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Abstract. This research aims to solve the nonlinear model formulated in a system of differential equations with an 

initial value problem (IVP) represented in COVID-19 mathematical epidemiology model as an application using 

new approach: Approximate Shrunken are proposed to solve such model under investigation, which combines classic 

numerical method and numerical simulation techniques in an effective statistical form which is shrunken estimation 

formula. Two numerical simulation methods are used firstly to solve this model: Mean Monte Carlo Runge-Kutta 

and Mean Latin Hypercube Runge-Kutta Methods. Then two approximate simulation methods are proposed to solve 

the current study. The results of the proposed approximate shrunken methods and the numerical simulation methods 

are compared with the standard results of the numerical method which is Runge-Kutta 4th Method from the year 

2021 to 2025, using the absolute error, through comparison, it becomes clear that the approximate proposed solution 

is better and closer to the standard solution than the solutions of other methods that used to solve this system. The 

results are tabulated and represented graphically, as well as a discussion to prove the efficiency of the proposed 

methods.  
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1. INTRODUCTION 

      Throughout history, many epidemic appeared and posed a real threat to the world, as well as 

greatly affected economic and population growth, and caused trips to stop in some cities.  

These epidemic may be contagious or transmitted in other ways. Among these disease are the 

Black Death, which spread widely in Europe, malaria, the plague in Africa, SARS in China 

2002-2003, AIDS and cancer, etc. [1-3]. At the beginning of 2019, the Corona virus appeared, 

specifically in the Chinese city of Wuhan, and this epidemic is considered one of the most 

dangerous and fastest spreading epidemics, and it is of the SARS-CV type [4]. In the year 2020, 

on March 29, the epidemic spread significantly and rapidly throughout the world, which led to 

the suspension of flights through airports, land transport between countries, schools and 

universities, and most jobs with direct mixing [5-7]. The world Health Organization declared this 

epidemic to be a pandemic after it infected 199 countries around the world and caused the death 

of thousands of people [8]. The emergence of the epidemic coincided with the period of spring 

festivals and celebrations in Asia, and this helps to spread the epidemic due to the mixing of 

many people, especially flights with all countries of the world. This is considered one of the 

reasons for the spread of the virus to the rest of the world [9]. As a result of the lack of health 

facilities in some countries, including developing countries, and the severity and speed of the 

virus's spread, the virus turned into a global pandemic that caused the death of thousands of 

people around the world because they did not receive appropriate treatment is social distancing 

and adherence to health prevention ways and the directive of the World Health Organization [5, 

9]. The mathematical system in our study is an epidemiological model formulated in the form of 

a system of first order nonlinear differential equations. These epidemiological models deals with 

rapidly spreading diseases that occupy large areas, and this epidemic model is considered as 

stochastic-deterministic models [1, 5, 10], see also [11, 12]. SIR epidemic model was also 

studied by Temimi-Ansari method, Daftardar-Jafari method, and Banach contraction method, 

[13]. The stochasticity in COVID -19 for SIR epidemic model was discussed in Iraq to die out 

the epidemic in [14], see also [11]. Shafeeq, et al., studied Bifurcation analysis of a vaccination 
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mathematical model with application to COVID-19 pandemic in 2022 [15]. For the first time, 

LTAM was discussed to solve the nonlinear epidemic model, this method is combine Laplace 

transform with Tamimi and Ansari iterative method, [16]. Yaseen, et al., in 2023 discussed 

stability and Hopf bifurcation of an epidemiological model with effect of delay the awareness 

programs and vaccination [17].  

     Many ways can be solved the epidemiological models, like semi-analytic methods. Mahdi and 

Maha in 2020 discussed some like semi analytic methods for nonlinear Smoking Habit Model 

[18]. As well, the numerical method Runge-kutta for the 4th order (𝑅𝐾4), which is one of the 

reliable methods for solving differential equations of different orders high accuracy [19]. Some 

authors created modified numerical simulation approaches to get good results for epidemiology 

models, such as MMC_FD was discussed by Maha, et al. in 2019 the new approach that mixed 

two different methods which are the Mean Monte Carlo simulation technique and numerical 

iteration method which is finite difference method to sample randomly from a nonlinear 

epidemic model [20] and  MLH_FD was studied by Mohammed, et al. in 2018 a non-

conventional hybrid numerical approach with multi-dimensional random sampling for cocaine 

abuse in Spain [21]. Shatha and Maha discussed Runge-kutta numerical method for solving 

nonlinear Influenza Model in 2021. Emad and Maha studied nonlinear COVID-19 mathematical 

model using a reliable  𝑅𝐾4 numerical method, in 2022 [22, 23]. Mahdi and Maha in 2019 

discussed the modified numerical simulation technique for solving nonlinear epidemic models 

[24] which is Mean Monte Carlo Runge-Kutta method (MMC_RK) which is an efficient 

numerical simulation technique mixed two methods of different natures together that are Monte 

Carlo simulation process (MC) and Runge-Kutta numerical method (RK) that used to find the 

solution for system of equations. Shatha and Maha in 2022 studied the other numerical 

simulation method is Mean Latin Hypercube Runge-Kutta (MLH_RK) which is hybrid of a Latin 

Hypercube sampling (LHS) simulation method and a numerical Runge-Kutta (RK) method, to 

solve the influenza model, [25, 26]. MLH_RK is one of the reliable method to solve such 
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systems. Emad and Maha discussed applying a suitable approximate-simulation techniques of an 

epidemic model with random parameters in 2022 [25, 26]. 

     In this study, many methods are used, the first one, the numerical method Runge-kutta for the 

4th order (𝑅𝐾4) is used for solving the system under study. Addition that, There are two 

numerical simulation echniques in our study, one of them by Mean Monte Carlo Runge-Kutta 

method (MMC_RK) and the other Mean Latin Hypercube Runge-Kutta method (MLH_RK).  

The new approaches which called Approximate Shrunken Methods denoted by (ASM_MMCRK 

and ASM_MLHRK) are applied on COVID-19 mathematical model. Approximate Shrunken 

Methods are hybrid between classic numerical method which is Runge-Kutta 4th (RK4) and 

numerical simulation techniques which are Mean Monte Carlo Runge-Kutta method (MMC_RK) 

or Mean Latin Hypercube Runge-Kutta method (MLH_RK) in the statistical form which is 

shrinkage estimation method. These a new proposed methods are more accurate and reliable than 

other numerical simulation  methods in solving such nonlinear  mathematical system that is used 

under study.  

     This research is divided into the following: in Section 2, the mathematical model of COVID-

19 is presented; Section 3, obtains the deriving of the numerical method 𝑅𝐾4 and Section 4, 

contains numerical simulation methods MMC_RK, MLH_RK and in Section 5, the new 

approach approximate shrunken methods (ASM_MLHRK and ASM_MMCRK) that used for 

solving the epidemic model under study. Section 6, contains the discussion and tables of the 

methods used, as well as their graphic representation. Finally, Section 7 explains the final 

conclusion of the research. 

 

2. MATHEMATICAL MODEL OF COVID-19 

       This model is used successfully to study the people vaccinated against [27]. The population 

consists of five types of individuals 𝐶 , 𝑊 , 𝐸 , 𝐿  and 𝑍  represent susceptible, vaccinated, 

asymptomatic, symptomatic and the recovery respectively. They are functions of time. The 
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governing equations for the epidemic under study by non-linear ordinary differential equation of 

first order [27].  

      𝐶′(𝑡) = 𝑀 − 𝜏𝐶 −
𝛼(1+𝛽𝐸)𝐶

𝑁
− 𝜇𝐶 + 𝛾𝑍,                                                                                     

     𝑊′(𝑡) = 𝜏𝐶 −
𝜌𝛼(1+𝛽𝐸)𝑊

𝑁
− 𝜇𝑊 ,                                                                                                       

     𝐸′(𝑡) =
𝛼(1+𝛽𝐸)𝐶

𝑁
+

𝜌𝛼(1+𝛽𝐸)𝑊

𝑁
− 𝛿𝐸 − 𝜇𝐸,                                                                      (1) 

     𝐿′(𝑡) =  𝜃𝛿𝐸 − 𝜎𝐿 − 𝜇𝐿                                                                                                                

     𝑍′(𝑡) = (1 − 𝜃)𝛿𝐸 + 𝜎𝐿 − 𝛾𝑍 − 𝜇𝑍                                                                                           

     Where Tables 1 and 2 represent variables 𝐶, 𝑊, 𝐸, 𝐿, 𝑍 and parameters 𝑀, 𝜏, 𝛼, 𝛽, 𝜇, 𝛾, 𝜌, 𝛿, 

𝜃 and 𝜎 respectively. The system (1) has the initial conditions for the system obtained from [27] 

as the following: 𝐶(0) = 50000000 , 𝑊(0) = 0 , 𝐸(0) = 1000 , 𝐿(0) = 100  and 𝑍(0) = 50 

with the predicted parameters that are given in Table 2: 

Table 1. Variables of COVID-19 model [27]. 

Variable   Definition 

𝐶(𝑡) People who are not infected but are vulnerable to not having immunity 

𝑊(𝑡) People vaccinated against coronavirus 

𝐸(𝑡) People infected with the virus without showing any symptoms 

𝐿(𝑡) Infected people and symptoms of infection are clear to them 

𝑍(𝑡) People who have recovered from the virus and died as a result of infection 
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Figure 1. The state transformation process of individuals. 
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Table 2. Parameters of COVID-19 model [27]. 

Parameter Definition Value 

𝛼 The rate of transmission people infected with this virus 0.8883 

𝛽 Correction factor for the rate of movement of people without infection 0.45 

𝜇 The normal rate of death 0.00003349 day 

𝛾 The rate of invulnerability to infection 0.005 

1 − 𝜌 Vaccine efficacy and potency 0.8 

1

𝛿
 The average period without symptoms of infection 7 day 

𝜃 
The proportion of people does not show the effects of the symptoms of 

the virus, but it develops into a state of infection 
0.2 

1 − 𝜃 Proportion of asymptomatic individuals who recover 0.8 

𝑀 Birth rate in the community 1500/day 

𝜏 Vaccination rate against the virus 0.01 day 

1

𝜎
 The average rate of people recovering from infection with the virus 10 days 

  

3. NUMERICAL METHOD FOR SOLVING COVID-19 MODEL 

      𝑅𝐾4 is one of the numerical iterative methods with high accuracy. The nonlinear system (1) 

of the vaccine model against COVID-19 can be solved by 𝑅𝐾4 with initial conditions: 𝐶0(𝑡) =

50000000 , 𝑊0(𝑡) = 0 , 𝐸0(𝑡) = 1000 , 𝐿0(𝑡) = 100  and 𝑍0(𝑡) = 50 , with the predicted 

parameters in Table 2. The general form of 𝑅𝐾4 is: 

𝑔𝑖+1 = 𝑔𝑖 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4),                                                                                  (2) 

where 𝑅𝐾4 method on system (1) can be written as: 

𝐶𝑖+1 = 𝑓(𝑡𝑖, 𝐶𝑖, 𝑊𝑖, 𝐸𝑖, 𝐿𝑖 , 𝑍𝑖),  

         = 𝐶 +
1

6
(𝑘𝐶1 + 2𝑘𝐶2 + 2𝑘𝐶3 + 𝑘𝐶4) ∗ ℎ,                                                                    (3) 

𝑊𝑖+1 = 𝑓(𝑡𝑖, 𝐶𝑖, 𝑊𝑖, 𝐸𝑖 , 𝐿𝑖 , 𝑍𝑖), 

         = W +
1

6
(𝑘𝑊1 + 2𝑘𝑊2 + 2𝑘𝑊3 + 𝑘𝑊4) ∗ ℎ,                                                               (4) 
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𝐸𝑖+1 = 𝑓(𝑡𝑖, 𝐶𝑖, 𝑊𝑖, 𝐸𝑖, 𝐿𝑖, 𝑍𝑖),  

         = 𝐸𝑖 +
1

6
(𝑘𝐸1 + 2𝑘𝐸2 + 2𝑘𝐸3 + 𝑘𝐸4) ∗ ℎ,                                                                   (5) 

𝐿𝑖+1 = 𝑓(𝑡𝑖, 𝐶𝑖 , 𝑊𝑖, 𝐸𝑖, 𝐿𝑖, 𝑍𝑖), 

          = 𝐿𝑖 +
1

6
(𝑘𝐿1 + 2𝑘𝐿2 + 2𝑘𝐿3 + 𝐾𝐿4) ∗ ℎ,                                                                  (6) 

𝑅𝑖+1 = 𝑓(𝑡𝑖, 𝐶𝑖, 𝑊𝑖, 𝐸𝑖, 𝐿𝑖 , 𝑍𝑖), 

          = 𝑍𝑖 +
1

6
(𝑘𝑍1 + 2𝑘𝑍2 + 2𝑘𝑍3 + 𝑘𝑍4) ∗ ℎ.                                                                  (7) 

for all 𝑖 = 1,2, … , 𝑚 

Now, we must find 𝐾𝑆1, 𝑘𝑉1, 𝑘𝐴1, 𝑘𝐼1 and 𝑘𝑅1as follows: 

𝑘𝐶1 = 𝑓(𝑡𝑖, 𝐶𝑖, 𝑊𝑖 , 𝐸𝑖, 𝐿𝑖 , 𝑍𝑖),                                                                                                 (8)   

𝑘𝑊1 = 𝑓(𝑡𝑖, 𝐶𝑖, 𝑊𝑖, 𝐸𝑖, 𝐿𝑖 , 𝑍𝑖),                                                                                                (9) 

𝑘𝐸1 = 𝑓(𝑡𝑖, 𝐶𝑖 , 𝑊𝑖, 𝐸𝑖, 𝐿𝑖, 𝑍𝑖),                                                                                               (10) 

𝑘𝐿1 = 𝑓(𝑡𝑖, 𝐶𝑖 , 𝑊𝑖, 𝐸𝑖 , 𝐿𝑖, 𝑍𝑖),                                                                                               (11) 

𝑘𝑍1 = 𝑓(𝑡𝑖, 𝐶𝑖, 𝑊𝑖, 𝐸𝑖 , 𝐿𝑖, 𝑍𝑖).                                                                                               (12) 

for all   𝑖 = 0,1, … , 𝑚 

Also, to find 𝑘𝐶2, 𝑘𝑊2, 𝑘𝐸2, 𝑘𝐿2 and 𝑘𝑍2 as follows: 

𝑘𝐶2 = 𝑓2 (𝑡𝑖
1

2
ℎ, 𝐶𝑖 +

1

2
ℎ ∗ 𝑘𝐶1, 𝑊𝑖 +

1

2
ℎ ∗ 𝑘𝑊1, 𝐸𝑖 +

1

2
ℎ ∗ 𝑘𝐸1, 𝐿𝑖 +

1

2
ℎ ∗ 𝑘𝐿1, 𝑍𝑖 +

1

2
ℎ ∗ 𝑘𝑍1),   (13) 

𝑘𝑊2 = 𝑓2 (𝑡𝑖
1

2
ℎ, 𝐶𝑖 +

1

2
ℎ ∗ 𝑘𝐶1, 𝑊𝑖 +

1

2
ℎ ∗ 𝑘𝑊1, 𝐸𝑖 +

1

2
ℎ ∗ 𝑘𝐸1, 𝐿𝑖 +

1

2
ℎ ∗ 𝑘𝐿1, 𝑍𝑖 +

1

2
ℎ ∗ 𝑘𝑍1),  (14) 

𝑘𝐸2 = 𝑓2 (𝑡𝑖
1

2
ℎ, 𝐶𝑖 +

1

2
ℎ ∗ 𝑘𝐶1, 𝑊𝑖 +

1

2
ℎ ∗ 𝑘𝑊1, 𝐸𝑖 +

1

2
ℎ ∗ 𝑘𝐸1, 𝐿𝑖 +

1

2
ℎ ∗ 𝑘𝐿1, 𝑍𝑖 +

1

2
ℎ ∗ 𝑘𝑍1),   (15) 

𝑘𝐿2 = 𝑓2 (𝑡𝑖
1

2
ℎ, 𝐶𝑖 +

1

2
ℎ ∗ 𝑘𝐶1, 𝑊𝑖 +

1

2
ℎ ∗ 𝑘𝑊1, 𝐸𝑖 +

1

2
ℎ ∗ 𝑘𝐸1, 𝐿𝑖 +

1

2
ℎ ∗ 𝑘𝐿1, 𝑍𝑖 +

1

2
ℎ ∗ 𝑘𝑍1),   (16) 

𝑘𝑍2 = 𝑓2 (𝑡𝑖
1

2
ℎ, 𝐶𝑖 +

1

2
ℎ ∗ 𝑘𝐶1, 𝑊𝑖 +

1

2
ℎ ∗ 𝑘𝑊1, 𝐸𝑖 +

1

2
ℎ ∗ 𝑘𝐸1, 𝐿𝑖 +

1

2
ℎ ∗ 𝑘𝐿1, 𝑍𝑖 +

1

2
ℎ ∗ 𝑘𝑍1).   (17) 

for all   𝑖 = 0,1, … , 𝑚. 

To get 𝐾𝐶3, 𝑘𝑊3, 𝑘𝐸3, 𝑘𝐿3 and 𝑘𝑍3 as follows: 

𝑘𝐶3 = 𝑓3 (𝑡𝑖
1

2
ℎ, 𝐶𝑖 +

1

2
ℎ ∗ 𝑘𝐶2, 𝑊𝑖 +

1

2
ℎ ∗ 𝑘𝑊2, 𝐸𝑖 +

1

2
ℎ ∗ 𝑘𝐸2, 𝐿𝑖 +

1

2
ℎ ∗ 𝑘𝐿2, 𝑍𝑖 +

1

2
ℎ ∗ 𝑘𝑍2),   (18) 

𝑘𝑊3 = 𝑓3 (𝑡𝑖
1

2
ℎ, 𝐶𝑖 +

1

2
ℎ ∗ 𝑘𝐶2, 𝑊𝑖 +

1

2
ℎ ∗ 𝑘𝑊2, 𝐸𝑖 +

1

2
ℎ ∗ 𝑘𝐸2, 𝐿𝑖 +

1

2
ℎ ∗ 𝑘𝐿2, 𝑍𝑖 +

1

2
ℎ ∗ 𝑘𝑍2),  (19) 
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𝑘𝐸3 = 𝑓3 (𝑡𝑖
1

2
ℎ, 𝐶𝑖 +

1

2
ℎ ∗ 𝑘𝐶2, 𝑊𝑖 +

1

2
ℎ ∗ 𝑘𝑊2, 𝐸𝑖 +

1

2
ℎ ∗ 𝑘𝐸2, 𝐿𝑖 +

1

2
ℎ ∗ 𝑘𝐿2, 𝑍𝑖 +

1

2
ℎ ∗ 𝑘𝑍2),      (20) 

𝑘𝐿3 = 𝑓3 (𝑡𝑖
1

2
ℎ, 𝐶𝑖 +

1

2
ℎ ∗ 𝑘𝐶2, 𝑊𝑖 +

1

2
ℎ ∗ 𝑘𝑊2, 𝐸𝑖 +

1

2
ℎ ∗ 𝑘𝐸2, 𝐿𝑖 +

1

2
ℎ ∗ 𝑘𝐿2, 𝑍𝑖 +

1

2
ℎ ∗ 𝑘𝑍2),      (21) 

𝑘𝑍3 = 𝑓3 (𝑡𝑖
1

2
ℎ, 𝐶𝑖 +

1

2
ℎ ∗ 𝑘𝐶2, 𝑊𝑖 +

1

2
ℎ ∗ 𝑘𝑊2, 𝐸𝑖 +

1

2
ℎ ∗ 𝑘𝐸2, 𝐿𝑖 +

1

2
ℎ ∗ 𝑘𝐿2, 𝑍𝑖 +

1

2
ℎ ∗ 𝑘𝑍2).      (22) 

for all   𝑖 = 0,1, … , 𝑚.  

To obtain 𝑘𝐶4, 𝑘𝑊4, 𝑘𝐸4, 𝑘𝐿4 and 𝑘𝑍4 as follows: 

𝑘𝐶4 = 𝑓4(𝑡𝑖 + ℎ, 𝐶𝑖 + ℎ ∗ 𝑘𝐶3, 𝑊𝑖 + ℎ ∗ 𝑘𝑊3, 𝐸𝑖 + ℎ ∗ 𝑘𝐸3, 𝐿𝑖 + ℎ ∗ 𝑘𝐿3, 𝑍𝑖 + ℎ ∗ 𝑘𝑍3),                  (23) 

𝑘𝑊4 = 𝑓4(𝑡𝑖 + ℎ, 𝐶𝑖 + ℎ ∗ 𝑘𝐶3, 𝑊𝑖 + ℎ ∗ 𝑘𝑊3, 𝐸𝑖 + ℎ ∗ 𝑘𝐸3, 𝐿𝑖 + ℎ ∗ 𝑘𝐿3, 𝑍𝑖 + ℎ ∗ 𝑘𝑍3),    (24) 

𝑘𝐸4 = 𝑓4(𝑡𝑖 + ℎ, 𝐶𝑖 + ℎ ∗ 𝑘𝐶3, 𝑊𝑖 + ℎ ∗ 𝑘𝑊3, 𝐸𝑖 + ℎ ∗ 𝑘𝐸3, 𝐿𝑖 + ℎ ∗ 𝑘𝐿3, 𝑍𝑖 + ℎ ∗ 𝑘𝑍3),     (25) 

𝑘𝐿4 = 𝑓4(𝑡𝑖 + ℎ, 𝐶𝑖 + ℎ ∗ 𝑘𝐶3, 𝑊𝑖 + ℎ ∗ 𝑘𝑊3, 𝐸𝑖 + ℎ ∗ 𝑘𝐸3, 𝐿𝑖 + ℎ ∗ 𝑘𝐿3, 𝑍𝑖 + ℎ ∗ 𝑘𝑍3),     (26) 

𝑘𝑍4 = 𝑓4(𝑡𝑖 + ℎ, 𝐶𝑖 + ℎ ∗ 𝑘𝐶3, 𝑊𝑖 + ℎ ∗ 𝑘𝑊3, 𝐸𝑖 + ℎ ∗ 𝑘𝐸3, 𝐿𝑖 + ℎ ∗ 𝑘𝐿3, 𝑍𝑖 + ℎ ∗ 𝑘𝑍3).     (27) 

for all   𝑖 = 0,1, … , 𝑚. 

       For substituting Eqs. (8), (13), (18) and (23) in Eq. (3) to find the numerical solutions of  𝐶𝑖. 

Also putting Eqs. (9), (14), (19) and (24) in Eq. (4) for achieve the numerical solutions of  𝑊𝑖. in 

the same manner substitute Eqs. (10), (15), (20) and (25) in Eq. (5) to obtain the numerical 

solutions of 𝐸𝑖 , substituting Eqs. (11), (16), (21) and (26) in Eq. (6) to find the numerical 

solutions of 𝐿𝑖 . Finally, substituting Eqs. (12), (17), (22) and (27) in Eq. (7) for getting the 

numerical solutions of 𝑍𝑖 . All for each  𝑖 = 0,1, … , 𝑚. 

 

4. APPROXIMATE SIMULATION METHODS FOR SOLVING COVID-19 MODEL 

     Some of the modified numerical simulation methods that are used in this study will be 

discussed in this section formulated in our model.  

4.2 MEAN MONTE CARLO RUNGE-KUTTA (MMC_RK) METHOD 

     Mean Monte Carlo Runge-Kutta (MMC_RK) is an efficient numerical simulation method for 

solving such mathematical models. This method consists of mixing two different methods; one 

numerical is Runge-Kutta method 4th (𝑅𝐾4) and the other Monte Carlo simulation process (MC) 
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is called the Mean Monte Carlo Runge-Kutta (MMC_RK), see [24]. MC estimates the model 

coefficients that are random variables while RK is used to solve the model numerically. The 

average of the last  RK iteration results with each MC repetition is considered the estimated 

approximate solution for the model under study. The MMC_RK method is implemented by using 

MATLAB software, more details are shown in [24]. 

4.2 MEAN LATIN HYPERCUBE RUNGE-KUTTA (MLH_RK) METHOD 

        Mean Latin Hypercube Runge-Kutta (MLH_RK), see [25] is numerical simulation method 

that is a mixture of a simulation method which is Latin Hypercube Sampling (LHS) and a 

numerical method is Runge-Kutta (RK). It is considered one of the reliable methods for solving a 

system of nonlinear ordinary differential equations of the first order. LHS estimates the 

coefficients of the model that are considered random variable while RK is used to solve the 

model numerically. The average of the last RK iteration results with each LHS repetition is 

considered the estimated approximate solution for the model under study. 

     The process of MLH_RK is similar to MMC_RK  which was talked about before. In addition 

to that MLH_RK is more accurate and faster than the MMC_RK method because it simulates 

model parameters at once whereas this integrated method is implemented using the MATLAB 

program, see [25]. 

 

5. APPROXIMATE SHRUNKEN METHODS 

     In this section, two new techniques are created to solve such models under study, especially 

epidemic models. These techniques have proven their efficiency and effectiveness in obtaining 

more accurate results than the modified numerical simulation methods in previous studies, and 

they are considered a new approach between statistics and numerical simulation. 

5.1 APPROXIMATE SHRUNKEN METHOD (ASM_MMCRK) 

     Approximate Shrunken Method the form called ASM_MMCRK, is a new approach that is a 

hybrid between the classic approximate method which is RK4, and numerical simulation 
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techniques which is MMC_RK in the shrinkage estimation statistical form. This newly proposed 

method is a more accurate and reliable method than other numerical simulation MMC_RK and 

MLH_RK methods in solving such nonlinear mathematical systems that are used under study. 

ASM_MMCRK gives alternative estimation values between statistical and approximate methods. 

This method has been calculated using the MATLAB program and as shown in the following 

algorithm: 

• Step 1: The parameters of a model have been simulated by MC for n times. 

• Step 2: One value is specified from Step 1 and transformed into a specific distribution, to 

replace Its value in the system, for each random parameter. 

• Step 3: Solve the system m-times iterations numerically by RK to get the numerical  

solutions, the last iterative result is the final solution which is selected. 

• Step 4: Repeat Steps 1 and 2 for n repetitions. 

• Step 5: To find a solution of the system under study by MMC_RK, calculating the   

mean of final solutions from Step 4. 

• Step 6: Using the proposed algorithm as follow: 

𝑺𝒐�̂�𝐀𝐒𝐌_𝐌𝐌𝐂𝑹𝑲 = 𝑾(𝑹𝑲𝟒) + (𝟏 − 𝑾)(𝑴𝑴𝑪_𝑹𝑲) 

Since the solution of the system for ASM_MMCRK is called  𝑆𝑜�̂�ASM_MMCRK  and 𝑤 is weight 

function, where 0 ≤ 𝑤 ≤ 1. 

5.2 APPROXIMATE SHRUNKEN METHOD (ASM_MLHRK) 

       Approximate Shrunken Method the form named ASM_MLHRK; is another proposed 

method which is mixture of a classical numerical method which is RK4 and, and another 

numerical simulation techniques which is MLH_RK to produce a new algorithm in the statistical 

form which is shrinkage estimation form. This proposed algorithm is more accurate and efficient 

compared to other approximate simulation methods for solving such mathematical models. 

ASM_MLHRK is promising to create alternative estimation values between statistical and 
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approximate methods. This method is implemented using the MATLAB program and as shown 

in the following algorithm: 

• Step 1: All model parameters have been simulated by LHS for n  times at ones. 

• Step 2: For each random parameter, one value is specified and replaced in the system.  

• Step 3: Solve the system m-times iterations numerically by RK to get the numerical 

solutions, the last iterative result is the final solution. 

• Step 4: Repeat Steps 1 and 2 for n repetitions. 

• Step 5: Calculate the mean of final solutions from Step 4, to find a solution of the system 

under study by MLH_RK. 

• Step 6: Using the new algorithm as follow: 

𝑺𝒐�̂�𝐀𝐒𝐌_𝐌𝐋𝐇𝑹𝑲 = 𝑾(𝑹𝑲𝟒) + (𝟏 − 𝑾)(𝑴𝑳𝑯_𝑹𝑲) 

Since the solution of the system for ASM_MLHRK is called  𝑆𝑜�̂�ASM_MLHRK  and 𝑤 is weight 

function, where 0 ≤ 𝑤 ≤ 1. 

 

6. RESULTS AND DISCUSSION 

      This section discusses the approximate simulation solutions of the epidemic model under the 

study of the people vaccinated against COVID-19. These results are discussed and analyzed in 

this section. Table 3 (a) and Table 3 (b) contain numerical simulation results through one year 

with step size ℎ = {0.02, 0.08} weekly and monthly for the period of the beginning of 2021 to 

the end of 2022 under study. Also, Table 5 (a) and Table 5 (b) contain the results of the 

numerical simulation solution for the groups  𝐶(𝑡), 𝑊(𝑡), 𝐸(𝑡), 𝐿(𝑡) and 𝑍(𝑡) of society, for a 

future period of time until 2025 in the interval [0,48]. 
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Table 3 (a). Numerical simulation results of COVID-19 model  through two years 

 with iteration (24, 104) 

Model 

Variables 

Step Size, h 

(weekly & 

monthly) 

RK4 

(2 years) 

MMC_RK 

(100 repetition) 

MLH_RK 

(100 repetition) 

𝑪(𝒕) 
0.08 (monthly) 37085084.65590938 

37085084.6334494

1 
37085084.63874430 

0.02 (weekly) 37029322.77190823 
37029322.7573620

2 
37029322.76831016 

𝑾(𝒕) 
0.08 (monthly) 10276439.20625248 

10276439.2510942

1 
10276439.21572080 

0.02 (weekly) 10295713.93745516 
10295713.9132805

2 
10295713.91683632 

𝑬(𝒕) 
0.08 (monthly) 1613222.87881244 1613222.85395034 1613222.88396380 

0.02 (weekly) 1652523.89802588 1652523.87033773 1652523.89808829 

𝑳(𝒕) 
0.08 (monthly) 125188.11983965 125188.17256626 125188.13831513 

0.02 (weekly) 128652.85432294 128652.81162111 128652.89108403 

𝒁(𝒕) 
0.08 (monthly) 775323.97875363 775323.94437549 775323.96720432 

0.02 (weekly) 782446.78337939 782446.72048965 782446.73254787 

      

  Table 3 (b). Approximate simulation results of COVID-19 model  through two years 

                                                          with  iteration (24, 104) 

Model 

Variables 

Step Size, h 

(weekly & 

monthly) 

RK4 

(2 years) 

ASM_MMCRK 

(100 repetition) 

 ASM_MLHRK 

      (100 

repetition) 

𝑪(𝒕) 
0.08 (monthly) 37085084.65590938 37085084.66005684 37085084.65548420 

0.02 (weekly) 37029322.77190823 37029322.76902728 37029322.77998371 

𝑾(𝒕) 
0.08 (monthly) 10276439.20625248 10276439.21067146 10276439.20892619 

0.02 (weekly) 10295713.93745516 10295713.93889395 10295713.93671944 

𝑬(𝒕) 
0.08 (monthly) 1613222.87881244 1613222.87384391 1613222.87918716 

0.02 (weekly) 1652523.89802588 1652523.89806853 1652523.89803135 

𝑳(𝒕) 
0.08 (monthly) 125188.11983965 125188.12904200 125188.11836894 

0.02 (weekly) 128652.85432294 128652.83814106 128652.84746489 

𝒁(𝒕) 
0.08 (monthly) 775323.97875363 775323.97175147 775323.97679611 

0.02 (weekly) 782446.78337939 782446.77772828 782446.79915969 
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       The  comparison between the new approach by approximate shrunken methods; 

ASM_MMCRK, ASM_MLHRK and the numerical simulation methods MMC_RK, MLH_RK 

compared with the numerical method 𝑅𝐾4  are is achieved by absolute error criterion for 

𝐶(𝑡),𝑊(𝑡), 𝐸(𝑡), 𝐿(𝑡) and 𝑍(𝑡) are shown numerically in Tables 4 and 6. Observe that the 

absolute error of the new methods ASM_MLHRK and ASM_MC, they are have error less than 

of the other numerical simulation methods MLH_RK and MMC_RK, for all groups 𝐶(𝑡) , 

𝑊(𝑡), 𝐸(𝑡), 𝐿(𝑡) and 𝑍(𝑡) of population. ASM_MLHRK has the smallest value of absolute error 

and this means that the proposed method is more accurate and reliable than the other methods.  

     Prediction intervals that contain the minimum bound (5th percentile) and maximum bound 

(95th percentile) for MMC_RK and MLH_RK results in the future until 2025, MMC_RK and 

MLH_RK results are inside the predicted intervals, see Table 8. 

Table 4. Absolute error for MMC_RK, MLH_RK, ASM_MMCRK and ASM_MLHRK 

compared with 𝑅𝐾4 through two years 
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𝑪(𝒕) 
0.08 (monthly) 0.02245997 0.01716508 0.00414746 0.00042518 

0.02 (weakly) 0.01454621 0.00359807 0.00288095 0.00807548 

𝑾(𝒕) 
0.08 (monthly) 0.04484173 0.00946832 0.00441898 0.00267371 

0.02 (weekly) 0.02417464 0.02061884 0.00143879 0.00073572 

𝑬(𝒕) 
0.08 (monthly) 0.02486210 0.00515136 0.00496853 0.00037472 

0.02 (weekly) 0.02768815 0.00006241 0.00004265 0.00000547 

𝑳(𝒕) 
0.08 (monthly) 0.05272661 0.01847548 0.00920235 0.00147071 

0.02 (weekly) 0.04270183 0.03676109 0.01618188 0.00685805 

𝒁(𝒕) 
0.08 (monthly) 0.03437814 0.01154931 0.00700216 0.00195752 

0.02 (weekly) 0.06288974 0.05083152 0.00565111 0.01578030 
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Table 5 (a). Expected numerical simulation results of COVID-19 model from 2021 to 2025 

 with iteration (48, 208) 

Model 

Variables 

Step Size, h 

(weekly & 

monthly) 

RK4 

(4 years)  

MMC_RK 

1000 repetition  

(4 years) 

MLH_RK 

     1000 

repetition 

 (4years) 

𝑪(𝒕) 
0.08 (monthly) 7770078.03210272    7770078.03781565 7770078.03526455 

0.02 (weekly) 8063309.62351586   8063309.62957513 8063309.62726213 

𝑾(𝒕) 
0.08 (monthly) 10811867.78401260 10811867.79049931   10811867.78965045 

0.02 (weekly) 10952433.59246311   10952433.5953929 10952433.59486301 

𝑬(𝒕) 
0.08 (monthly) 8219721.15928793 8219721.15697412 8219721.15803524 

0.02 (weekly) 9624761.53721278 9624761.53483086 9624761.53505387 

𝑳(𝒕) 
0.08 (monthly) 2369666.36562734 2369666.36645547 2369666.36591673 

0.02 (weekly) 2441792.19283193 2441792.19387042   2441792.19356723   

𝒁(𝒕) 
0.08 (monthly) 24873285.35075667 24873285.35312171 

24873285.3510761

6 

0.02 (weekly) 24402059.21778145 24402059.22099882 24402059.21966456 

 

Table 5 (a). Expected numerical simulation results of COVID-19 model from 2021 to 2025 

 with iteration (48, 208) 

Model 

Variables 

Step Size, h 

(weekly & 

monthly) 

RK4 

(4 years)  

ASM_MMCRK 

      1000 

repetition 

 (4 years) 

ASM_MLHRK 

1000 repetition 

     (4 years) 

𝑪(𝒕) 
0.08 (monthly) 7770078.03210272    7770078.03317467 7770078.03297931 

0.02 (weekly) 8063309.62351586   8063309.62219451 8063309.62227721 

𝑾(𝒕) 
0.08 (monthly) 10811867.78401260 10811867.78250540 10811867.78503365 

0.02 (weekly) 10952433.59246311   10952433.5917881 10952433.59302430 

𝑬(𝒕) 
0.08 (monthly) 8219721.15928793 8219721.15857161 8219721.15923087 

0.02 (weekly) 9624761.53721278 9624761.53523915 9624761.53602377 

𝑳(𝒕) 
0.08 (monthly) 2369666.36562734 2369666.36395723 2369666.36505389 

0.02 (weekly) 2441792.19283193 2441792.19138873 2441792.19309842 

𝒁(𝒕) 
0.08 (monthly) 24873285.35075667 24873285.3505814 24873285.35089628 

0.02 (weekly) 24402059.21778145 24402059.2184932 24402059.21790663 
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Table 6. Absolute error for MMC_RK, MLH_RK ASM_MMCRK and ASM_MLHRK 

compared with 𝑅𝐾4 from 2021 to 2025 
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𝑪(𝒕) 
0.08 (monthly) 0.00571293 0.00316183 0.00107195 0.00087659 

0.02 (weakly) 0.00605927 0.00374627 0.00132135 0.00123865 

𝑾(𝒕) 
0.08 (monthly) 0.00648671 0.00563785 0.00150720 0.00102105 

0.02 (weekly) 0.00292979 0.00239990 0.00067501 0.00056119 

𝑬(𝒕) 
0.08 (monthly) 0.00231381 0.00125269 0.00071632 0.00005706 

0.02 (weekly) 0.00238192 0.00215891 0.00197363 0.00118901 

𝑳(𝒕) 
0.08 (monthly) 0.00082813 0.00028939 0.00167011 0.00057345 

0.02 (weekly) 0.00103849 0.00073530 0.00144320 0.00026649 

𝒁(𝒕) 
0.08 (monthly) 0.00236504 0.00031949 0.00017527 0.00013961 

0.02 (weekly) 0.00321737 0.00188311 0.00071175 0.00012518 

 

        Table 7 discusses the convergence of the new algorithm using the residual error between 

every two consecutive terms for a certain number of terms of the proposed algorithm, where we 

notice that the error decreases as we take a larger number of iterations, and this confirms us the 

convergence of the proposed method.  
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Table 7. Absolute residual error |𝐴𝑆𝑀𝑖+1 − 𝐴𝑆𝑀𝑖| , 𝑖 = 1,2, … , 300 number of iteration for a 

new approach ASM_MLHRK through two years. 

Model 

Variables 
𝑪(𝒕) 𝑾(𝒕) 𝑬(𝒕) 𝑳(𝒕) 𝒁(𝒕) 

Step Size, h 
0.08 

 (monthly) 

0.08 

 (monthly) 

0.08 

 (monthly) 

0.08 

 (monthly) 

0.08 

 (monthly) 

𝐴𝑆𝑀51 − 𝐴𝑆𝑀50 0.52369031 0.60578526 0.19603743 0.72967378 0.66135922 

𝐴𝑆𝑀53 − 𝐴𝑆𝑀52 0.45525823 0.55720193 0.15037214 0.56213405 0.60132548 

𝐴𝑆𝑀54 − 𝐴𝑆𝑀53 0.40427536 0.50126341 0.11023465 0.49320176 0.54213087 

𝐴𝑆𝑀55 − 𝐴𝑆𝑀54 0.34214152 0.46172540 0.09365271 0.44120832 0.49213560 

𝐴𝑆𝑀56 − 𝐴𝑆𝑀55 0.32057767 0.39170362 0.05973103 0.40253703 0.44021346 

𝐴𝑆𝑀57 − 𝐴𝑆𝑀56 0.25987686 0.34122304 0.03728907 0.37132409 0.39256381 

𝐴𝑆𝑀58 − 𝐴𝑆𝑀57 0.19675235 0.29871023 0.02198266 0.32073651 0.26410872 

𝐴𝑆𝑀59 − 𝐴𝑆𝑀58 0.15517794 0.25861024 0.01862936 0.28430712 0.22064315 

𝐴𝑆𝑀61 − 𝐴𝑆𝑀60 0.10808257 0.19330451 0.01460987 0.21987324 0.19340567 

       

       Figure 2 represents the curves of methods that are used to solve the mathematical model of 

COVID-19 through two years with 100 repetitions and ℎ = {0.08, 0.02} step size weekly and 

monthly through two years. Figure 2(a) is related to the people  𝐶(𝑡) who are not infected with 

COVID-19 but are susceptible to infection. A sudden drop in the curves for all the methods used 

in the study after the 17th  month. It is noticeable that the sudden descent in the curve as a result 

of a large number of infections during the study period to still down after the end of 2022. Figure 

2(b) observes the curves of group 𝑤(𝑡) with people who are vaccinated against COVID-19. It is 

noticeable that the curves rise gradually until the 15th month, after which they increase with 

greater upwards until the end of the study period. Figure 2(c) is associated with the group of 

people 𝐸(𝑡) who are carriers of the virus without showing symptoms of infection and Figure 2(d) 

represents the infected people 𝐿(𝑡) with the epidemic. It is noticeable that a gradual and slight 

increase in the curve until the 15th month for each 𝐸(𝑡) and 𝐿(𝑡), after which they increase with 

greater upwards until the 20th month, then a slight decline at the end of the study period as a 
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result of the impact and effectiveness of the vaccine on society. Figure 2(e) the group of people 

𝑍(𝑡) who have been cured of the disease, as they have been removed from the list of positive 

cases. There is a gradual rise of the curves especially from the 15th month to the 20th month, then 

it continues to rise until the end of the study period. 

Table 8. Prediction intervals (5th percentile, 95th percentile) for ASM_MLHRK, ASM_MMCRK, 

MMC_RK and MLH_RK solutions 

MMCRK   from 2021 to 2025 (𝒕 ≤ 𝟒𝟖) 

Subpopulation (100 repetitions) (1000 repetitions) 

𝑪(𝒕)  (1472991.20458186 , 26159524.9835266) (1510599.40241837 , 25916625.6778357) 

𝑾(𝒕) (4357631.7258009 , 18607769.0236236 ) (4549965.74214325, 18886164.251091 ) 

𝑬(𝒕) (2526701.92714055 , 13325113.3421321) (2912097.91400961 , 13082969.7854761) 

𝑳(𝒕) (353279.936509981 , 3365956.15432413) (400525.323142184 , 3567618.95559503) 

𝒁(𝒕) (2630616.06801583 , 43519655.9740401) (3111352.69199348 , 42216391.3520102) 

MLHRK  from 2021 to 2025 (𝒕 ≤ 𝟒𝟖) 

Subpopulation (100 repetitions) (1000 repetitions) 

𝑪(𝒕) (1523965.12557087 , 25643584.7303688) ( 1634788.2103348 , 26133045.0923457 ) 

𝑾(𝒕) (5813361.83870447 , 19109267.030847) ( 6199376.94435020 , 20123578.321549 ) 

𝑬(𝒕) (2571877.70593455  , 10905917.4496805) ( 2936843.03372511 , 11276310.2945021) 

𝑳(𝒕) (319748.001520959 , 3088896.04854105 ) ( 455056.32607721 , 3250647.24053192) 

𝒁(𝒕) (2702074.70798966 , 35981783.6342994) ( 2930625.85032167, 36139466.05487231) 

ASM_MMCRK  from 2021 to 2025 (𝒕 ≤ 𝟒𝟖) 

Subpopulation (100 repetitions) (1000 repetitions) 

𝑪(𝒕) (7772861.29848899 , 8323947.83072361) ( 79322610.40506681 , 8745311.02304821) 

𝑾(𝒕) (10813263.7892022 , 11089673.1151684) ( 11099750.86093174 , 11505381.5103409) 

𝑬(𝒕) (8233745.20583935 , 11010506.5648508) ( 8534066.18043477 , 11449213.2038117) 

𝑳(𝒕) (2370410.01055453, 2517652.03681914) ( 2748023.48708571 , 2844610.103047832) 

𝒁(𝒕) (23973749.9536893 , 24868765.0722051) ( 24034629.2305118 , 25428155.3295012) 

ASM_MLHRK  from 2021 to 2025 (𝒕 ≤ 𝟒𝟖) 

Subpopulation (100 repetitions) (1000 repetitions) 

𝑪(𝒕) (7943100.05869372, 49788658.7942648) ( 8033499.03984756 , 50233846.0845782) 

𝑾(𝒕) (56679.5422693364 , 11279228.911598) ( 78438.40982011 , 12489312.83045317) 

𝑬(𝒕) (35072.8601023087 , 6781499.16035943) ( 63124.520.3103267 , 7216083.2836046) 

𝑳(𝒕) (10120.6313225389, 2994205.63318524) ( 25740.318703712 , 3125644.601328490) 

𝒁(𝒕) (104905.624799627, 24866319.3351259 ) ( 235657.37820936 , 25036217.21056321) 
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       Figure 2. Curves of approximate simulation methods ASM_MLHRK, ASM_MMCRK,   

                      MMC_RK and MLH_RK compared with RK4 of (a) 𝐶(𝑡), (b) 𝑊(𝑡), (c) 𝐸(𝑡),  

                     (d) 𝐿(𝑡) and (e) 𝑍(𝑡) through two years when ℎ = 0.08 monthly with  

                      𝑚 = 100 repetitions. 
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        Figure 3 describes the curve of the mathematical model of the COVID-19 epidemic through 

4 years from 2021 to 2025 with 100 repetitions. Figure 3 explains the convergence between the 

approximate simulation methods ASM_MLHRK, ASM_MMCRK, MMC_RK and MLH_RK 

when ℎ = 0.08 monthly with 𝑚 = 1000 repetitions. 

Figure 3 (a) represented the group of people who are not infected with COVID-19  𝐶(𝑡). Note 

that the gradual descent in the curve of this group of people for all methods that are used in the 

first months of the study with step size ℎ = {0.02, 0.08} weekly and monthly through four years, 

and then it begins with a sudden decline due to a large number of infectious as a result of mixing 

and non-compliance with health prevention methods, after which it returns to stability in the last 

months of the study as a result of people's desire to receive the vaccine against COVID-19, also 

see how close the curves of proposed methods ASM_MLHRK and ASM_MMCRK with the 

curve of numerical method RK4 than the other numerical simulation methods. Figure 3 (b), this 

curve describes the group of people vaccinated against COVID-19 𝑊(𝑡), and as we see there is a 

slight rise in the curve of this class in the first months of the study period for all methods 

ASM_MLHRK, ASM_MMCRK, RK4, MMC_RK and MLH_RK are used with ℎ =

{0.02, 0.08} weekly and monthly through four years, then the curve begins to rise significantly in 

the middle of the study period to continue rising until the 40th month as a result of the increase in 

the number of vaccinated against this epidemic and the high level of awareness the health of the 

people will take after that, stability until the year 2025. We also notice very clearly how close the 

curves of new approaches ASM_MLHRK and ASM_MMCRK of the curve of 𝑅𝐾4 are to the 

other approximate simulation methods. Figure 3 (c), this curve of this group  𝐸(𝑡) , which 

represents people infected with the epidemic without showing symptoms of infection. Noticeable 

there is a rise in the highest level in the middle of the study period, specifically the 20th month, 

due to mixing and lack of commitment to health prevention methods, then the curve drops until 

the 40th month, then stabilizes until the end of the study period, also we notice the curve of 

proposed method ASM_MLHRK converge to the curve of numerical method RK4 than the other 

methods. Figure 3 (d), represents people infected with the epidemic without showing symptoms 
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of infection 𝐿(𝑡), also note that there is an increase in the curve of this class for all methods 

ASM_MLHRK, ASM_MMCRK, RK, MMC_RK and MLH_RK are used under study, and to 

reach its highest level in the middle of the study period, specifically the 22th month, due to 

mixing and lack of commitment to health prevention methods, then the curve drops until the 41th 

month, then stabilizes until the end of the study period, also the curve of proposed method 

ASM_MLHRK and ASM_MMCRK converge to the curve of numerical method 𝑅𝐾4 than the 

other methods. Figure 3 (e) the curves of this group of people who have been cured or died 𝑍(𝑡) 

as a result of the epidemic, notice that there is a discrepancy in the level of rise and fall in the 

curve of this class and for all methods are used under study with ℎ = {0.02, 0.08} through four 

over a period of 48 months, where we notice the rise until the 15th month and then returns to 

decline in 25th month, after which it rises very much to settle at its highest rate in the last months 

of the study. Whereas, the curve of the proposed algorithm remains the closest to the curve of 

numerical method 𝑅𝐾4 than the other numerical simulation methods.  
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Figure 3. Curves of approximate simulation methods ASM_MLHRK, ASM_MMCRK,    

               MMC_RK and MLH_RK compared with RK4 of (a) 𝐶(𝑡), (b) 𝑊(𝑡), (c) 𝐸(𝑡), (d)   

               𝐿(𝑡) and (e) 𝑍(𝑡) from 2021 to 2025 when ℎ = 0.08 monthly with 𝑚 = 1000   

              repetitions. 

 
 

7. CONCLUSION  

     The numerical simulation process is considered a more reliable method than the classical 

methods that depend on fixed period of time. Because the natural epidemic models have 

randomness in their coefficients. For this reason, these numerical simulation techniques is 

considered a more suitable method than the classical methods like 𝑅𝐾4  that solve models 

depending on fixed parameters.  

     The mathematical model in our research is represented by the COVID-19 epidemic. It is 

formulated as a system of first-order nonlinear ordinary differential equations. The study period 

during 48 months from 2021 to 2025. Many methods are used for solving the model, including a 

numerical method, which is the Runge-Kutta method as a standard solution, and the other two 

modified numerical simulation methods MMC_RK and MLH_RK to solve this system. All the 

previous methods are formulated to create a new approach that is used for the first time, called 

the approximate shrunken approach represented in (ASM_MLHRK) and (ASM_MMCRK) 

methods . 
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      In our study, the shrinkage estimation solution represents a good estimator for the solution of 

the system under study. This solution is considered a link between the traditional approach of 

solving systems represents in numerical methods that depend on fixed coefficients for the model 

and the concepts of the modified simulations approach for solving these systems when dependent 

on random coefficients. 

      The results for all proposed methods; ASM_MLHRK and ASM_MMCRK are more 

convergence to and close to the 𝑅𝐾4 numerical result that represents a criterion solution in the 

current model than the other methods mentioned. Where note that the approximate shrunken 

method (ASM_MLHRK) is the most closely. 

     Studying the epidemic model under study gives an impression of the impact of this virus on 

society. The results show that the category 𝐶(𝑡) of people not infected with the epidemic began 

to decrease during the study period. While the category 𝑊(𝑡) is associated with vaccinated 

people, we notice an increase in this category as a result of the impact and effectiveness of the 

vaccine on society, also for the category 𝐸(𝑡) of infected people without showing symptoms, 

there is a gradual rise in this category of people for not adhering to health prevention methods, as 

well as not adhering to social distancing. However category 𝐿(𝑡) of infected people and the 

symptoms are clear to them, we notice a gradual decrease in all methods 𝑅𝐾4, ASM_MLHRK, 

ASM_MMCRK, MMC_RK, and MLH_RK by educating people to take the vaccine against the 

virus. Finally, the category 𝑍(𝑡) of people who have been cured or died due to disease, a clear 

increase for this class. 
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