possible. This movement should minimize the energy of

the current protein. The procedure is given as Procedure 4.4.
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(A) (B)

FIGURE 3. A simple HP model before (a) and after (b) applying the attract H

algorithm

Figure 3 shows the effect of the Attract H method on the HP model sequence, Panels a and b

of this Figure display the HP model before and after applying the respectively. Note that Attract

H method increases the number of H-H separated nodes.

Procedure 4.4. Attract H

1. Detect all H nodes with at most one umbound neighborhood H node and insert them into

the HH vector.

2. Detect the free locations from the UDLRFB matrix to the first previously detected node.

3. For i=1 to number of H nodes do steps 4 - 6.

4. Select a new location for H among the possible locations in the H nodes neighborhood.

5. Change coordinates of all remaining nodes from Sri+1 to Sn until connectivity is achieved.

6. If the solution overlaps another solution or expands the H-H distances, it is discarded.

4.5. HP-TS Algorithm. The HP-TS Algorithm is outlined in Figure 4, After initializing the

TL. the algorithm generate the neighborhood solutions applies the intensification method, and

updates the TL. The algorithm iterates until the termination condition is satisfied.
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FIGURE 4. HP-TS Algorithm

5. NUMERICAL EXPERIMENTS

This section compares the results HP-TS and some existing models on 14 HP benchmark

models.

5.1. Parameters Setting. All parameters were assigned their most common values in the

literature or were valued in our preliminary numerical experiments. The values are listed below

• TS Operator Parameters

-: Length of TL :T Lmax = 50.

-: Length of best solutions list: T Bmax = 5.

-: Maximum number of changed nodes on a zone : maxzone = 10.

-: Tree neighborhood parameters, Ntrial = 10,η = 10.

• Penalty Parameters

-: mu = 1000, is the penalty parameter.

-: eps = 1e−5, is the penalty parameter.

• termination parameter
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-: HP-TS algorithm is forced to be terminated when the number of generations ex-

ceeds tmax = 2000.

Performance Analysis. The HP-TS method was programmed in MATLAB and its perfor-

mance of HP-TS method was tested on 14 benchmark HP problems (see Table 3).

No. length protein sequence

P1 5 HPPHP

P2 8 PHPHPPHP

P3 13 HPPHPPHPHPPHP

P4 17 HHHHPPHHHHHHHPPPH

P5 20 HPHPPHHPHPPHPHHPPHPH

P6 21 PHPHPPHPHPPHPPHPHPPHP

P7 24 HHPPHPPHPPHPPHPPHPPHPPHH

P8 25 PPHPPHHPPPPHHPPPPHHPPPPHH

P9 27 HHHHPPPPPHPPPPPHHHPPPPPPPPH

P10 34 HPPHPPHPHPPHPPHPHPPHPHPPHPPHPHPPHP

P11 36 PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP

P12 48 PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPPHHPPHHPPHPPHHHHH

P13 50 HHPHPHPHPHHHHPHPPPHPPPHPPPPHPPPHPPPHPHHHHPHPHPHPHH

P14 60 PPHHHPHHHHHHHHPPPHHHHHHHHHHPHPPPHHHHHHHHHHHHPPPPHHHHHHPHHPHP

TABLE 3. Benchmark problems for performance evolution

As confirmed in Table 3, our proposed HP-TS method predicted of the folding of proteins

with different lengths (from short to long length). Table 4 presents best energy values deter-

mined in in one run. The HP-TS method found the best-known solution in all HP problems and

surpassed the best-known result on the P6 and P9 benchmarks.
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TABLE 4. HP-TS results on the 14 benchmark problems

HP P1 P2 P3 P4 P5 P6 P7

length 5 8 13 17 20 21 24

best-sol –1 –2 –5 –9 –11 –8 –13

HP-TS –1 –2 –5 –9 –11 –9 –13

HP P8 P9 P10 P11 P12 P13 P14

length 25 27 34 36 48 50 60

best-sol –9 –9 –19 –18 –29 –26 –49

HP-TS –9 –10 –19 –18 –29 –26 –49

Figure 5 shows the lowest-energy structures of the benchmark proteins P4, P7, P9 and P12

(with residue lengths of 17, 21, 27 and 48 respectively) obtained by the HP-TS algorithm.

(A) (B)

(C) (D)

FIGURE 5. Conformation of sequences P4(a), P7(b), P9(c), and P12(d) obtained

by the proposed method

The HP-TS method is strengthened by its ability to find more than one optimal conformation

of the same protein model. Figure 6 presents the multi shapes of the P3 and P4 found by a

proposed algorithm. Here we have selected small length proteins to clarify the structures. The
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energy of both structures of sequence P3 (with 13 residue) was -5, (Figure 6a and 6b), and that

of both structures of sequence P4 (with 17 residue) was -9.

(A) (B)

(C) (D)

FIGURE 6. Two conformation of (a) and (b) of 13-length sequence P3 with en-

ergy -5 and (c) and (d) the 17-length sequence P4 with energy is -9

5.2. Comparison Results. The strength of the HP-TS method was verified in comparisons

with other methods. Table 5 presents optimal results of our HP-TS method. the multiple

crossover and mutation TS algorithm (MCMPSO-TS) [21], the hybrid GA and particle swarm

optimization (PSO) algorithm (HGA-PSO) [6] and the two-phase PSO (TPPSO) methods [16]

methods. As the MCMPSO-TS method was designed for small HP lengths, it evoluated on P1,

P2, P3, P4, P5, P6, P8, P10, and P11 benchmarks. The HGA-PSO method was tested on the

P5, P7, P8, P11, P12, P13, and P14 benchmarks, and the TPPSO method was tested only on P9,

and P11. TheHP-TS method covered all benchmark models with different lengths. The HP-TS

method found the optimal solution to all models and outperformed the existing methods on P6

and P9.
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HP Length best MCMPSO-

TS

HGA-PSO TPPSO HP-TS

P1 5 –1 –1 - - –1

P2 8 –2 –2 - - –2

P3 13 –5 –5 - - –5

P4 17 –9 –9 - - –9

P5 20 –11 –11 –11 - –11

P6 21 -8 -8 - - –9

P7 24 –13 - –13 - –13

P8 25 –9 –9 –9 - –9

P9 27 –9 - - –9 –10

P10 34 –19 –19 - - –19

P11 36 –18 –18 –18 –17 –18

P12 48 –29 - –29 - –29

P13 50 –26 - –26 - –26

P14 60 –49 - –49 - –49

TABLE 5. Performance comparison of HP-TS and other methods on the bench-

mark problems (the best solutions are shown in bold font)

6. CONCLUSION

To solve the PSP problem, we proposed an accurate and fast-running integer programming

model (the HP-TS model) that combines diversification and intensification in local searching.

The model include a procedure that aggregates the hydrophobic amino-acid residue, thus en-

hancing the diversification and intensification strategies. A performance comparison between

the HP-TS and existing methods demonstrated that our method minimized the energies of pro-

teins of different lengths, and surpassed the existing methods on two of the benchmarks pro-

teins. Our proposed method obtains multiple folding shaped with the same minimal energy for

the same protein sequence, which will benefit biological search.
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