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Abstract. The dynamics of the SIR epidemic model are examined in this paper with finite medical resources and

variable supply efficiency are examined along with the implications of time delay. This work demonstrates the

stability of endemic equilibrium as well as the incidence of backward bifurcation can be significantly impacted by

the inclusion of time delay. The theoretical results are supported and supplemented with numerical simulations.
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1. INTRODUCTION

In research on epidemiology, mathematical modeling has become increasingly important in

transmission of a communicable illness. Several distinct models for epidemics were proposed
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and thoroughly examined in the research on disease prevention and management [1]. The clas-

sic epidemic model typically presupposed that the eradication of infections is inversely corre-

lated with the infective population. This suggests that there are extremely abundant medical

resources for infectious diseases, such as medications, antibiotics, hospital wards, and isolation

facilities [2],[3],[4],[5] and [6]. The maximum hospital resource availability per unit of time

and shows the negative impact of infected patients delaying treatment, which has a substantial

effect on the spread of infectious illnesses [7],[8],[9] and [10]. The Chronic illness transmission

is significantly impacted by both the lack of medical resources, which is influenced by a variety

of factors such as control tactics, drug or vaccine development [11], [12], [13]. In 2004, Wang

and Ruan [15], [16] added a constant to SIR model by isolating infectious agents to eliminate

the sickness. A constant was used in a SIR model that mimicked a restricted capacity for treat-

ment in order to examine the impact of this limitation on the spread of infectious disease [15]

adjusted the ongoing approach to

(1) g(I) =


rI∗, 0≤ I∗ ≤ I∗0

rI∗0, I∗ > I∗0

In addition, Wang [16] changed the constant treatment so that the maximum value, rI∗0,

was taken when the maximum amount of patients could be treated and the rate of treatment

matched the number of infections. The dynamics of various epidemic models with average and

standard incidence rates [17], [18] and [19] were investigated by several authors who embraced

the staged treatment function. Linhua Zhou and Meng Fan [14] most recently develop a new

continuously distinct treatment function in response to the saturation phenomenon of the limited

medical resources and meticulously examined the dynamics of the subsequent SIR model.

(2)


dS
dt = Λ− βSI

1+KI −χS,

dI
dt =

βSI
1+KI − (σ + γ + ε)I− αI∗

ω+I ,

dR
dt = γI + αI

ω+I −µR.

Here, βSI
1+KI is saturated and indicates either the inhibitory effect or the psychological influ-

ence. Where α ≥ 0 denotes the total number of medical assets made available in one time unit

and ω > 0 is a constant for part-saturation, which evaluates the efficiency of the availability
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of medical assets in that it is more effective if is lower. The dynamics of the SIR model (2)

are widely explored in [14] have been thoroughly researched and some intriguing findings, like

backward bifurcation and local equilibrium stability, the simulation’s dynamics are still far from

being finished. We continue to examine the SIR epidemic model’s dynamics (2) in [14]. From

the aforementioned inspiration study, we have structured our work with delay. We further in-

vestigate the Dynamics of a SIR Pandemic Model with Limited Medical Resources based on

the earlier arguments.

The proposed time delay model is,

(3)


dS
dt = Λ− βS(t−τ)I(t−τ)

1+KI(t−τ) −χs(t),

dI
dt =

βS(t−τ)I(t−τ)
1+KI(t−τ) − (σ + γ + ε)I(t)− αI(t−τ)

ω+I(t−τ) ,

dR
dt = γI + αI

ω+I −µR,

where, τ represent the time delay. The percentages S(t), I(t), and R(t) correspond to the num-

ber of susceptible, infected, and recovered individuals at time t. In section 2, we examine the

existence of backward bifurcation and endemic equilibrium as well as the impact of scarce med-

ical resources and the effectiveness of their supply on the backward bifurcation with time delay.

We examine the local stability of the equilibria by examining the eigenvalues of the Jacobian

matrix. Also, provide a model-wide analysis look at the endemic equilibrium’s and the disease-

free equilibrium’s local and global asymptotic stability. In section 3, The intervention analytical

and numerical bifurcation analyses are provided to further the theoretical findings.

2. BACKWARD BIFURCATION

The anticipated amount of new sick people that a single diseased person introduces into a

population free of illness is known as the basic reproduction number, which is typically de-

noted by R0, is one of the essential ideas in dealing with endemic models and is crucial to

epidemiology. One frequently notices the threshold property, which states that the disease will

not spread if R0 < 1 and will do so if R0 > 1. Forward bifurcation in this context refers to the

transition from an endemic equilibrium to equilibrium free of illness. The endemic equilibrium

and the disease-free equilibrium coexist when R0 < 1 and the essential criterion for the com-

plete eradication of the disease cannot be the basic reproduction number, as is the case with
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TABLE 1. Description of parameters for the system (3)

Symbols Description

Λ Recovery rate

χ Natural death rate of susceptible human population

σ Natural death rate of infected human population

µ Natural death rate of recovered human population

β Transmission rate

γ Rate at which individuals become infectious after being exposed to the virus

ε Rate at which individuals lose their immunity to the virus

α Rate at which individuals are vaccinated or develop immunity through other means

ω Rate at which individuals are born into the population

t Time variable

τ Time delay variable

I Number of infectious individuals at a given time

K Effect of social distancing

various models of epidemics that acknowledge backward bifurcation under suitable conditions,

according to an increasing number of studies. To get certain essential thresholds for disease

control, it is crucial to locate the backward bifurcations. By examining the occurrence of the

disease-free and the endemic equilibrium, we explore the feasibility of backward bifurcation in

the α-ω plane in this section. According to [20], next generation approach, indicates that the

fundamental reproduction number of (3) is,

(4) R0 =
βΛ

χ

(
σ + γ + ε + α

ω(t−τ)+I(t−τ)

)

Similar to the non-delayed model, the delayed model’s disease-free equilibrium is described by

E0 =
(

Λ

χ
,0,0

)
.
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The algebraic equation below can be solved to produce the endemic equilibrium:
Λ− βS(t−τ)I(t−τ)

1+KI(t−τ) −χs = 0,

βS(t−τ)I(t−τ)
1+KI(t−τ) − (σ + γ + ε)I− αI(t−τ)

1+ωI(t−τ) = 0,
(5)

which has the following quadratic equation solution:

(6) AI2 +BI +C = 0.

Where, 
A = (χ + kβ )(σ + γ + ε)−ωαβ ,

B =−βΛ+(χ + kβ )(σ + γ + ε +ωα)− dα

ω
,

C = αχ−βΛω +ωχ(σ + γ + ε).

The roots of the quadratic equation can be obtained using the quadratic formula:

I1,2 =
−B(t)±

√
B(t)2−4AC

2A
.

The corresponding values of susceptible can be obtained using the equation:

S1,2 =
Λ(1+ kI1,2(t))

χ + kβ I1,2(t− τ0)
.

These values of susceptible represent the candidates for the endemic equilibrium of the delayed

model.

αI2 +

[
(β +χk)(σ + γ + ε)− dα

ω

]
I +αΛ = 0

Where,

E2 = (S2, I2),

S2 = [Λ [d +(β +χk)I2]]
− 1

1+kI2 ,

where I2 is the quadratic equation’s bigger root.

Here, Ω1,Ω2,and Ω3 are defined as in the original theorem, and α0(ω) is given by:

α0(ω) =
ω2(β +χk)(σ + γ + ε)

d−ω(β +χk)
.

Theorem 1. Assuming R∗ > 1, we can make the following statements about the equilibrium of

this DDE:
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(i) If R0 > 1, then the endemic equilibrium E2 of DDE is distinct.

(ii) If P∗ < R0 < 1 and (ω,α) ∈Ω3, then DDE of (5) endemic equilibrium E1 and E2 exists.

(iii) If R0 = 1 and (ω,α) ∈Ω3, then DDE of (5) endemic equilibrium E2 exists.

(iv) If R0 = P∗ and (ω,α) ∈Ω3, then the endemic equilibrium E1 = E2 of DDE is distinct.

(v) If 0 < R0 < P∗ and (ω,α) ∈Ω3, then there is no endemic equilibrium in DDE of (5).

(vi) If 0 < R0 ≤ 1 and (ω,α) ∈Ω1∪Ω2, then there is no endemic equilibrium in DDE of (5).

Proof. By the model (5) we have:

dN(t)
dt

= rN(t)

[
1−
(

N(t− τ1)

K1

)P1
]
− βN(t− τ2)

1+αN(t− τ3)
,

disease transmission, and the recovery of infected individuals, respectively. However, the cal-

culations become much more complicated due to the presence of time delays.

In general, the existence of temporal delays can significantly affect the system’s dynamics and

cause complicated behaviors to emerge in emergency situations.

Let τ be the time delay, then the modified equation becomes,

N′(t) = rN
[

1− N(t− τ)

K

]
−CN(t).

In this equation, N (t) stands for the nation’s size at time t, r for intrinsic growth, K for carrying

capacity, C for per capita mortality rate, and τ for time delay. Where N(t− τ) denotes the total

number of infected people at time t− τ .

The condition for the existence of an endemic equilibrium E2 is given by the positive root of

equation (6).

Let D = 1− r
K N(t− τ) then the modified equation (6) becomes,

f (ω) =−d−αω +
β (1− e−ωτ)

ω + γ +D(t)
.

The following prerequisites must be met for endemic equilibrium E2 to exist in the presence of

temporal delay:

(1) If R0 < 1, then it has no endemic equilibrium.

(2) If R0 > 1, then (6) has a unique positive root when C < 0 and the condition for the

existence of E2 is given by P1 < 1, where
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P1 = 1+
ϕ(ω)

σ + γ + ε +α
,(7)

and,

ϕ(ω) = (β +χk)(σ + γ + ε)ω2 +αω(β +χk)−d +
βe−ωτ

ω + γ + ε +D(t)
.(8)

Therefore, in the presence of time delay, the condition for the existence of endemic equilibrium

E2 depends on the value of which in turn depends on the parameters of the system and the time

delay τ . We introduce time delay in the model and consider the following delay differential

equations: 

dI1
dt = ω

[
(1−I1(t−α))

N

]
I1(t−α)− β I1(t−τ)S1(t−τ)

N−I1(t−τ)−I2(t−τ) −d1I∗1C,

dI2
dt = ω

[
(1−I2(t−α))

N

]
I2(t−α)− β I2(t−τ)S2(t−τ)

N−I1(t−τ)−I2(t−τ) −d2− I∗2C,

dS1
dt = µN−µS1(t)− βS1(t−τ)I1(t−τ)

N−I1(t−τ)−I2(t−τ) −δ1S1(t),

dS2
dt = µN−µS2(t)− βS2(t−τ)I2(t−τ)

N−I1(t−τ)−I2(t−τ) −δ2S2(t),

(9)

where τ is time delay, and N = S1 +S2 + I1 + I2 is the total population. The conclusion reached

in the absence of time delay still hold in the presence of time delay. We consider the same cases

as before:

Case i: R0 = P∗,R∗ > 1 and (ω,α) ∈Ω3.

As the phenomenon, we have ∆ = 0, and I1(t) = I2(t) for every t. Also, we have C > 0 and

B < 0. So a special endemic equilibrium E1 = E2 exists in (5), which persists in the presence of

time delay.

Case ii: R∗ > 1 and (ω,α) ∈Ω3.

In this case, we have ∆ = 0 when P1 < R0 < P∗ and B≥ 0 when 0 < R0 ≤ P1. Thus, if R∗> 1

and 0 < R0 < P∗and (ω,α) ∈ Ω3, then no endemic equilibrium exists in (5). This conclusion

still holds in the presence of time delay.

Case iii: 0 < R0 ≤ 1 and (ω,α) ∈Ω1∪Ω2.

In this case, we have B ≥ 0 and C ≥ 0, and no positive root exists for (6). Hence, there is no

endemic equilibrium in (5). This conclusion reached in the absence of time delay still hold in

the presence of time delay, the evidence is conclusive.
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Theorem (1) provides a comprehensive understanding of the endemic equilibrium exists in

the presence of time delay. The parameters ω and α play an important part in determining the

dynamics of the delayed differential equation (5). Specifically, if (ω,α) ∈ Ω1 ∪Ω2, then no

endemic equilibrium exists in (5). For 0 < R0 < 1 and a distinctive endemic E2 when R0 < 1.

From (5), a forward bifurcation is visible at R0 = 1, where the healthy equilibrium to one single

endemic equilibrium E0 changes.

If (ω,α) ∈ Ω3, then in (5), the endemic equilibrium E2 is special when R0 > 1. When P∗ <

R0 < 1, E1 and E2 are two separate endemic equilibria in (5), and there is no endemic balance

when 0 < R0 < P∗. Therefore, (5) displays a reverse bifurcation where E0 transitions to two

parametric equilibria E1 and E2. �

Theorem 2. R∗ > 1 and (ω,α) ∈ Ω3 with τ if and only if, (5) exhibits a backward bifurcation

at R0 = 1. Specifically, if (ω,α) ∈ Ω3, then a special endemic equilibrium E2 exists in (5),

whenever R0 > 1 and the endemic equilibrium types E1 and E2 exists, when P∗ < R0 < 1 with

τ . Moreover, no endemic equilibrium exists in (5) when 0 < R0 < P∗ with τ .

Proof. In particular applications, an endemic backward bifurcation with equilibrium when R0 <

1 is very significant. The actual critical threshold for curing a disease is P∗. The reversible

bifurcation from the disease-free equilibrium E0 at R0 = 1 result in the establishment of both

endemic balances E1 and E2 for P∗ < R0 < 1, as shown in previous theorem with time delay.

The phase portrait of (5) is shown in Fig. 1b for (ω,α)∈Ω3 and R0 with time delay, where E0 is

an equilibrium devoid of disease and E1 and E2 are two endemic equilibrium states. According

to the premise that E1 refers to a saddle and the fact that E2 and E0 are asymptotically stable at

the local level proves that a backward bifurcation has taken place. �

2.1. Dynamics on a global scale and the stability of equilibria. Here, we discuss the anal-

ysis of the globalized dynamics dynamics of (5) by investigating the regional consistency of

equilibrium, which will involve examining the Jacobian matrix eigenvalues for each equilib-

rium position. Specifically, we will start by considering the (5), Jacobian matrix evaluated at

the optimal equilibrium E0 after a certain time delay.
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J(E0) =

−d −βS(t− τ)

0 βS(t− τ)− (σ + γ + ε + α

ω
)

 ,
then,

det(J(E0)) =−d
[

βΛ

d
(t− τ)− (σ + γ + ε +

α

ω
)

]
=−d(σ + γ + ε +

α

ω
)[R0(t− τ)−1],

and

Tr(J(E0)) =−d +(σ + γ + ε +
α

ω
)[R0(t− τ)−1].

Theorem 3. If R∗ ≤ 1 and (ω,α) ∈ Ω1 ∪Ω2, then the endemic balance E1 of (5) is locally

unstable if D > 0 and locally symmetrically stable if D < 0. If R∗ > 1 and (ω,α) ∈Ω3, then E1

is locally symmetrically stable, if R0 < P1 and erratic if R0 > P1. If R0 > 1 and R∗ > 1, then E1

is erratic. If E1 exists, it is saddle.

Proof. To prove the theorem, we first consider the system (5), Jacobian matrix evaluated at

endemic equilibrium E1:

J(E1) =

α−δ (1−ωI(E1))/N 0

0 −γ−δ +δωI(E1)/N−µ−α

 ,
where I(E1) is the value of I at the endemic equilibriumE1, and we have used the notation

I(E1) to indicate their dependence. To analysis the stability of E1, we can use the characteristic

equation of J(E1), which is a third-order polynomial of the form:

Λ
3 +aΛ

2 +bΛ+ c = 0,

where,
a = Tr(J(E1)),

b =−(Tr(J(E1))
2−2det(J(E1))),

c =−det(J(E1)).

The unique equation has negative roots and zero real components. This requirement can only

be met if and only if all roots have a negative real component. In other words, every root must
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be in the left side of the complex plane. As a result, the first requirement for stability says that

all of the coefficients in the characteristic equation must be positive.

At τ = 0, the endemic equilibrium, E1, is locally asymptotically stable. This criteria indicates

that the intrinsic equilibrium E1 is locally asymptotically stable in the absence of a temporal

delay, which may be confirmed by looking at the Jacobian matrix J(E1) assessed at τ = 0.

Hence, E1 is a saddle point. �

Theorem 4. If R∗ > 1 and (ω,α) ∈Ω3 are true, the endemic equilibrium E1 is present.

Proof. To explore we introduce the presence of time delay τ in the equation for the infected

individuals:

dI2(t)
dt

= β [S(t− τ)−S(t)]I2(t)− (σ + γ + ε)I2(t)+αI1(t− τ),

which leads to the following delayed system.

dS(t)
dt

= ω(N−S(t)− I1(t)− I2(t))−βS(t)(I1(t)+ I2(t)),

then,
dI1(t)

dt
= βS(t− τ)I1(t− τ)− (σ + γ + ε)I1(t)−αI2(t),

dI2(t)
dt

= βS(t− τ)I2(t− τ)− (σ + γ + ε)I2(t)−αI1(t− τ).

It is trivial to demonstrate that the Jacobian matrix E2 exists. The Jacobian matrix J(E2) of this

delayed system evaluated at the endemic equilibrium E2, which is defined below:

J(E2) =

−ωβ −ω(β +dk)−α(β +χk)−ωα 0

αω −(σ + γ + ε)−β −ωβ −α(β +χk)

 .
Next, We determine J(E2) ’s characteristic equation, which is given by:

det(SI− J(E2)) = S3 +m1S2 +m2S+m3 = 0,

where,

m1 = ω(β +χk+ γ + ε +α)+d,

m2 = A2ω
2d− rAC+qBC+(β +χk)(σ + γ + ε +α)ω2,

m3 = ωβ (β +χk)(σ + γ + ε)+αω
2(σ + γ + ε)+α(β +χk)(σ + γ + ε)+(σ + γ + ε)(β +χk+αω).
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Conditions that must be met in order for E2 to be locally asymptotically stable are that m1 > 0,

m2 > 0, and m3 > 0. However, the conditions for m1 and m2 are complicated expressions.

We begin the linearizing the system about E2:

dS
dt

=−µS+Λ11Sτ1−Λ12I1τ2−Λ13I2τ3.

Then,

dI1

dt
= Λ21Sτ1−Λ22I1τ2,

dI2

dt
=−V I2 +Λ33I1τ3,

where Λ11 = βS2,Λ12 = β I2,Λ13 = 0,Λ21 =−βS2,Λ22 = (β +dk)I2,Λ33 = γ, and,

µ =V +αI2 +ω,

using time delay, we write the system as follows:

dS(t)
dt

=−µS(t)+Λ11S(t− τ1)−Λ21I1(t− τ2)−Λ13I2(t− τ3).

Therefore,

dI1(t)
dt

= Λ21S(t− τ1)−Λ22I1(t− τ2),

dI2(t)
dt

=−V I2(t)+Λ33I1(t− τ3).

To obtain the characteristic equation, we assume that the solution of the form, ert ,

eΛ1S1,eΛ2S2 ,eΛ3S3 are valid. Here, Λi are the Laplace transform of delay functions and Si are

the roots of characteristic equation. We substitute these expressions into the linearized system

and obtained:

r+µ +Λ11e−rτ1Λ1 +Λ12e−rτ2Λ2 +Λ13e−rτ3 = 0,

Λ21e−rτ1Λ1 + r+Λ22e−rτ2Λ2 = 0,

V +Λ33e−rτ3Λ3 + r = 0.

By solving r, the determinant of the coefficients of the system is given by

det(J(E2)) = r3 +a2r2 +a1r+a0 = 0,
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where,

a2 = Λ11Λ22 +Λ11Λ33e−Λ3τ3 +Λ22Λ33e−Λ2τ2 ,

a1 = Λ11Λ22Λ33 +Λ11Λ3e−Λ3τ3 +Λ11Λ22e−Λ2τ2Λ33

+Λ22e−Λ2τ2Λ22Λ33 +µΛ11 +V Λ22 +µΛ33e−Λ3τ3,

a0 = µΛ22Λ33 +V Λ11Λ33 +µΛ11Λ33e−Λ3τ3 +µΛ22Λ33e−Λ2τ2 +V Λ11Λ22e−Λ2τ2 .

Since, E2 is a positive constant and the other terms are also positive. �

Theorem 5. E2 is asymptotically stable when µ > 0 and E2 is unsteady when µ < 0.

Proof. We will assume that the conditions for the existence of E2 are satisfied.

First, we linearize the system around E2 and obtain the Jacobian matrix:

J(E2) =

−σ + γ + ε− β I2
(1+kI2)

β I2
(1+kI2)

0 −σ − γ− ε−δ − αω

(ω+I2)2

 ,
where δ is the time delay. The characteristic equation of J(E2) is given by

Λ
3 +aΛ

2 +bΛ+ c = 0

where,

a = σ + γ + ε +δ −βS2−
β I2(1+ kI2)

(1+ kI2)ω
,

b = βS2δ +
β I2(1+ kI2)δ

(1+ kI2)ω
− σ + γ + ε +δ

(ω + I2)2 − βS2(d + γ + ε)

ω
− β I2(1+ kI2)(σ + γ + ε +δ )

ω(1+ kI2)
,

c =
(σ + γ + ε +δ )αβS2

(ω + I2)2ω
− β I2(1+ kI2)α(σ + γ + ε +δ )

(1+ kI2)(ω + I2)2ω
.

According to this criterion, E2 is asymptotically stable if all the coefficient of the characteristic

equation is positive, and there are no sign changes in the sequence of the coefficients. Let’s

define the following expressions: P1 = a,P2 = b− ac
3 ,P

3 = c
3 ,q

1 = P2

P1 ,q2 = P1P3−(P2)2

(P1)2 . Then,

the condition for stability is P1,P2,P3,q1,q2 > 0. Now,

P1 = (σ + γ + ε +δ )(1−R0),

P2 = δ (βS2−R0ω)−α(ω + I2)
2 +

βS2(σ + γ + ε)

ω
+

β I2(1+ kI2)(R0ω−σ − γ + ε−δ )

ω(1+ kI2)
,
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P3 =
βS2α(σ + γ + ε +δ )

ω(ω + I2)2 +
β I2(1+ kI2)α(σ + γ + ε +δ )

ω(1+ kI2)(ω + I2)2 ,

q1 = δ (βS2−R0ω)−α(ω + I2)
2 +

βS2(σ + γ + ε)

ω
+

β I2(1+ kI2)(R0ω−σ − γ + ε−δ )

ω
.

If all the eigenvalues are negative, then the endemic equilibrium E2 is locally asymptotically

stable. If any real components of eigenvalue are positive then E2 is unstable. Since, E2 is

locally asymptotically stable at µ > 0, and E2 is unstable at µ < 0. �

Theorem 6. The system (5) contains no closed orbits.

Proof. Assume by contradiction that there exists a closed orbit in the phase space of system (5),

this indicates that a periodic solution exists with period T > 0. Without loss of generality, we

consider the orbit lies in the first quadrant of the phase space.

Let us construct a suitable Dulac function that satisfies the conditions of the Bendixson-Dulac

theorem. Let:

D(x,y) =
y

ω(x+1)

Then,

∂

∂x
(D f1)+

∂

∂y
(D f2) =− y2

ω(x+1)3

[
βx(1+ kx)
(1+ kx)2 −

δ (ω + x)
ω + y

]
.

We have, (
βx(1+ kx)
(1+ kx)

− δ (ω + x)
ω + y

)
≤ βx(1+ kx)

(1+ kx)2 −δ − δx
ω

,

≤ βx(1+ kx)
(1+ kx)2 −δ − δ

k
,

=
βx−δk−δkx

k(1+ kx)2 ,

≤ 0.

Therefore, for all (x,y), ∂

∂x(D( f1))+
∂

∂y(D( f2)) lies in the first quadrant.

Since, ∂D
∂x and ∂D

∂y are both continuous on the first quadrant, h(x,y) is a continuously differen-

tiable function that occurs in such a way that,

∂

∂x
(h

∂D
∂x

)+
∂

∂y
(h

∂D
∂y

) = h
(

∂ 2D
∂x2 +

∂ 2D
∂y2

)
+2

∂h
∂x

∂D
∂x

+2
∂h
∂y

∂D
∂y
6= 0.
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Thus, by the Bendixson-Dulac theorem [21], there are no closed orbits in the phase space of

system (5). �

Theorem 7. If R0 > 1,α ≤ ω2(β + χk)+ω2k(σ + γ + ε)+ω(2d +αk) then, E2 is globally

asymptotically stable.

Proof. To prove the global asymptotic stability of E2, we use the Lyapunov function approach.

Consider,

V (I(t),S(t)) = ωI2(t)+S2(t).

Taking the time derivative of V,

dV
dt

= 2ωI(t)(I(t)− I∗)−αS(t)I(t)−βS(t)I2(t).

Using the expression for I∗ from Theorem 7, we can simplify the above expression as

dV
dt

=−αS(t)I(t)−βS(t)(I(t)− I∗)2−µS2(t),

where, µ = 2A(m2ω2+Bm2+m1)
ω

. Note that µ > 0 for the given conditions on R0 and α . Therefore,
dV
dt is negative definite and (I(t)− I∗)(I(t),S(t)) is a Lyapunov function for the system. This

suggests that the system’s entire set of solutions is covered to the set I = I∗,S = 0 as t→ ∞.

Since, I∗ is the only positive solution making it unique to the equation ψ(I) = 0, the only

equilibrium in this set is E2. Hence the proof. �

Theorem 8. The disease-free equilibrium E0 is globally asymptotically stable if one of the

following conditions are satisfied.

(i) 0 < R0 < 1,(ω,α) ∈Ω1∩Ω2

(ii) 0 < R0 < P∗,(ω,α) ∈Ω3

Proof. From the system (5),

dS
dt

= Λ− (β +δ +ω)S+αSI(t− τ)

dI
dt

= αSI(t− τ)− (µ + γ +ω)I

Case (i): 0 < R0 < 1,(ω,α) ∈Ω1∩Ω2

In this case, the ideal state of equilibrium E0 is the solitary equilibrium point of the system. It
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is simple to demonstrate that E0 is locally stable using the Routh-Hurwitz criteria. Furthermore,

the region D = ((S, I), I ≥ 0,S+ I ≥ 0) is positively invariant with regard to the integrity of the

system (5). This means that every solution trajectory, a closed orbit or equilibrium that is

located in D. Since, condition (i) is holds; No endemic equilibrium exists in the system (5),

and hence, there is no closed orbit in D. Since, every solution trajectory beginning in D will

therefore go closer to the disease-free equilibrium E0. By the Poincare-Bendixson theory, E0 is

asymptotically stable everywhere. The evidence for case (i) is now complete.

Case (ii): 0 < R0 < P∗,(ω,α) ∈Ω3

In this case, there exists at least one endemic equilibrium E∗ of the system (5). It is simple

to demonstrate that E∗ is locally stable using the Routh-Hurwitz criteria. Furthermore, with

regard to the system, the region known as D is still positively invariant (5). Since, condition (ii)

is holds; the system (5) has no closed orbits in D. Therefore, every solution trajectory starting in

D will approach either the equilibrium without disease E0 or the epidemic equilibrium E∗. By

the Lasalle invariance principle [22], every solution trajectory starting in D will approach the

largest invariant set contained in the union of the unaffected equilibrium E0 and the infectious

equilibrium E∗. If the initial condition (S(0), I(0)) in D, then S(t) ≥ 0 for all t ≥ 0. Since,

R0 < P∗, the endemic equilibrium E∗ is unstable. Therefore, each solution trajectory will move

closer to the disease-free equilibrium E0 as t→ ∞ starting from D. By the Poincare-Bendixson

theory, E0 is asymptotically stable. The evidence for case (ii) is now complete. Therefore, we

have shown that if either condition (i) or condition (ii) is satisfied. Consequently, the disease

free equilibrium E0 is globally asymptotically stable. �

3. NUMERICAL SIMULATION

A numerical simulation is used to examine how infectious illnesses spread throughout a pop-

ulation. According to this theoretical framework, there are three groups of people in society:

those who are vulnerable to catching the disease, those who are infectious and may spread it,

and those who have recovered from the sickness or who have already passed away from it. The

starting population of susceptible and infected people, as well as the assumption of a certain

transmission rate and recovery rate, all form the basis of the simulation. The simulation then
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runs in discrete time steps, updating the population of each compartment according to the es-

tablished equations.

Fig.1. Shows that the infected and healed populations eventually die extinct in the situation

we described, however, shows that the illness does not last or is unable to create long-lasting

illnesses within the community. The existence of external variables that regularly impact the

population’s sensitivity to the disease may be the cause of the periodic oscillation in the sus-

ceptible population. This might be caused by a number of factors, including efficient control

methods, quick and widespread immunization, or the pathogen’s inability to survive for an ex-

tended amount of time inside the host population.

(A) (B)

FIGURE 1. Periodic oscillation in SIR population

Fig.1. In this figure, the ratio of the infective size at equilibrium to R0 vary by 0.01 to 1.5,

correspondingly, R0 increases in susceptible by higher ratio. From the disease-free equilibrium,

there occurs a forward bifurcation by R0 > 1 at R0 = 1, resulting in the establishment of a spe-

cial endemic equilibrium E2 (R0 < 1). Here, χ = 0.01, α = 1, Λ = 1.5, µ = 1, β = 1, ω = 1,

γ = 1, σ = 1, ε = 1, τ = 0.01.

In Fig.2. The susceptible population may occasionally come into touch with the pathogen,

which might result in reinfection, due to a variety of reasons, including the infectious agent’s

dynamics of transmission. As a result, vulnerable and immune populations fluctuate. Eventu-

ally, the affected population becomes extinct. This could happen if the disease’s transmission

rate falls off sharply over time or if other elements, such successful public health initiatives,
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restrict the disease’s spread. The affected population may therefore decrease until it approaches

zero.

(A) (B)

FIGURE 2. Periodic oscillation in dynamics of transmission

Fig.2. In this figure, the ratio of the infective size at equilibrium to R0 vary by 0.01 to 1.25,

correspondingly, R0 increases in recovered by higher ratio. From the disease-free equilibrium,

there occurs a backward bifurcation at R0 = 1, ends up resulting in a variety of endemic equi-

librium states P∗ < R0 < 1. Here, χ = 0.01, α = 1, Λ = 1.25, µ = 1, β = 1, ω = 1, γ = 1,

σ = 1, ε = 0.03, τ = 0.01.

Fig.3. Describes the population consists of both susceptible people (who are still at danger

of catching the illness) and recovered people (who have developed immunity and are shielded

against reinfection). If the pathogen comes into touch with the vulnerable people, they might

get infected. Despite the existence of vulnerable people, the population of those who are in-

fected is gradually getting less.

Fig.3. Coexistence of susceptible and recovered individuals and phase portrait of (3) also in-

cluded, where there are disease-free equilibrium at E0 and dual endemic balances E1 and E2.

E2 and E0 are locally asymptotically stable, whereas E1 is a saddle. Here, χ = 0.50, α = 0.10,

Λ = 200.0, µ = 0.02, β = 0.20, ω = 0.25, γ = 0.6, σ = 0.1, ε = 0.30, τ = 0.01. Whereas,

(ω,α) ∈Ω1∩Ω2 and the backward bifurcation occurs.

Fig.4. Illustrates the coexistence of these three populations in the SIR model illustrates the
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(A) (B)

FIGURE 3. Coexistence of SIR individuals at E0 with Λ = 200.0 and β = 0.20.

continues interplay between susceptible individuals becoming infected, infected individuals re-

covering or succumbing to the disease, and recovered individuals building immunity. The model

captures the complex dynamics of disease transmission and highlights the importance of fac-

tors such as population susceptibility, the infectiousness of the disease, and the development of

immunity in shaping the overall course of the epidemic.

(A) (B)

FIGURE 4. Coexistence of SIR individuals at E0 with Λ = 170.0 and β = 0.13.

Fig.4. In this figure both the ratio and the Phase portrait of (3) also included and the endemic

equilibrium is locally asymptotically stable whereas the disease-free equilibrium, E1 is unstable.

Here, χ = 0.65, α = 0.12, Λ = 170.0, µ = 0.14, β = 0.13, ω = 0.22, γ = 0.13, σ = 0.14,

ε = 0.24, τ = 0.01. Whereas, (ω,α) ∈Ω3 and the backward bifurcation occurs.
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(A) (B)

FIGURE 5. Coexistence of SIR individuals at E0 with Λ = 400.0 and β = 0.21.

Fig.5. To examine our model’s dynamical behaviour the system (3) is simulated and included,

Similarly, it is straightforward to see that the R0 value rises in these parameters, E1 and E2. It is

simple to see that if we desire a stable, disease-free equilibrium, we must need to increase our

detection parameters. Here, χ = 0.500, α = 0.3, Λ = 400.0, µ = 0.06, β = 0.21, ω = 0.26,

γ = 0.9, σ = 0.6, ε = 0.31, τ = 0.01. Whereas, the system (3) has two possible equilibrium

states, one of which is endemic and the other is devoid of illness.

Fig.6. Illustrates how a sizeable section of the population has either developed immunity

or made a full recovery, which has decreased the number of people who are vulnerable to

the disease and broken the chain of transmission. This result, which emphasizes the need of

preventative measures, early identification, efficient treatments, and interventions to eradicate or

minimize the burden of infectious illnesses on a community, is frequently the desired outcome

in public health initiatives.

Fig.6. Bifurcation surface of ω and α (Variations in the dynamics of the infected population’s

size ω and α) which illustrate the influence of and on the spread of illnesses. [a] (ω,α) ∈

Ω1 ∩Ω2, [b] (ω,α) ∈ Ω3. It demonstrates that more medical resource sufficiency (larger α

) and greater medical resource supply efficiency (smaller ω ) might decrease the size of the

infective population. Here, χ = 0.1, α = 0.51, Λ = 156, µ = 0.03, β = 0.1, ω = 0.5, γ = 1.4,

σ = 0.65, ε = 0.5, τ = 0.01. Whereas, (ω,α) ∈Ω1∩Ω2 and the backward bifurcation occurs.
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(A) (B)

FIGURE 6. Coexistence of SIR individuals at E0 with Λ = 156 and β = 0.1.

4. CONCLUSION

We investigated the dynamics of SIR epidemic model of supply variability in time delay and

resource constraints on availability of medical care. We demonstrated the increase in temporal

delay can have a considerable impact on both the occurrence of backward bifurcation and the

beginning and stability of endemic equilibrium. The SIR compartmental model is also obtained

from the value of balanced infectious sizes versus R0. Finally, our theoretical conclusions were

strengthened and verified by numerical simulations for the system with a time delay.
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