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Abstract: It is recognized that organisms live and interact in groups, exposing them to various elements like disease, 

fear, hunting cooperation, and others. As a result, in this paper, we adopted the construction of a mathematical model 

that describes the interaction of the prey with the predator when there is an infectious disease, as well as the predator 

community's characteristic of cooperation in hunting, which generates great fear in the prey community. Furthermore, 

the presence of an incubation period for the disease provides a delay in disease transmission from diseased predators 

to healthy predators. This research aims to examine the proposed mathematical model's solution behavior to better 

understand these elements' impact on an eco-epidemic system. For all time, all solutions were proven to exist, be 

positive, and be uniformly bounded. The existence conditions of possible equilibrium points were determined. The 

stability analysis was performed for all conceivable equilibria in the presence and absence of delay.  When the 

feedback time delays reach a critical point, the existence of Hopf bifurcation is examined. The normal form theory 

and the Centre manifold theorem are commonly used to investigate the dynamic properties of bifurcating cyclic 

solutions arising from Hopf bifurcations. Some numerical simulations were presented to validate the theoretical 
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conclusions and understand the impact of changing the parameter values. 
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1. INTRODUCTION 

    Although epidemiology is a significant research subject in its own right, a recent tendency 

has emerged to combine it with ecology to better understand species interactions in ecosystems 

under epidemiological variables. As a result, it gave birth to a new field: eco-epidemiology. 

Studying the effect of disease in the context of interspecies interactions is more realistic than 

studying it in isolation because no species lives in isolation in nature but interacts with a huge 

number of other species, either directly or indirectly. The spirit of this new route is the desire to 

learn about the effects of disease in prey-predator models. Anderson and May [1] were among the 

first to pioneer eco-epidemiological modeling. They investigated a prey-predator paradigm in 

which both the prey and the predator were infected. Following their pioneering work, a large 

number of scholars examined eco-epidemiological systems, see [2-11], which is still ongoing. 

    The incubation period of a disease is very important in infectious disease modeling because 

it determines the dynamics of disease transmission and predicts the future evolution of disease 

outbreaks. As a result, researchers are working to create mathematical models that more precisely 

reflect reality by modeling time delay. Maiti et al [12] investigated a Crowely-Martin prey-predator 

model in which the prey population was afflicted with illness. The nonlinear incidence rate at 

which vulnerable prey are infected is taken into account. Due to the existence of an incubation 

period, a time lag is added to convert the vulnerable prey to the infected one. Samanta et al [13] 

suggested and investigated a nonautonomous prey-predator model with disease in prey and a 

discrete-time delay for disease transmission incubation. While Hussien and Naji [14] studied the 

impact of the incubation time delay on disease transmission in a prey-predator system with a SI 

type of disease in the prey population using a nonlinear incidence rate. A modified Holling type II 

functional response was employed to illustrate the predation process. Further studies regarding the 
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impact of incubation time delay on the dynamics of eco-epidemiological systems may be found 

here [15-16] and the references therein. 

    The importance of incorporating the influence of a predator's hunting cooperation techniques 

in destabilizing the prey population by creating fear is one of the fundamental insights in the 

biological models. This is due to the fact that psychological influences can have a greater impact 

than direct physical predator attacks, causing the prey to migrate from more susceptible regions to 

less risky ones, disperse, and lose attention to key biological tasks that are part of their daily routine. 

For example, certain studies, such as those in [17-19], found that fear can reduce prey populations' 

reproductive rate and bioactivity, lowering disease transmission rates. However, it is observed that 

memory dependence, fear, hunting cooperation, and therapy have an impact on the fractional-order 

eco-epidemiological model's qualitative behavior, see [18]. On the other hand, the hunting 

cooperation technique affects the stability of a three-species food chain model and increases 

anxiety in both prey and mid-level predators, forcing them to seek refuge, see [19]. Fear of 

predation has many additional causes, and its prevalence is not restricted to the presence of hunting 

cooperation. Therefore, numerous studies have been conducted to investigate the impact of fear 

on the qualitative behavior and dynamics of prey and predator systems, see [20-24] and the 

references therein. 

   Based on the preceding, the study of eco-epidemiological models where there is a delay in 

disease transmission due to the presence of an incubation period has become a vital necessity to 

understand and preserve system stability by preventing the spread of infectious illness. In this 

study, we created a mathematical model to mimic the prey-predator system where there is an 

infectious sickness in the predator community with the attribute of hunting cooperation, which 

causes fear in the prey community as a defense against predation. The following is how this paper 

was structured: In Section 2, an eco-epidemiological model was established that considered 

infection transmission delays, hunting cooperation, and the cost of fear. Section 3 discusses 

solution positivity and boundedness. Section 4 addresses the presence of the model's equilibrium 

points. Section 5 addressed the stability of the delay model, whereas Section 6 created favorable 
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conditions for Hopf bifurcations. Section 7 looks into the physical properties of Hopf bifurcation 

limit cycles. Section 8 contains numerical simulations to validate the analytical results obtained in 

this paper. With a quick conclusion, the work is completed. 

 

2. MODEL FORMULATION 

   This section considers the following biological hypotheses to mathematically simulate the real-

world eco-epidemiological system. 

• The prey population 𝑋(𝑡) has the potential to reproduce and increase naturally because of 

the food provided by the environment, according to the logistic growth with intrinsic 

growth rate 𝑟 − 𝑑1 and carrying capacity 
𝑟−𝑑1

𝑐
. 

• The predator can cooperate to pursue their prey, and the predation process follows the 

Lotka-Volterra type of functional response.  

• The severity of predation causes fear in prey individuals, resulting in a decline in birth and 

biological functioning. 

• The development of virus resistance and the unprotected connection among ecosystem 

individuals generates disease infection within the predator population, dividing it into two 

compartments 𝑃(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) , where 𝑆(𝑡)  represents the susceptible individuals 

and 𝐼(𝑡) represents the infected individuals at the time 𝑡. 

• The disease is thought to be spread through contact between 𝑆(𝑡) and 𝐼(𝑡), but it is not 

inherited genetically. Furthermore, an incubation period results in some lag in 

infectiousness at the time period 𝜏. 

• The disease leads to death in addition to the natural death of predators. 

   In light of the aforementioned biological hypotheses, Figure 1 depicts a block diagram 

depicting the above real-world system, and the set of nonlinear differential equations defining the 

system dynamics is written below:  
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Fig. 1. Block diagram of the model 

    

𝑑𝑋

𝑑𝑡
=

𝑟𝑋

1+𝑎(𝑆+𝐼)
− 𝑑1𝑋 − 𝑐𝑋

2 − [𝑘 + 𝑏(𝑆 + 𝐼)]𝑋(𝑆 + 𝐼) = ℱ1(𝑋, 𝑆, 𝐼)

𝑑𝑆

𝑑𝑡
= 𝑒[𝑘 + 𝑏(𝑆 + 𝐼)]𝑋(𝑆 + 𝐼) – 𝑑2𝑆 − 𝑚𝑆𝐼 = ℱ2(𝑋, 𝑆, 𝐼)        

𝑑𝐼

𝑑𝑡
= 𝑚𝑆(𝑡 − 𝜏) 𝐼(𝑡 − 𝜏) − (𝑑2 + 𝑑3)𝐼 = ℱ3(𝑋, 𝑆, 𝐼)            

              (1)  

The biological meanings for all of the positive parameters in system (1) are shown in Table 1. 

Table 1. Biological description of the system (1) parameters. 

Parameter Biological Identification 

𝑟 The birth rate of the prey population 

𝑎 Predation fear rate 

𝑑1 The natural death rate of prey 

𝑑2 The natural death rate of susceptible predators 

𝑑3 The mortality rate of infected predators as a result of the epidemic 

𝑐 Coefficient intraspecific competition among prey 

𝑘 The attack rate of predators 

𝑏 A cooperative hunting level of predators 

𝑒 The conversion rate of prey's biomass into predator's biomass 

𝑚 Infection rate 

𝜏 The time lag in transmission of infection 



6 

KARRAR QAHTAN AL-JUBOURI, RAID KAMEL NAJI 

The following are the system's (1) initial conditions:   

   

𝑋(𝑡) = 𝜓1(𝑡)

𝑆(𝑡) = 𝜓2(𝑡)

𝐼(𝑡) = 𝜓3(𝑡)
                                                          (2) 

where 𝜓 = (𝜓1, 𝜓2, 𝜓3)
𝑇 ∈ 𝐶+ = 𝐶+([−𝜏, 0] , ℝ+

3 ) , such that 𝜓𝑖(𝑡) ≥ 0 (𝑖 = 1,2,3),  ∀ 𝑡 ∈

[−𝜏, 0], with  ‖𝜓‖ =  𝑆𝑢𝑝
−𝜏≤𝑡≤0

 { |𝜓1(𝑡)|, |𝜓2(𝑡)|, |𝜓3(𝑡)| }. 

   In addition, the functions ℱ𝑖 (𝑖 = 1,2,3)  are obviously continuous and meet the local 

Lipschitz condition on 𝐶+. As a result, using the fundamental theorem of functional differential 

equations [25] ensures that system (1) has a unique solution that meets the initial conditions (2). 

 

3. POSITIVITY AND BOUNDEDNESS 

   Before proceeding with the study, confirm that the proposed model is biologically sound. 

Consequently, in this section, we present the following theorem, which explores the positivity and 

boundedness of the system. 

Theorem 1.  All system (1) solutions starting in ℝ+
3   remain positive and bounded forever. 

Proof.  From the prey equation of system (1), we have  

     
𝑑𝑋

𝑑𝑡
= 𝑋 (

𝑟

1+𝑎(𝑆+𝐼)
− 𝑑1 − 𝑐𝑋 − (𝑘 + 𝑏(𝑆 + 𝐼))(𝑆 + 𝐼))  

This yield: 

𝑋(𝑡) = 𝑋(0) 𝑒𝑥𝑝 {∫ (
𝑟

1+𝑎(𝑆(𝜀)+𝐼(𝜀))
− 𝑑1 − 𝑐𝑋(휀) − (𝑘 + 𝑏(𝑆(휀) + 𝐼(휀))) (𝑆(휀) + 𝐼(휀)))

𝑡

0
𝑑(휀)},  

which implies 𝑋(𝑡) > 0 for all time 𝑡 ≥ 0 whenever 𝑋(0) > 0 . 

   The positivity of predator species is now demonstrated, from the susceptible equation of 

system (1), we have 

 
𝑑𝑆

𝑑𝑡
≥ −𝑆(𝑑2 +𝑚𝐼). 

By solving this inequality, we obtain 

𝑆(𝑡) ≥ 𝑆(0) 𝑒𝑥𝑝 {−∫ (𝑑2 +𝑚𝐼(휀))
𝑡

0
𝑑(휀)} > 0 ,  

whenever 𝑆(0) > 0 for all time 𝑡 ≥ 0.  
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Similarly, from the infected equation of system (1), we have 𝐼(𝑡) > 0  for all time 𝑡 ≥ 0 

whenever  𝐼(0) > 0. Hence, solutions of the system (1) are positive. 

   Next, regarding the boundedness of the solutions. From the prey equation of system (1), we 

can obtain 

 
𝑑𝑋

𝑑𝑡
≤

𝑟𝑋

1+𝑎(𝑆+𝐼)
− 𝑑1𝑋 − 𝑐𝑋

2 ≤ (𝑟 − 𝑑1)𝑋 − 𝑐𝑋
2 

which implies  

 lim
𝑡 → ∞

𝑠𝑢𝑝 𝑋(𝑡) ≤  
𝑟−𝑑1

𝑐
   

To guarantee that the prey species do not extinct, the condition 𝑟 >  𝑑1 should be met. Hence, for 

small enough 𝛿 > 0, there exists 𝑡∗ > 0 such that  

 𝑋(𝑡) ≤  
𝑟−𝑑1

𝑐
+ 𝛿, for 𝑡 > 𝑡∗.  

Now we consider, 𝑉(𝑡) = 𝑋(𝑡 − 𝜏) +
1

𝑒
𝑆(𝑡 − 𝜏) + 𝐼(𝑡)  and  𝑡 > 𝑡∗ + 𝜏. Then, we have 

        
𝑑𝑉

𝑑𝑡
=

𝑟𝑋(𝑡−𝜏)

1+𝑎(𝑆(𝑡−𝜏)+𝐼(𝑡−𝜏))
− 𝑑1𝑋(𝑡 − 𝜏) − 𝑐𝑋(𝑡 − 𝜏)

2 −
𝑑2

𝑒
𝑆(𝑡 − 𝜏) − (𝑑2 + 𝑑3)𝐼  

            ≤ (𝑟 − 𝑑1)𝑋(𝑡 − 𝜏) −
𝑑2

𝑒
𝑆(𝑡 − 𝜏) − (𝑑2 + 𝑑3)𝐼  

            ≤ 2 (𝑟 − 𝑑1)𝑋(𝑡 − 𝜏) − ℬ𝑉(𝑡)  

            ≤  2 (𝑟 − 𝑑1) (
𝑟−𝑑1

𝑐
+ 𝛿 ) − ℬ𝑉(𝑡), 

where ℬ = 𝑚𝑖𝑛{(𝑟 − 𝑑1), 𝑑2 , (𝑑2 + 𝑑3)}. This yield 

lim
𝑡 → ∞

𝑠𝑢𝑝 𝑉(𝑡) ≤  
2

ℬ
 (𝑟 − 𝑑1) (

𝑟−𝑑1

𝑐
+ 𝛿 ). 

Hence, all the solutions of system (1) are bounded. 

 

4. THE SYSTEM’S (1) EQUILIBRIA 

   It is worth noting that system (1) has no more than four non-negative equilibrium points. The 

followings are the equilibrium points and their existence conditions: 

The total extinction equilibrium point (TEE), 𝐸0 = (0,0,0), always exists.   

The axial equilibrium point (AE), 𝐸1 = (�̃�, 0,0), where �̃� =  
𝑟−𝑑1

𝑐
, which always exists. 
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The infected predator-free equilibrium (IPFE), 𝐸2 = (�̂�, �̂�, 0), where �̂� =
𝑑2

𝑒(𝑘+𝑏𝑆 ̂)
 while �̂�  is 

the positive root of the equation: 

𝐴1𝑆
4 + 𝐴2𝑆

3 + 𝐴3𝑆
2 + 𝐴4𝑆 + 𝐴5 = 0,                                     (3)                              

where  

𝐴1 = −𝑎𝑏
2𝑒.  

𝐴2 = −𝑒𝑏(2𝑎𝑘 + 𝑏).   

𝐴3 = −𝑒(𝑎𝑏𝑑1 + 𝑎𝑘
2 + 2𝑘𝑏).  

𝐴4 = 𝑒𝑟𝑏 − (𝑒𝑏𝑑1 + 𝑒𝑎𝑘𝑑1 + 𝑎𝑐𝑑2 + 𝑒𝑘
2).  

𝐴5 = 𝑒𝑟𝑘 − (𝑒𝑘𝑑1 + 𝑐𝑑2). 

Obviously, equation (3) has a unique positive root and hence IPFE exists uniquely, provided that 

the following condition is met. 

 𝐴5 > 0.                                                 (4) 

The positive equilibrium (PE), 𝐸∗ = (𝑋∗, 𝑆∗, 𝐼∗), where   

 
𝑋∗ =

(𝑑2+𝑚𝐼
∗
)𝑆∗

𝑒𝑘𝑆∗+𝑒𝑏𝑆∗
2
+2𝑏𝑒𝑆∗𝐼∗+𝑒𝑏𝐼∗

2
+𝑒𝑘𝐼∗

𝑆∗ =
𝑑2+𝑑3

𝑚

 },                           (5) 

while 𝐼∗ is the positive root of the following equation: 

𝐵1𝐼
5 + 𝐵2𝐼

4 + 𝐵3𝐼
3 + 𝐵4𝐼

2 + 𝐵5𝐼 + 𝐵6 = 0,                       (6) 

where 

𝐵1 = −𝑎𝑏
2𝑒,  

𝐵2 = −(5𝑎𝑏
2𝑒𝑆∗ + 2𝑎𝑏𝑒𝑘 + 𝑏2𝑒),   

𝐵3 = −(𝑎𝑏𝑒𝑑1 + 𝑎𝑒𝑘
2 + 8𝑎𝑏𝑒𝑘𝑆∗ + 10𝑎𝑏2𝑒𝑆∗2 + 2𝑏𝑒𝑘 + 4𝑒𝑏2𝑆∗ + 𝑒𝑏2𝑆∗3), 

𝐵4 = 𝑒𝑏(𝑟 − 𝑑1)[3𝑎𝑏𝑒𝑑1𝑆
∗ + 6𝑏𝑒𝑘𝑆∗ + 10𝑎𝑏𝑒𝑘𝑆∗2 + 3𝑎𝑒𝑘2𝑆∗ + 6𝑏2𝑒𝑆∗2

    +10𝑎𝑏2𝑒𝑆∗3 + 2𝑎𝑏𝑒𝑘𝑆∗ + 𝑎𝑑1𝑒𝑘 + 𝑒𝑘
2]

 , 

𝐵5 = 𝑒 (𝑟 − 𝑑1)(𝑘 + 2𝑏𝑆
∗) − [2𝑎𝑒𝑑1𝑘𝑆

∗ + 2𝑒𝑘2𝑆∗                    

+(𝑐𝑚 + 𝑎𝑐𝑚𝑆∗ + 𝑎𝑐𝑑1 + 𝑎𝑐𝑚)𝑆
∗ + 3𝑎𝑏𝑒𝑑1𝑆

∗2

+3𝑎𝑒𝑘2𝑆∗2 + 6𝑏𝑒𝑘𝑆∗2 + 8𝑎𝑏𝑒𝑘𝑆∗3 + 3𝑏2𝑒𝑆∗3 + 5𝑎𝑏2𝑒𝑆∗4]

, 

𝐵6 = 𝑒𝑆
∗ (𝑟 − 𝑑1)(𝑘 + 𝑏𝑆

∗) − [5𝑎𝑏2𝑒𝑆∗ + 2𝑎𝑏𝑒𝑘 + 𝑒𝑏2].   

It is worth noting that equation (6) has a unique positive root; hence, the PE exists uniquely if the 
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following conditions are met. 

 𝐵𝑖 > 0 ;  𝑖 = 5,6.                                    (7) 

 

5. STABILITY ANALYSIS 

   One of the strategies to analyze the nature of the stability of the equilibrium is through 

linearization. Accordingly, define �̃� = ( �̃�, �̃�, 𝐼) as an arbitrary equilibrium point of the system 

(1). Further, let 𝑋(𝑡) = 𝑊1(𝑡) + �̃� , 𝑆(𝑡) = 𝑊2(𝑡) + �̃� , and 𝐼(𝑡) = 𝑊3(𝑡) + 𝐼 . Then, the 

linearized system at �̃� can be expressed as follows: 

�̇�1(𝑡) = 𝑎11 𝑊1(𝑡) + 𝑎12 𝑊2(𝑡) + 𝑎13 𝑊3(𝑡),    

�̇�2(𝑡) = 𝑎21 𝑊1(𝑡) + 𝑎22 𝑊2(𝑡) + 𝑎23 𝑊3(𝑡),    

�̇�3(𝑡) = 𝑏32 𝑊2(𝑡 − 𝜏) + 𝑎33 𝑊3 + 𝑏33 𝑊3(𝑡 − 𝜏),

                       (8) 

where 

𝑎11 =
𝑟

1+𝑎(�̃�+𝐼)
− (𝑑1 + 2𝑐�̃� + 𝑘�̃� + 𝑏�̃�

2 + 2𝑏�̃�𝐼 + 𝑏𝐼2 + 𝑘𝐼), 

𝑎12 = −(
𝑎𝑟�̃�

(1+𝑎(�̃�+𝐼))
2 + (𝑘�̃� + 2𝑏�̃��̃� + 2𝑏�̃�𝐼)) = 𝑎13,  

𝑎21 = 𝑒𝑘�̃� + 𝑒𝑏�̃�
2 + 2𝑒𝑏�̃�𝐼 + 𝑒𝑏𝐼2 + 𝑒𝑘𝐼, 

𝑎22 = 𝑒𝑘�̃� + 2𝑒𝑏�̃��̃� + 2𝑒𝑏�̃�𝐼 − 𝑑2, 

𝑎23 = 𝑒𝑘�̃� + 2𝑒𝑏�̃��̃� + 2𝑒𝑏�̃�𝐼 − 𝑚�̃�, 

𝑏32 = 𝑚𝐼, 𝑎33 = − (𝑑2 + 𝑑3), 𝑏33 = 𝑚�̃�. 

Consequently, the characteristic equation of the system (1) at �̃�  can be determined from the 

following characteristic equation: 

|

𝑎11 − 𝜆 𝑎12 𝑎13
𝑎21 𝑎22 − 𝜆 𝑎23
0 𝑏32 𝑒

−𝜆𝜏 (𝑎33 + 𝑏33 𝑒
−𝜆𝜏) − 𝜆

| = 0.                      (9) 

Next, the behavior of the each equilibrium point of system (1) for all 𝜏 ≥ 0, is analyzed in the 

following theorems: 

Theorem 2. The TEE of the system (1) is unstable saddle point when 𝑑1 < 𝑟. 

Proof: The characteristic equation (9) at 𝐸0 becomes 
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[(𝑟 − 𝑑1) − 𝜆][−𝑑2 − 𝜆][−(𝑑2 + 𝑑3) − 𝜆] = 0.                    (10) 

Obviously, the equation (10) has one positive root 𝜆1 = (𝑟 − 𝑑1),  with two negative roots     

𝜆2 = −𝑑2 , and 𝜆3 = − (𝑑2 + 𝑑3) . Hence, the (TEE)  𝐸0  is unstable saddle point. Otherwise, 

when 𝑟 − 𝑑1 < 0, then prey population will be extinct and hence, the system completely collapses 

and the solution approaches TEE. 

Theorem 3.  The  AE of the system (1) is locally asymptotically stable if and only if the following 

condition is met. 

𝑒𝑘(𝑟−𝑑1)

𝑐
− 𝑑2 < 0.                                 (11) 

Otherwise, the AE is unstable saddle point. 

Proof: For the equilibrium point AE that given by 𝐸1 , the characteristic equation (9) can be 

expressed as: 

 (− (𝑟 − 𝑑1) − 𝜆) ((𝑒𝑘
(𝑟−𝑑1)

𝑐
− 𝑑2) − 𝜆) (− (𝑑2 + 𝑑3) − 𝜆) = 0.           (12) 

Clearly, the equation (12) have three real roots given by  

𝜆1 = − (𝑟 − 𝑑1) < 0, 𝜆2 = 𝑒𝑘
(𝑟−𝑑1)

𝑐
− 𝑑2, and 𝜆3 = − (𝑑2 + 𝑑3) < 0. 

Thus, condition (11) guarantees that, AE is locally asymptotically stable. Otherwise, 𝐸1  is 

unstable saddle point due to existence of negative eigenvalues. 

Theorem 4. Assume that the following condition holds. 

  
−(�̂�11 + �̂�22) > 0  
�̂�11�̂�22 − �̂�12�̂�21 > 0

  }                               (13) 

Then, the  IPFE of the system (1) is locally asymptotically stable for all 𝜏 ≥ 0 if and only if the 

following condition holds. 

  𝑚 �̂� < (𝑑2 + 𝑑3),                                   (14) 

It is unstable saddle point for all 0 ≤ 𝜏 < 𝜏𝑐 =
1

√(𝑚 �̂�)
2
−(𝑑2+𝑑3)2

𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑑2+𝑑3

𝑚 �̂�
) if the condition (14) 

is replaced by the following condition 

  (𝑑2 + 𝑑3) <  𝑚 �̂�.                                (15) 

Where all the new symbols are defined in the proof. 
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Proof:  For IPFE that given by 𝐸2, the characteristic equation (9) become 

  |

�̂�11 − 𝜆 �̂�12 �̂�13
�̂�21 �̂�22 − 𝜆 �̂�23
0 0 (�̂�33 + �̂�33 𝑒

−𝜆𝜏) − 𝜆
| = 0, 

which gives  

  [𝜆2 − (�̂�11 + �̂�22)𝜆 + (�̂�11�̂�22 − �̂�12�̂�21)][(�̂�33 + �̂�33 𝑒
−𝜆𝜏) − 𝜆] = 0,          (16) 

where 

�̂�11 =
𝑟

1+𝑎�̂�
− (𝑑1 + 2𝑐�̂� + 𝑘�̂� + 𝑏�̂�

2), �̂�12 = �̂�13 = −(
𝑎𝑟�̂�

(1+𝑎�̂�)2
+ (𝑘�̂� + 2𝑏�̂��̂�)),  

�̂�21 = 𝑒𝑘�̂� + 𝑒𝑏�̂�
2, �̂�22 = 𝑒𝑘�̂� + 2𝑒𝑏�̂��̂� − 𝑑2, �̂�23 = 𝑒𝑘�̂� + 2𝑒𝑏�̂��̂� − 𝑚�̂�, 

�̂�33 = − (𝑑2 + 𝑑3), �̂�33 = 𝑚�̂�. 

Consequently, due to Routh-Hurwitz criterion, a quadratic factor in equation (16), has two 

eigenvalues with negative real parts if the condition (13) is met. While, the transcendental factor 

in equation (16) is subject to proposition (1) [26], which gives that: 

If condition (14) holds, then all the roots of the transcendental equation have negative real parts 

for any 𝜏 ≥ 0. Thus, the IPFE that given by 𝐸2  is locally asymptotically stable. 

However, if condition (15) holds then the transcendental equation have positive real parts roots for 

0 ≤ 𝜏 < 𝜏𝑐. Hence, the IPFE is a saddle point. This is complete the proof. 

Theorem 5.  Assume that the following set of requirements are satisfied,  

  

𝑎11
∗ < 0, 𝑎22

∗ < 0
𝑎23
∗ < 0, 𝑎33

∗ + 𝑏33
∗ < 0

𝑎23
∗ (𝑎22

∗ + 𝑎33
∗ + 𝑏33

∗ ) + 𝑎13
∗ 𝑎21

∗ > 0
  }                          (17) 

Then, 𝐸∗  is locally asymptotically stable for 𝜏 = 0  and becomes unstable for 𝜏 ≥ 𝜏^  for a 

critical value 𝜏^ > 0 if in addition to the set (17) the following requirement is met 

  𝐷3
2 −𝐷6

2 < 0.                                     (18) 

where  𝐷𝑖’s are specified in the proof. 

Proof:  For the PE that given by  𝐸∗, the characteristic equation (9) will be written as: 

  |

𝑎11
∗ − 𝜆 𝑎12

∗ 𝑎13
∗

𝑎21
∗ 𝑎22

∗ − 𝜆 𝑎23
∗

0 𝑏32
∗  𝑒−𝜆𝜏 (𝑎33

∗ + 𝑏33
∗  𝑒−𝜆𝜏) − 𝜆

| = 0,      
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where 

𝑎11
∗ =

𝑟

1+𝑎(𝑆∗+𝐼∗)
− (𝑑1 + 2𝑐𝑋

∗ + 𝑘𝑆∗ + 𝑏𝑆∗2 + 2𝑏𝑆∗𝐼∗ + 𝑏𝐼∗2 + 𝑘𝐼∗), 

𝑎12
∗ = −(

𝑎𝑟𝑋∗

(1+𝑎(𝑆∗+𝐼∗))
2 + (𝑘𝑋

∗ + 2𝑏𝑋∗𝑆∗ + 2𝑏𝑋∗𝐼∗)) = 𝑎13
∗ ,  

𝑎21
∗ = 𝑒𝑘𝑆∗ + 𝑒𝑏𝑆∗2 + 2𝑒𝑏𝑆∗𝐼∗ + 𝑒𝑏𝐼∗2 + 𝑒𝑘𝐼∗, 

𝑎22
∗ = 𝑒𝑘𝑋∗ + 2𝑒𝑏𝑋∗𝑆∗ + 2𝑒𝑏𝑋∗𝐼∗ − 𝑑2, 

𝑎23
∗ = 𝑒𝑘𝑋∗ + 2𝑒𝑏𝑋∗𝑆∗ + 2𝑒𝑏𝑋∗𝐼∗ −𝑚𝑆∗, 𝑎33

∗ = − (𝑑2 + 𝑑3), 

𝑏32
∗ = 𝑚𝐼∗, 𝑏33

∗ = 𝑚𝑆∗. 

Direct computation leads to have the following characteristic equation of the system (1) at 𝐸∗: 

 𝑃(𝜆) − 𝑄(𝜆)𝑒−𝜆𝜏 = 0,                                (19) 

where 

𝑃(𝜆) = 𝜆3 + 𝐷1𝜆
2 + 𝐷2𝜆 + 𝐷3. 

𝑄(𝜆) = 𝐷4𝜆
2 + 𝐷5𝜆 + 𝐷6. 

With 

𝐷1 = −(𝑎11
∗ +𝑎22

∗ +𝑎33
∗ ). 

𝐷2 = 𝑎11
∗ 𝑎22

∗ +𝑎11
∗ 𝑎33

∗ + 𝑎22
∗ 𝑎33

∗ −𝑎12
∗ 𝑎21

∗ . 

𝐷3 = −(𝑎11
∗ 𝑎22

∗ −𝑎12
∗ 𝑎21

∗ )𝑎33
∗ . 

𝐷4 = 𝑏33
∗

. 

𝐷5 = −(𝑎11
∗ 𝑏33

∗
+𝑎22

∗ 𝑏33
∗
− 𝑎23

∗ 𝑏32
∗
). 

𝐷6 = 𝑎11
∗ 𝑎22

∗ 𝑏33
∗ +𝑎13

∗ 𝑎21
∗ 𝑏32

∗ − 𝑎11
∗ 𝑎23

∗ 𝑏32
∗ −𝑎12

∗ 𝑎21
∗ 𝑏33

∗
. 

Consequently, the eigenvalues of the characteristic equation (19) can be classified in two cases: 

For 𝝉 = 𝟎, the equation (19) is rewritten as: 

𝜆3 + (𝐷1 − 𝐷4)𝜆
2 + (𝐷2 − 𝐷5)𝜆 + (𝐷3 − 𝐷6) = 0,                         (20) 

where 

𝐷1 − 𝐷4 = −(𝑎11
∗ + 𝑎22

∗ + 𝑎33
∗ + 𝑏33

∗ ). 

𝐷2 − 𝐷5 = 𝑎11
∗ 𝑎22

∗ + 𝑎11
∗ 𝑎33

∗ + 𝑎22
∗ 𝑎33

∗ − 𝑎12
∗ 𝑎21

∗ + 𝑎11
∗ 𝑏33

∗ + 𝑎22
∗ 𝑏33

∗ − 𝑎23
∗ 𝑏32

∗ . 

𝐷3 − 𝐷6 = −(𝑎11
∗ 𝑎22

∗ − 𝑎12
∗ 𝑎21

∗ )(𝑎33
∗ + 𝑏33

∗ ) − (𝑎13
∗ 𝑎21

∗ − 𝑎11
∗ 𝑎23

∗ )𝑏32
∗ . 
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Moreover 

(𝐷1 − 𝐷4)(𝐷2 − 𝐷5) − (𝐷3 −𝐷6) = −(𝑎11
∗ 𝑎22

∗ − 𝑎12
∗ 𝑎21

∗ )(𝑎11
∗ + 𝑎22

∗ )

 −(𝑎11
∗ + 𝑎22

∗ )2(𝑎33
∗ + 𝑏33

∗ ) − (𝑎11
∗ + 𝑎22

∗ )(𝑎33
∗ + 𝑏33

∗ )2

+[𝑎23
∗ (𝑎22

∗ + 𝑎33
∗ + 𝑏33

∗ ) + 𝑎13
∗ 𝑎21

∗ ] 𝑏32
∗

 

Now, direct computation shows that the set of conditions (17) guarantees that all the eigenvalues 

of characteristic equation (20) have negative real parts. Hence according the Routh–Hurwitz 

criterion, 𝐸∗ is locally asymptotically stable.  

In the second case, when 𝝉 > 𝟎, the equation (19) has infinitely many roots. Thus, we claim that  

𝜆(𝜏) = 𝛼(𝜏) + 𝑖𝛽(𝜏)  represents the general eigenvalue of equation (19). Then substituting this 

eigenvalue in the equation (19), isolating real and imaginary parts yields: 

𝛼3 − 3𝛼𝛽2 + 𝛼2𝐷1 − 𝛽
2𝐷1 + 𝛼𝐷2 + 𝐷3 = [(𝛼2𝐷4 − 𝛽

2𝐷4  + 𝛼𝐷5 + 𝐷6)

cos(𝛽𝜏) + (2𝛼𝛽𝐷4 + 𝛽𝐷5) sin(𝛽𝜏)] 𝑒
−𝛼𝜏           (21) 

 
3𝛼2𝛽 − 𝛽3 + 2𝛼𝛽𝐷1 + 𝛽𝐷2 = [(2𝛼𝛽𝐷4 + 𝛽𝐷5) cos(𝛽𝜏)

−((𝛼2 − 𝛽2)𝐷4 + 𝛼𝐷5 + 𝐷6) 𝑠𝑖𝑛(𝛽𝜏)]𝑒
−𝛼𝜏        (22) 

Now, since the stability of the point 𝐸∗ is changed when the real part of the eigenvalues 𝜆(𝜏) 

crosses the imaginary axis from the left to the right at a specific value of 𝜏 = 𝜏^ with 𝛽(𝜏^) > 0 

to be exist. Therefore, substituting 𝛼 = 0 in the equations (21)-(22), yields: 

 (𝐷6 − 𝐷4𝛽
2) cos(𝛽𝜏) + 𝐷5 𝛽 sin(𝛽𝜏) = 𝐷3 − 𝐷1 𝛽

2.                  (23) 

 𝐷5 𝛽 cos(𝛽𝜏) − (𝐷6 − 𝐷4𝛽
2) sin(𝛽𝜏) = 𝐷2 𝛽 − 𝛽

3.                  (24) 

 By squaring and adding (23) and (24), it is arrived the following algebraic equation of 𝛽: 

   𝛽6 + (𝐷1
2 − 2𝐷2 − 𝐷4

2)𝛽4 + (𝐷2
2 − 2𝐷1𝐷3 + 2𝐷4𝐷6 −𝐷5

2)𝛽2 + (𝐷3
2 − 𝐷6

2) = 0.  (25) 

Let = 𝛽2 , then the equation (25) is transform to:  

   𝑍3 + 𝜑1𝑍
2 + 𝜑2𝑍 + 𝜑3 = 0,                              (26) 

where 

 𝜑1 = 𝐷1
2 − 2𝐷2 − 𝐷4

2   

 𝜑2 = 𝐷2
2 − 2𝐷1𝐷3 + 2𝐷4𝐷6 −𝐷5

2. 

 𝜑3 = 𝐷3
2 − 𝐷6

2. 

Obviously, condition (18) guarantees that equation (26), and hence (25), has at least one positive 

root 𝛽(𝜏^) = √𝑍. Thus, for 𝜏^ ≤ 𝜏, the equation (19) has roots with the positive real part that 
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makes 𝐸∗ unstable. 

Moreover, it is well known that the equation (26) possesses three roots represented by 𝑍1, 𝑍2, and 

𝑍3. At least one of them, say 𝑍𝑘; 𝑘 = 1, 𝑜𝑟 2, 𝑜𝑟 3, will be positive provided that conditions (17)-

(18) are satisfied. Hence, the equation (25) will have a positive root 𝛽0 = √𝑍𝑘. Hence, based on 

the equations (23) - (24), if  𝑍𝑘 > 0, the corresponding 𝜏^ > 0, can be determined such that  

 𝜏𝑗
^ =

1

𝛽0
𝑎𝑟𝑐𝑐𝑜𝑠 (

(𝐷1𝐷4−𝐷5) 𝛽0
4 + (𝐷2𝐷5−(𝐷1𝐷6+𝐷3𝐷4)) 𝛽0

2 + 𝐷3𝐷6

𝐷4
2 𝛽0 

4+ (𝐷5
2−2𝐷4𝐷6) 𝛽0

2 + 𝐷6
2 ) +

2𝑗𝜋

𝛽0
, j = 0,1,2, …     (27) 

where 𝜏^ = min 𝜏𝑗
^. In order to complete the proof criteria for 𝜏 = 𝜏^, we will explore this in the 

next section. 

 

6. HOPF BIFURCATION DYNAMICS 

In this section, the dynamics behavior of the system (1) around the PE at 𝜏 = 𝜏^ is investigated.  

Theorem 6. The system (1) will lose its stability and undergo a Hopf bifurcation at 𝐸∗ when  

𝜏 = 𝜏^, if the following condition is met 

 𝐻(𝛽0) 𝐹(𝛽0) − 𝐼(𝛽0) 𝐺(𝛽0) ≠ 0,                         (28) 

where  𝐻, 𝐹, 𝐼, and 𝐺 are established in proof. 

Proof: According to the theorem (5), system (1) losses its stability at 𝐸∗ when 𝜏 = 𝜏^, and the 

system has a complex conjugate eigenvalues 𝜆(𝜏) = 𝛼(𝜏) ± 𝑖𝛽(𝜏), where 𝜏 in the neighborhood 

of 𝜏^ with 𝜆(𝜏^ ) = ±𝑖𝛽0, and 𝛽0 > 0. Hence the first requirements of the occurrence of Hopf 

bifurcation around 𝐸∗ is satisfied. Therefore, the system (1) is said to be undergo Hopf bifurcation 

if the transversality criterion  
𝑑

𝑑𝜏
𝑅𝑒 {𝜆(𝜏)}|

𝜏= 𝜏^
≠ 0 is met. Now, substituting 𝜆(𝜏) = 𝛼(𝜏) +

𝑖𝛽(𝜏)  in the equation (19), and then set 𝛼(𝜏) = 0  after separating the real and imaginary 

components gives that: 

 𝐹(𝛽) 
𝑑𝛼

𝑑𝜏
+ 𝐺(𝛽) 

𝑑𝛽

𝑑𝜏
= 𝐻(𝛽),

−𝐺(𝛽) 
𝑑𝛼

𝑑𝜏
+ 𝐹(𝛽) 

𝑑𝛽

𝑑𝜏
= 𝐼(𝛽),

                                  (29) 

where 

𝐹(𝛽) = 𝐷2 − 3𝛽
2 + {(𝐷6 − 𝛽

2𝐷4) 𝜏 − 𝐷5} cos(𝛽𝜏) + 𝛽(𝜏𝐷5 − 2𝐷4) sin(𝛽𝜏), 

𝐺(𝛽) = −2𝛽𝐷1 + 𝛽(2𝐷4 − 𝜏𝐷5) cos(𝛽𝜏) + {(𝐷6 − 𝛽
2𝐷4) 𝜏 − 𝐷5} sin(𝛽𝜏), 
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𝐻(𝛽) = 𝛽2𝐷5 cos(𝛽𝜏) + 𝛽(𝛽
2𝐷4 − 𝐷6) sin(𝛽𝜏), 

𝐼(𝛽) = 𝛽(𝐷6 − 𝛽
2𝐷4) cos(𝛽𝜏) + 𝛽

2𝐷5 sin(𝛽𝜏).  

Solving the linear algebraic system (29) for 
𝑑𝛼

𝑑𝜏
, gives that  

𝑑𝛼

𝑑𝜏
|𝜏=𝜏^
𝛽=𝛽0

=
𝐻(𝛽0) 𝐹(𝛽0)−𝐼(𝛽0) 𝐺(𝛽0)

𝐹(𝛽0)
2+𝐺(𝛽0)

2
  

Obviously, 
𝑑

𝑑𝜏
𝑅𝑒 {𝜆(𝜏)}|𝜏=𝜏^

𝛽=𝛽0

≠ 0, provided that condition (28) is satisfied. As a result, a Hopf 

Bifurcation occurs at  𝜏 = 𝜏^. This ends the proof. 

 

7. STABILITY AND DIRECTION OF HOPF BIFURCATION 

In this section, the dynamical features of bifurcating cyclic solutions emerging from Hopf 

bifurcations are widely analyzed by utilizing the normal form theory and Centre manifold 

reduction introduced by [27]. 

Let us rewritten 𝑊1(𝑡) = 𝑋 − 𝑋∗, 𝑊2(𝑡) = 𝑆 − 𝑆
∗, 𝑊3(𝑡) = 𝐼 − 𝐼

∗, 𝑎𝑛𝑑  휂 = 𝜏 − 𝜏^  , where     

휂 ∈ ℝ  and at  휂 = 0  gives the value of Hopf bifurcation. After rescaling 𝑡 → 𝑡
𝜏⁄  , system (1) 

can be express as  

�̇�(𝑡) = 𝑇𝜂(𝑊𝑡) + 𝐹(휂,𝑊𝑡),                            (30)  

where 𝑊(𝑡) = (𝑊1(𝑡),𝑊2(𝑡),𝑊3(𝑡))
𝑇
∈ ℝ3 , 𝑇𝜂: 𝐶 → ℝ3 , 𝐹:ℝ × 𝐶 → ℝ3 , and           

𝐶 = 𝐶([−1, 0], ℝ+
3 ). Thus, for 𝜑 = (𝜑1, 𝜑2, 𝜑3 )

𝑇 ∈ 𝐶, we have: 

𝑇𝜂(𝜑) = (𝜏^ + 휂)(𝐴 𝜑(0) + 𝐵 𝜑(−1)).                             (31) 

and  

𝐹(휂, 𝜑) = (𝜏^ + 휂) (
𝐹1
𝐹2
𝐹3

).                                  (32) 

With 

      𝐴 = (

𝑓100
(1) 𝑓010

(1) 𝑓001
(1)

𝑓100
(2) 𝑓010

(2) 𝑓001
(2)

0 0 𝑓100
(3)

) = (

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
0 0 𝑎33

), 

and 
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      𝐵 = (

0 0 0
0 0 0

0 𝑓010
(3) 𝑓001

(3)
) = (

0 0 0
0 0 0
0 𝑏32 𝑏33

). 

Here, the symbols 𝑎𝑖𝑗, and 𝑏𝑖𝑗 indicated in the equation (8). Moreover, 

𝐹1 = ∑𝑖+𝑙+𝑗≥2  
1

𝑖! 𝑙! 𝑗!
 𝑓𝑖𝑙𝑗
(1)
𝜑1
𝑖 (0) 𝜑2

𝑙 (0) 𝜑3
𝑗(0) 

𝐹2 = ∑𝑖+𝑙+𝑗≥2  
1

𝑖! 𝑙! 𝑗!
 𝑓𝑖𝑙𝑗
(2)
𝜑1
𝑖 (0) 𝜑2

𝑙 (0) 𝜑3
𝑗(0) 

𝐹3 = ∑𝑗+𝑘+𝑚≥2  
1

𝑗! 𝑘!𝑚!
 𝑓𝑖𝑙𝑗
(3)
𝜑3
𝑗(0) 𝜑2

𝑘(−1) 𝜑3
𝑚(−1) 

where 𝑖, 𝑙, 𝑗, 𝑘,𝑚 ≥ 0 , we define 

𝒇(𝟏)(𝝋𝟏, 𝝋𝟐, 𝝋𝟑) =
𝑟1(𝜑1 + 𝑋

∗)

1 + 𝑎(𝜑2 +𝜑3 + 𝑆
∗ + 𝐼∗)

                                  

−[𝑐𝜑1
2 + (𝑑1 + 2𝑐𝑋

∗ + 𝑘𝑆∗ + 𝑏(𝑆∗)2 + 2𝑏𝑆∗𝐼∗ + 𝑏(𝐼∗)2 + 𝑘𝐼∗)𝜑1
+(𝑘 + 2𝑏𝑆∗ + 2𝑏𝐼∗)𝜑1𝜑2 + (𝑘 + 2𝑏𝑆

∗ + 2𝑏𝐼∗)𝜑1𝜑3 + 2𝑏𝜑1𝜑2𝜑3
+𝑏𝜑1𝜑2

2 + 𝑏𝜑1𝜑3
2 + 𝑏𝑋∗𝜑2

2 + (𝑘𝑋∗ + 2𝑏𝑋∗𝑆∗ + 2𝑏𝑋∗𝐼∗)𝜑2
+2𝑏𝑋∗𝜑2𝜑3 + 𝑏𝑋

∗𝜑3
2 + (𝑘𝑋∗ + 2𝑏𝑋∗𝑆∗ + 2𝑏𝑋∗𝐼∗)𝜑3

+(𝑑1𝑋
∗ + 𝑐(𝑋∗)2 + 𝑘𝑋∗𝑆∗ + 𝑏𝑋∗(𝑆∗)2 + 2𝑏𝑋∗𝑆∗𝐼∗ + 𝑏𝑋∗(𝐼∗)2 + 𝑘𝑋∗𝐼∗)]

 

     

𝒇(𝟐)(𝝋
𝟏
, 𝝋

𝟐
, 𝝋

𝟑
) = (𝑒𝑘𝑆∗ + 𝑒𝑏(𝑆∗)2 + 𝑒𝑏(𝐼∗)2 + 2𝑒𝑏𝑆∗𝐼∗ + 𝑒𝑘𝐼∗)𝜑

1
                  

+(𝑒𝑘 + 2𝑒𝑏𝑆∗ + 2𝑒𝑏𝐼∗)𝜑
1
𝜑
2
+ (𝑒𝑘 + 2𝑒𝑏𝐼∗ + 2𝑒𝑏𝑆∗)𝜑

1
𝜑
3

+2𝑒𝑏𝜑
1
𝜑
2
𝜑
3
+ 𝑒𝑏𝜑

1
𝜑
2
2 + 𝑒𝑏𝜑

1
𝜑
3
2 + 𝑒𝑏𝑋∗𝜑

2
2

+(𝑒𝑘𝑋∗ + 2𝑒𝑏𝑋∗𝑆∗ + 2𝑒𝑏𝑋∗𝐼∗ − (𝑑2 + 𝑚𝐼
∗))𝜑

2
+ (2𝑒𝑏𝑋∗ − 𝑚)𝜑

2
𝜑
3

+𝑒𝑏𝑋∗𝜑
3
2 + (𝑒𝑘𝑋∗ + 2𝑒𝑏𝑋∗𝑆∗ + 2𝑒𝑏𝑋∗𝐼∗ − 𝑚𝑆∗)𝜑

3

+((𝑘 + 𝑏)𝑒𝑋∗𝑆∗ + 2𝑒𝑏𝑋∗𝑆∗𝐼∗ + 𝑒𝑏𝑋∗(𝐼∗)2 + 𝑒𝑘𝑋∗𝐼∗ − (𝑑2 + 𝑚𝐼
∗)𝑆∗)

  

𝒇(𝟑)(𝝋𝟑, �̃�𝟐, �̃�𝟑) = −(𝑑2 + 𝑑3)𝜑3 +𝑚𝐼
∗�̃�2 +𝑚𝑆

∗�̃�3 +𝑚�̃�2�̃�3 +𝑚𝑆
∗𝐼∗  

𝑓𝑖𝑙𝑗
(1)
=

𝜕𝑖+𝑙+𝑗 𝑓(1)

𝜕𝜑1
𝑖  𝜑2

𝑙  𝜑3
𝑗|
(𝜑1,𝜑2,𝜑3)=(0,0,0)

     

𝑓𝑖𝑙𝑗
(2) =

𝜕𝑖+𝑙+𝑗 𝑓(2)

𝜕𝜑1
𝑖  𝜑2

𝑙  𝜑3
𝑗
|

(𝜑1,𝜑2,𝜑3)=(0,0,0)

  

𝑓𝑗𝑘𝑚
(3) =

𝜕𝑗+𝑘+𝑚 𝑓(3)

𝜕𝜑3
𝑗
 �̃�
2
𝑘
 �̃�
3
𝑚
|

(𝜑3,�̃�2,�̃�3)=(0,−1,−1)

  

According the Riesz representation theorem [28], it can be find a 3 × 3  matrix function      

𝜌 = (𝜗, 휂 ) whose entries have bounded variation for 𝜗 ∈ [−1,0], such that 

𝑇𝜂(𝜑) = ∫ 𝑑
0

−1
𝜌(𝜗, 휂 ) 𝜑(𝜗), for 𝜑 ∈ 𝐶.                                (33) 
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In reality, we can pick 

𝜌(𝜗, 휂 ) = (𝜏^ + 휂)(𝐴𝛿(𝜗) − 𝐵𝛿(𝜗 + 1)),                             (34) 

where 𝛿(𝜗) refers to the Dirac delta function. 

For 𝜑 ∈ 𝐶1([−1,0], ℝ+
3 ), define 

       𝐴(휂)𝜑(𝜗) = { 

𝑑𝜑(𝜗)

𝑑𝜗
 ,        − 1 ≤ 𝜗 < 0

∫ 𝑑 𝜌(𝜗,휂 ) 𝜑(𝜗)
0

−1
, 𝜗 = 0

                                      (35) 

and  

       𝐵(휂)𝜑(𝜗) = {  

0,   − 1 ≤ 𝜗 < 0

F(휂,𝜑),   𝜗 = 0
.                                         (36) 

Then, system (1) becomes 

�̇�(𝑡) = 𝐴(휂)𝑊𝑡 + 𝐵(휂)𝑊𝑡,                                              (37) 

where 𝑊𝑡(𝜗) = 𝑊(𝑡 + 𝜗) for 𝜗 ∈ [−1, 0].    

For  𝜓 ∈ 𝐶1([0,1], (ℝ+
3 )∗), define 

      𝐴∗𝜓(𝜅) = { 

− 
𝑑𝜓(𝜅)

𝑑𝜅
,         0 < 𝜅 ≤ 1

∫ 𝑑 𝜌𝑇(𝑡, 0 ) 𝜓(−𝑡)
0

−1
, 𝜅 = 0

                             (38) 

and the bilinear inner product is offered below 

〈𝜓(𝜅),𝜑(𝜗)〉 = �̅�(0) 𝜑(0) − ∫ ∫ �̅�(ω − 𝜗)
𝜗

𝜔=0

0

𝜗=−1
 𝑑𝜌(𝜗) 𝜑(𝜔)𝑑𝜔,               (39) 

where 𝜌(𝜗) = 𝜌(𝜗, 0).  Then 𝐴 = 𝐴(0)  and 𝐴∗  are adjoint operators. From the previous 

theorem (6), it is concluded that ± 𝑖𝛽0𝜏
^ are eigenvalues of 𝐴(0) and 𝐴∗, respectively. Using a 

simple computation, we can observe that 

𝑞(𝜗) = (1, 𝑞1, 𝑞2)
𝑇𝑒𝑖𝛽0𝜏

^𝜗    

𝑞∗(𝜅) = 𝐷(1, 𝑞1
∗, 𝑞2

∗)𝑇𝑒−𝑖𝛽0𝜏
^𝜅 
 },                           (40) 

where 

𝑞1 =
−(𝑓100

(3) +𝑓100
(3)  𝑒𝑖𝛽0𝜏

^
−𝑖𝛽0) 𝑞2

𝑓010
(3)   𝑒−𝑖𝛽0𝜏

^                       
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𝑞2 =
−𝑓100

(2)  𝑓010
(3)   𝑒−𝑖𝛽0𝜏

^
 

𝛽0
2+𝑓001

(2)  𝑓001
(3)   𝑒−𝑖𝛽0𝜏

^
+𝑖𝛽0 (𝑓010

(2) +𝑓100
(3) +𝑓100

(3)   𝑒−𝑖𝛽0𝜏
^
)−𝑓010

(2)  𝑓100
(3)

(1+ 𝑒−𝑖𝛽0𝜏
^
)
                  

𝑞1
∗ =

−(𝑓100
(1) +𝑖𝛽0) 

𝑓100
(2)  

𝑞2
∗ =

𝑓100
(1)  𝑓010

(2) +𝑖𝛽0 (𝑓010
(2) +𝑓100

(1)
)−(𝛽0

2+𝑓010
(1)  𝑓100

(2)
)

𝑓100
(2)  𝑓010

(3)   𝑒−𝑖𝛽0𝜏
^
 

.   

According to the normalization conditions 〈𝑞∗(𝜅), 𝑞(𝜗)〉 = 1  and 〈𝑞∗(𝜅), �̅�(𝜗)〉 = 0 ,          

it follows that  

 

〈𝑞∗(𝜅), 𝑞(𝜗)〉 = �̅� (1, 𝑞1
∗̅̅̅, 𝑞2

∗̅̅ ̅ )(1, 𝑞1, 𝑞2)
𝑇                                        

∫ ∫ 𝐷 ̅ (1, 𝑞1
∗̅̅̅, 𝑞2

∗̅̅ ̅ )
𝜗

𝜔=0

0

𝜗=−1
𝑒−𝑖(𝜔−𝜗)𝛽0𝜏

^ 𝑑𝜌(𝜗) (1, 𝑞1, 𝑞2)
𝑇 𝑒𝑖𝜔𝛽0𝜏

^
𝑑𝜔

= �̅�  [1 + 𝑞1 𝑞1
∗̅ + 𝑞2 𝑞2

∗̅ + 𝑞
2
∗̅  (𝑞1 𝑓010

(3)
+ 𝑞2 𝑓001

(3)
) 𝜏^𝑒−𝑖𝛽0𝜏

^ ]

  

which provides  

𝐷 =
1

1+𝑞1̅̅̅̅  𝑞1
∗+𝑞2̅̅̅̅  𝑞2

∗+𝑞2
∗  (𝑞1̅̅̅̅  𝑓010

(3) +𝑞2̅̅̅̅  𝑓001
(3)

)𝜏^𝑒𝑖𝛽0𝜏
^ 
 . 

Next, applying a similar strategy as in [27], to compute the coefficients 𝑔𝑖𝑗 that determine the 

stability and direction of the Hopf bifurcation, it is obtained:   

𝑔(𝑒, �̅�) = 𝑞∗̅̅̅(0) 𝐹0(𝑒, �̅�)                                            

= 𝜏^�̅� (1, 𝑞1
∗̅̅̅, 𝑞2

∗̅̅ ̅ ) ( 

𝑈1 𝑒
2 + 𝑈2 𝑒 �̅� + 𝑈3 𝑒

2
+ 𝑈4 𝑒

2 �̅�  + ⋯

𝑈5 𝑒
2 + 𝑈6 𝑒 �̅� + 𝑈7 𝑒

2
+𝑈8 𝑒

2 �̅�  + ⋯

𝑈9 𝑒
2 + 𝑈10 𝑒 �̅� + 𝑈11 𝑒

2
+ 𝑈12 𝑒

2 �̅�  + ⋯

 )

=  𝑃1 𝑒
2 + 𝑃2 𝑒 �̅� + 𝑃3 𝑒

2
+ 𝑃4 𝑒

2 �̅�  + ℎ. 𝑜. 𝑖.                   

               (41) 

where ℎ. 𝑜. 𝑖.  implies higher order items, and  

 𝑃1 = 𝜏
^ �̅� (𝑈1 + 𝑞1

∗̅̅̅ 𝑈5 + 𝑞2
∗̅̅ ̅ 𝑈9) 

 𝑃2 = 𝜏^ �̅� (𝑈2 + 𝑞1
∗̅̅̅ 𝑈6 + 𝑞2

∗̅̅ ̅ 𝑈10) 

 𝑃3 = 𝜏^ �̅� (𝑈3 + 𝑞1
∗̅̅̅ 𝑈7 + 𝑞2

∗̅̅ ̅ 𝑈11) 

 𝑃4 = 𝜏^ �̅� (𝑈4 + 𝑞1
∗̅̅̅ 𝑈8 + 𝑞2

∗̅̅ ̅ 𝑈12) 

with 

 𝑈1 = 𝑞1 𝑓110
(1)
+ 𝑞2 𝑓101

(1)
+ 𝑞1𝑞2 𝑓011

(1)
+
1

2
 (𝑓200

(1)
+ 𝑞1

2 𝑓020
(1)
+ 𝑞2

2 𝑓002
(1)
) 



19 

DELAY IN ECO-EPIDEMIOLOGICAL PREY-PREDATOR MODEL 

 
𝑈2 = (𝑞1 + 𝑞1̅̅̅) 𝑓110

(1) + (𝑞2 + 𝑞2̅̅ ̅) 𝑓101
(1) + (𝑞1 𝑞2̅̅ ̅ + 𝑞2 𝑞1̅̅̅) 𝑓011

(1)

+𝑓200
(1) + 𝑞1 𝑞1̅̅̅ 𝑓020

(1) + 𝑞2 𝑞2̅̅ ̅ 𝑓002
(1)

  

 𝑈3 = 𝑞1̅̅̅ 𝑓110
(1) + 𝑞2̅̅ ̅ 𝑓101

(1) + 𝑞1̅̅̅ 𝑞2̅̅ ̅ 𝑓011
(1) +

1

2
 (𝑓200

(1) + 𝑞1̅̅̅
2 𝑓020

(1) + 𝑞2̅̅ ̅
2 𝑓002

(1))  

 𝑈4 = 휁1 𝑓110
(1) + 휁2 𝑓101

(1) + 휁3 𝑓011
(1) + 휁4 𝑓200

(1) + 휁5 𝑓020
(1) + 휁6 𝑓002

(1)
  

 𝑈5 = 𝑞1 𝑓110
(2) + 𝑞2 𝑓101

(2) + 𝑞1𝑞2 𝑓011
(2) +

1

2
 (𝑞1

2 𝑓020
(2) + 𝑞2

2 𝑓002
(2)) 

 𝑈6 = (𝑞1 + 𝑞1̅̅̅) 𝑓110
(2)
+ (𝑞2 + 𝑞2̅̅ ̅) 𝑓101

(2)
+ (𝑞1 𝑞2̅̅ ̅ + 𝑞2 𝑞1̅̅̅) 𝑓011

(2)
+𝑞1 𝑞1̅̅̅ 𝑓020

(2)
  

 𝑈7 = 𝑞1̅̅̅ 𝑓110
(2) + 𝑞2̅̅ ̅ 𝑓101

(2) + 𝑞1̅̅̅ 𝑞2̅̅ ̅ 𝑓011
(2) +

1

2
 (𝑞1̅̅̅

2 𝑓020
(2) + 𝑞2̅̅ ̅

2 𝑓002
(2))  

 𝑈8 = 휁1 𝑓110
(2) + 휁2 𝑓101

(2) + 휁3 𝑓011
(2) +

1

2
 (휁5 𝑓020

(2) + 휁6 𝑓002
(2))  

 𝑈9 = 𝑞1 𝑞2 𝑓011
(3) 𝑒−2𝑖𝛽0𝜏

^   

 𝑈10 = (𝑞1 𝑞2̅̅ ̅ + 𝑞2 𝑞1̅̅̅) 𝑓011
(3)

 

 𝑈11 = 𝑞1̅̅̅ 𝑞2̅̅ ̅ 𝑓011
(3) 𝑒2𝑖𝛽0𝜏

^  

 𝑈12 = 휁7 𝑓011
(3)

 

here 

 휁1 = 𝑞1 𝑊11
(1)(0) +𝑊11

(2)(0) +
1

2
 𝑞1̅̅̅ 𝑊20

(1)(0) +
1

2
 𝑊20

(2)(0)  

 휁2 = 𝑞2 𝑊11
(1)(0) +𝑊11

(3)(0) +
1

2
 𝑞2̅̅ ̅ 𝑊20

(1)(0) +
1

2
 𝑊20

(3)(0)  

 휁3 = 𝑞2 𝑊11
(2)(0) +𝑊11

(3)(0) +
1

2
 𝑞2̅̅ ̅ 𝑊20

(2)(0) +
1

2
 𝑞1̅̅̅  𝑊20

(3)(0) 

 휁4 = 𝑊11
(1)(0) +

1

2
 𝑊20

(1)(0) 

 휁5 = 𝑞1 𝑊11
(2)(0) +

1

2
 𝑞1̅̅̅ 𝑊20

(2)(0) 

 휁6 = 𝑞2 𝑊11
(3)(0) +

1

2
 𝑞2̅̅ ̅ 𝑊20

(3)(0) 

 
휁7 = (𝑞2 𝑊11

(2)(−1) + 𝑞1 𝑊11
(3)(−1)) 𝑒−𝑖𝛽0𝜏

^               

+
1

2
 (𝑞2̅̅ ̅ 𝑊20

(2)(−1) + 𝑞1̅̅̅ 𝑊20
(3)(−1)) 𝑒𝑖𝛽0𝜏

^ 
 

Simplifying the equation (41), it yields 
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𝑔20 = 2𝑃1, 𝑔11 = 𝑃2, 𝑔02 = 2𝑃3, 𝑔21 = 2𝑃4.                       (42) 

Clearly, in order to complete the computation of the coefficients 𝑔𝑖𝑗  in equation (42), it is 

necessary to compute: 

𝑊20(𝜗) = (𝑊20
(1)(𝜗),𝑊20

(2)(𝜗),𝑊20
(3)(𝜗))

𝑇

, 𝑊11(𝜗) = (𝑊11
(1)(𝜗),𝑊11

(2)(𝜗),𝑊11
(3)(𝜗))

𝑇

. 

A straightforward calculation yields  

 
𝑊20(𝜗) =

𝑖𝑔20

𝛽0𝜏^
  𝑞(0) 𝑒𝑖𝛽0𝜏

^𝜗 +
𝑖�̅�20

3 𝛽0𝜏^
 �̅�(0) 𝑒−𝑖𝛽0𝜏

^𝜗 + 𝑅1 𝑒
2𝑖𝛽0𝜏

^𝜗

𝑊11(𝜗) = −
𝑖𝑔11

𝛽0𝜏^
  𝑞(0) 𝑒𝑖𝛽0𝜏

^𝜗 +
𝑖�̅�11

𝛽0𝜏^
 �̅�(0) 𝑒−𝑖𝛽0𝜏

^𝜗 + 𝑅2       
 }             (43) 

where 𝑅1 = (𝑅1
(1)
, 𝑅1

(2)
, 𝑅1

(3)
)
𝑇

,  and 𝑅2 = (𝑅2
(1)
, 𝑅2

(2)
, 𝑅2

(3)
)
𝑇

∈ ℝ3  are constant vectors that 

satisfy the following equations: 

 (

2𝑖𝛽0 − 𝑓100
(1)

−𝑓010
(1)

−𝑓001
(1)

−𝑓100
(2)

2𝑖𝛽0 − 𝑓010
(2) −𝑓001

(2)

0 −𝑓010
(3)
 𝑒2𝑖𝛽0𝜏

^𝜗 2𝑖𝛽0 − 𝑓100
(3) 𝑒2𝑖𝛽0𝜏

^𝜗

)𝑅1 = 2 ( 
𝑈1
𝑈5
𝑈9

 )           (44) 

 (

−𝑓100
(1)

−𝑓010
(1)

−𝑓001
(1)

−𝑓100
(2)

−𝑓010
(2) −𝑓001

(2)

0 −𝑓010
(3)

−𝑓100
(3)

)𝑅2 = (
𝑈2
𝑈6
  𝑈10

)           (45) 

Using Cramer's rule, it is obtained that: 

𝑅1
(𝑖)
=

|ℋ1𝑖|

|ℋ1|
 , and  𝑅2

(𝑖)
=

|ℋ2𝑖|

|ℋ2|
  for 𝑖 = 1, 2, 3,                  (46) 

Where 

 ℋ1 = (

2𝑖𝛽0 − 𝑓100
(1)

−𝑓010
(1)

−𝑓001
(1)

−𝑓100
(2)

2𝑖𝛽0 − 𝑓010
(2)

−𝑓001
(2)

0 −𝑓010
(3)
 𝑒2𝑖𝛽0𝜏

^𝜗 2𝑖𝛽0 − 𝑓100
(3)
 𝑒2𝑖𝛽0𝜏

^𝜗

). 

ℋ2 = (

−𝑓100
(1)

−𝑓010
(1)

−𝑓001
(1)

−𝑓100
(2)

−𝑓010
(2) −𝑓001

(2)

0 −𝑓010
(3)

−𝑓100
(3)

). 

ℋ11 = (

𝑈1 −𝑓010
(1)

−𝑓001
(1)

𝑈5 2𝑖𝛽0 − 𝑓010
(2) −𝑓001

(2)

𝑈9 −𝑓010
(3)
 𝑒2𝑖𝛽0𝜏

^𝜗 2𝑖𝛽0 − 𝑓100
(3)
 𝑒2𝑖𝛽0𝜏

^𝜗

). 
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ℋ12 = (

2𝑖𝛽0 − 𝑓100
(1)

𝑈1 −𝑓001
(1)

−𝑓100
(2)

𝑈5 −𝑓001
(2)

0 𝑈9 2𝑖𝛽0 − 𝑓100
(3)
 𝑒2𝑖𝛽0𝜏

^𝜗

). 

ℋ13 = (

2𝑖𝛽0 − 𝑓100
(1)

−𝑓010
(1)

𝑈1

−𝑓100
(2)

2𝑖𝛽0 − 𝑓010
(2) 𝑈5

0 −𝑓010
(3)
 𝑒2𝑖𝛽0𝜏

^𝜗 𝑈9

). 

ℋ21 = (

𝑈2 −𝑓010
(1)

−𝑓001
(1)

𝑈6 −𝑓010
(2)

−𝑓001
(2)

𝑈10 −𝑓010
(3)

−𝑓100
(3)

). 

ℋ22 = (

−𝑓100
(1)

𝑈2 −𝑓001
(1)

−𝑓100
(2)

𝑈6 −𝑓001
(2)

0 𝑈10 −𝑓100
(3)

  ). 

ℋ23 = ( 

−𝑓100
(1) −𝑓010

(1) 𝑈2

−𝑓100
(2) −𝑓010

(2) 𝑈6

0 −𝑓010
(3) 𝑈10

 ). 

Therefore, according to equation (43) the values of  𝑊20(𝜗) and  𝑊11(𝜗) can be estimated. As 

a result, determining the coefficients 𝑔𝑖𝑗  become possible. Finally, the following biological 

expressions will be generated based on the values of 𝑔𝑖𝑗. 

 

𝐶1(0) =
𝑖

2𝛽0𝜏^
(𝑔11  𝑔20 − 2|𝑔11|

2 −
1

3
 |𝑔02|

2) +
1

2
 𝑔21

ℳ2 = −
𝑅𝑒{𝐶1(0)}

𝑅𝑒{𝜆′(𝜏^)}
                                

Υ2 = 2𝑅𝑒{𝐶1(0)}                                

Τ2 = −
𝐼𝑚 {𝐶1(0)}+ℳ2 𝐼𝑚{𝑅𝑒{𝜆

′(𝜏^)}}

𝛽0𝜏^
                   

 

}
  
 

  
 

                 (47) 

Furthermore, the following theorem will be used to explore the dynamical features of cyclic 

solutions caused at 𝜏 = 𝜏^ using the preceding formulas [14]. 

Theorem 7. The following outcomes are achieved for the system (1) at 𝜏 = 𝜏^. 

i.  Direction of the Hopf bifurcation is forward (backward) if ℳ2 > 0  (ℳ2 < 0  ), the cyclic 

solutions exist for 𝜏 > 𝜏^(𝜏 < 𝜏^). 

ii.  The bifurcating cyclic solutions on the center manifold are stable (unstable) if          

Υ2 < 0  (Υ2 > 0). 
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iii.  Period of the bifurcating cyclic solutions increases (decreases) if  𝛵2 > 0 (Τ2 < 0). 

 

8. NUMERICAL SIMULATION 

   The key results are numerically shown in this section using the biologically plausible 

hypothetical set of values listed below. The goal is to validate the theoretically generated results 

and understand the parameters' influence on the system dynamics (1). 

 
𝑟 = 1, 𝑎 = 0.1, 𝑑1 = 0.05, 𝑐 = 0.3, 𝑘 = 0.5, 𝑏 = 0.1, 𝑒 = 0.5

𝑑2 = 0.1,𝑚 = 0.3, 𝑑3 = 0.1, 𝜏 = 0.5.
              (48) 

It is noted that, the solution of system (1) approaches 𝐸0, 𝐸1, 𝐸2, 𝐸∗, and 3D periodic attractor 

for the ranges (0,0.05] , (0.05,0.2) , [0.2,0.6) , [0.6,2.7) , and 𝑟 ≥ 2.7  respectively, as 

explained in the Figure (2) below at a selected values of 𝑟. 
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Fig. 2: The phase portraits of system (1) utilizing data set (48) and starting from different initial points with different 

values of 𝑟 . (a) Approaches to 𝐸0  when 𝑟 = 0.05 .  (b) Approaches to 𝐸1 = (0.33,0,0)  when 𝑟 = 0.15 . (c) 

Approaches to 𝐸2 = (0.35,0.56,0)  when 𝑟 = 0.5 . (d) Approaches to 𝐸∗ = (0.47,0.66,1.4)  when 𝑟 = 2 . (e) 

Approaches to 3D periodic attractor when 𝑟 = 3. 

 

Figure (2) shows that system (1) has four bifurcation points falling in the 𝑟 range, confirming the 

theoretical results. 

 

    The influence of varying the parameter 𝑎 on the dynamics of system (1) is explained in 

Figures (3) and (4) below.   
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Fig. 3: The time series of the system (1) utilizing data set (48) and starting from different initial points with different 

values of 𝑎. (a) Approaches to 𝐸∗ = (0.45,0.66,0.38) when 𝑎 = 0.2. (b) Approaches to 𝐸∗ = (0.39,0.66,0.12) 

when 𝑎 = 75. (c) Approaches to𝐸2 = (0.35,0.63,0) when 𝑎 = 1.5. 
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Fig. 4: The phase portraits and their time series of the system (1) utilizing data set (48) with different values of 𝑎 and 

𝑟 = 3. (a) Approaches to 3D periodic attractor when 𝑎 = 0.15.  (b) Time series when 𝑎 = 0.15 and 𝑟 = 3. (c) 

Approaches to 𝐸∗ = (0.47,0.66,1.26) when 𝑎 = 0.5 and 𝑟 = 3. (d) Time series when 𝑎 = 0.5 and 𝑟 = 3. 

Clearly, Figures (3) and (4) show that increasing the value of 𝑎 transfers the periodic dynamics to 

a stable case at 𝐸∗. However, increasing this value further transfers the stability from 𝐸∗ to 𝐸2.   

   Now, Figure (5) studied the influence of varying the parameter 𝑑1 with the rest of parameters 

values as in (48). 

 

 

Fig. 5: The phase portraits of system (1) utilizing data set (48) and starting from different initial points with different 

values of 𝑑1. (a) Approaches to 𝐸∗ = (0.45,0.66,0.42) when 𝑑1 = 0.1.   (b) Approaches to 𝐸2 = (0.35,0.6,0) 

when 𝑑1 = 0.5. (c) Approaches to 𝐸1 = (0.33,0,0) when 𝑑1 = 0.9. 
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It is obtained that for the ranges (0,0.45), [0.45,0.88), and [0.88,1] the solution of system (1) 

goes asymptotically to 𝐸∗, 𝐸2, and 𝐸1 respectively as in Figure (5a), (5b), and (5c) at selected 

values. 

   The impact of varying the parameter 𝑐  is investigated in Figure (6). It is noted that, the 

solution of system (1) approaches asymptotically to 3D periodic attractor, 𝐸∗, 𝐸2, and 𝐸1 for the 

rangers (0,0.14], (0.4,1.5), [1.5,2.4), and 𝑐 ≥ 2.4  respectively. 

 

 

 

 

 

 

  

 

 

 

Fig. 6: The phase portraits of system (1) utilizing data set (48) and starting from different initial points with different 

values of 𝑐. (a) Approaches to 3D periodic attractor when 𝑐 = 0.1. (b) Approaches to 𝐸∗ = (0.43,0.66,0.25) when 

𝑐 = 0.75. (c) Approaches to 𝐸2 = (0.37,0.31,0) when 𝑐 = 2. (d) Approaches to 𝐸1 = (0.31,0,0) when 𝑐 = 3. 
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   Accordingly, system (1) has three bifurcation points falling in the 𝑐 range. Moreover, the 

impacts of varying 𝑘 and 𝑏 on the system (1) dynamics are studied numerically and the obtained 

results for the some selected values of them are shown in Figure (7) and (8) respectively. 

 

 

Fig. 7: The phase portraits of the system (1) utilizing data set (48) and starting from different initial points with 

different values of 𝑘 . (a) Approaches to 𝐸1 = (3.16,0,0)  when 𝑘 = 0.005 . (b) Approaches to 𝐸∗ =

(0.3,0.66,0.25) when 𝑘 = 0.75. (c) Approaches to 𝐸2 = (0.09,0.43,0) when 𝑘 = 2.  
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Fig. 8: The time series of system (1) utilizing data set (48) with different values of 𝑏. (a) Approaches to 𝐸∗ =

(0.33,0.66,0.29) when 𝑏 = 0.3.  (b) Approaches to 3D periodic attractor when 𝑏 = 0.75. (c) Approaches to 2D 

periodic attractor when 𝑏 = 1. 

 

It is observed that for the 𝑘 ranges (0,0.005], (0.005,1.2), and 𝑘 ≥ 1.2 the solution of system 

(1) approaches 𝐸1,  𝐸∗, and 𝐸2 respectively. However, it approaches 𝐸∗, 3D periodic attractor, 

and 2D periodic attractor when 𝑏 ∈ (0,0.5), 𝑏 ∈ [0.5,0.9), and 𝑏 ≥ 0.9.  

   The behavior of system (1) dynamics as a function of the parameter 𝑒 is studied numerically 

and the obtained results are explained in Figure (9) at some selected values. 
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Fig. 9: The phase portraits of system (1) utilizing data set (48) and starting from different initial points with different 

values of 𝑒. (a) Approaches to 𝐸1 = (3.16,0,0) when 𝑒 = 0.05. (b) Approaches to 𝐸2 = (1.77,0.63,0) when 𝑒 =

0.1. (c) Approaches to 𝐸∗ = (1.07,0.66,0.25) when 𝑒 = 0.2.  

 

It is observed that for the 𝑒 ranges (0,0.066), [0.07,0.12), and [0.12,1] the solution of system 

(1) approaches 𝐸1, 𝐸2, and  𝐸∗ respectively. However, the impact of varying the parameters 𝑑2, 

𝑚, and 𝑑3 on the system (1) dynamics are studied numerically and the obtained results at some 

selected values are explained in Figures (10), (11), and (12). 
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Fig. 10: The phase portraits of system (1) utilizing data set (48) and starting from different initial points with different 

values of 𝑑2. (a) Approaches to 𝐸∗ = (0.57,0.83,0.27) when 𝑑2 = 0.15. (b) Approaches to 𝐸2 = (1.77,0.63,0) 

when 𝑑2 = 0.5. (c) Approaches to 𝐸1 = (3.16,0,0) when 𝑑2 = 0.85.  

 

Fig. 11: The phase portraits of system (1) utilizing data set (48) and starting from different initial points with different 

values of 𝑚. (a) Approaches to 𝐸2 = (0.32,1.2,0) when 𝑚 = 0.1. (b) Approaches to 𝐸∗ = (0.53,0.4,0.72) when 

𝑚 = 0.5.  
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Fig. 12: The phase portraits of system (1) utilizing data set (48) and starting from different initial points with different 

values of 𝑑3. (a) Approaches to 𝐸∗ = (0.41,1,0.16) when 𝑑3 = 0.2.         (b) Approaches to 𝐸2 = (0.32,1.2,0) 

when 𝑑3 = 0.9.  

 

It is noted that, for the 𝑑2 ranges (0,0.22), [0.22,0.79), and [0.79,1] the system (1) solution 

approaches 𝐸∗ ,  𝐸2 , and 𝐸1  respectively. For the 𝑚  ranges (0,0.17) , and 𝑚 ≥ 0.17  the 

system (1) solution approaches 𝐸2, and 𝐸∗ respectively. However, for the 𝑑3 ranges (0,0.26), 

and [0.26,1] the system (1) solution approaches 𝐸∗ and 𝐸2 respectively. 

      On the other hand, the influence of delay on the system (1) dynamics is investigated 

numerically using the following set of data. 

             
𝑟 = 2, 𝑎 = 0.1, 𝑑1 = 0.05, 𝑐 = 0.3, 𝑘 = 0.5, 𝑏 = 0.2, 𝑒 = 0.5

𝑑2 = 0.1,𝑚 = 0.3, 𝑑3 = 0.1, 𝜏 = 2.
                  (49) 

It is obtained that, for the data set (49), the solution approaches asymptotically to 𝐸∗, while as the 

parameter 𝜏 exceeds the value 𝜏^ ≅ 9.4 the system (1) undergoes a Hopf bifurcation and the 

size of bifurcating periodic linearly proportional with value of 𝜏 before it returns to stable at 𝐸∗ 

and so on, see Figure (13) for selected values of 𝜏. 

 



32 

KARRAR QAHTAN AL-JUBOURI, RAID KAMEL NAJI 
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Fig. 13: The phase portraits and their time series of system (1) utilizing data set (49) with different values of 𝜏. (a) 

Approaches to 𝐸∗ = (0.37,0.66,1.12) when 𝜏 = 2. (b) Time series when   𝜏 = 2. (c) Approaches to 3D periodic 

attractor when 𝜏 = 9.5. (d) Time series when 𝜏 = 9.5.   (e) Approaches to 3D periodic attractor when 𝜏 = 10. (f) 

Time series when 𝜏 = 10. (g) Approaches to 3D periodic attractor when 𝜏 = 10.5. (h) Time series when 𝜏 = 10.5. 

 

Moreover, for the data set (49) with 𝑏 = 0.1, and 𝑐 = 0.1, it is observed that increasing the value 

of 𝜏 causes transfers the dynamics behavior from 𝐸∗ to a chaotic attractor as shown in Figure 

(14). 
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Fig. 14: The phase portraits and their time series of system (1) utilizing data set (49) with 𝑏 = 0.1, and 𝑐 = 0.1 and 

different values of 𝜏 . (a) Approaches to 𝐸∗ = (0.47,0.66,1.49)  when 𝜏 = 4 . (b) Time series when 𝜏 = 4 . (c) 

chaotic attractor when 𝜏 = 10. (d) Time series when 𝜏 = 10. 

 

9. CONCLUSIONS 

The impact of fear and hunting cooperation on the dynamics of a delayed prey-predator system 

with predator sickness is theoretically stated and then examined analytically and numerically in 

this work. The Lotka-Volterra functional response depicts the change of food from prey to predator. 

Due to the incubation period, it is thought that there is a time lag between becoming infected after 

interaction between susceptible and infected predator individuals. The suggested system contains 

at most four nonnegative equilibrium points, as observed. The stability analysis around them is 

examined in two cases: when 𝜏 = 0 and when 𝜏 > 0. It is explored whether Hopf bifurcation 

can occur around the inner positive equilibrium point. Furthermore, the center manifold theorem 

was used to examine the direction and stability of the bifurcation periodic dynamics. Finally, a 

thorough numerical analysis was performed to comprehend the impact of factors on the system's 

dynamics.   

The following conclusions are drawn from the numerical simulation. The fear rate has a 

stabilizing effect on the suggested system's dynamics. The delay, on the other hand, has a 
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destabilizing influence on the dynamics of the suggested system. The hunting cooperation rate has 

a destabilizing influence on the dynamics of the system (1) until a certain value is reached, at which 

point the infected predator dies. All of the system's mortality rates (1) have an extinction effect on 

the system. The growing intrinsic growth rate of the prey species has a coexistence impact on the 

system (1) dynamics, and the system becomes stable at the positive equilibrium point up to a vital 

value before losing stability and undergoing a Hopf bifurcation. In contrast, the rising intraspecific 

competition rate stabilizes the system at the coexistence equilibrium point up to a vital value, and 

then it is causing the system species to gradually extinction. Finally, the conversion rate of prey 

biomass into predator biomass (similar to the infection rate) generates system persistence, and the 

solution is stable at the positive equilibrium point. 
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