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Abstract: Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by SARS-CoV-2 and designated a 

pandemic by the World Health Organization (WHO) on March 11, 2020. As cases increase, the number of patients 

requiring services is more than the available staff and facilities, in queues resulting in longer patient waiting times. 

One way to analyze the queuing system is to model using max-plus algebra. Before forming the Max-Plus Algebra 

model, Petri Net was built, which is a graphical and mathematical modeling tool for analyzing a system, so in this 

study, the results obtained in the form of a model Petri Net and max-plus algebra in the treatment of COVID-19 

patients, where is the service flow patients used are limited to referral patient services with positive and suspected 

cases Patients Under Surveillance (PDP) COVID-19. 
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1. INTRODUCTION 

Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by a newly discovered type 
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of coronavirus, namely Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and 

was first detected in Wuhan, China, in December 2019 [1]. The increase in the number of COVID-

19 cases took place quite quickly and spread to various countries in a short time. On March 11, 

2020, COVID-19 became a global health problem later designated a pandemic by the World Health 

Organization (WHO). Indonesia reported its first case on March 2, 2020, where initially two cases 

were found [2]. Many studies have been conducted on COVID-19 issues, including research 

conducted by Labzai et. al. [3], and Borah et. al [4]. They examined the stability of models related 

to COVID-19 from the point of view of system dynamics. Yanuar, et. Al. [5] determined the length 

of hospital stay for COVID-19 using quantile Bayesian. Hospitals, Health Centers, Clinics, 

Laboratories, health services, and blood transfusion units are healthcare facilities that have a big 

and central role in the effort to overcome COVID-19.  

As COVID-19 cases increased, the number of patients in need more services than the officers and 

facilities available, so there was a long queue. Long queues result in longer waiting times for 

patients. Therefore, service performance from the Hospital needs to be optimized by analyzing the 

behavior and stability of the queuing system. 

One way to analyze the behavior and stability of the queuing system is by modeling the queuing 

system using max-plus algebra [6], [7],[8], [9], [10], [11]. Queuing theory is a field of mathematics 

investigating the behavior of waiting lines or queues and examining such systems, characteristics, 

and properties. A queuing system can be defined as a dynamic system in which states evolve due 

to events occurring at regular or irregular intervals. The purpose of modeling queuing systems is 

to predict queues' lengths and waiting times. Queuing theory is primarily associated with 

operations research, a branch of mathematics. Traditionally, queuing theory has been described 

using continuous mathematical systems categorized by the number of servers involved. However, 

different perspectives, including those in mathematics, have emerged. Petri nets are commonly 

employed in the description of discrete problems, as evident in references [12], [13], and [14][15]. 

Petri nets are mathematical modeling tools used to represent the evolution of states in discrete 

event systems. Analysis often involves the utilization of max-plus or min-max-plus algebra. 
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Konigsberg is one expert who developed queuing theory models from a discrete event system 

perspective. In [11], he created models for various queuing system styles, including those 

involving break servers. His approach utilized Petri nets to describe the system's conditions and 

event occurrences. Timed Petri nets, an extension of Petri nets, were employed in the research. The 

stability of the model was also assessed. However, the previous version of the timed Petri net 

considered only two holding times and lacked an exact max-plus standard autonomous equation. 

In this paper, we will describe the flow of services for COVID-19 patients using Petri Net, a graph 

modeling tool and mathematics to analyze the system so that information can be obtained about 

the system's structure and dynamic behavior. The purpose of this study is to get the max-plus 

algebra model on the design of the COVID-19 service system based on the Petri net model that 

has been obtained. Furthermore, we also analyze the stability of the Petri net model using the 

Lyapunov stability theory 

 

2. PRELIMINARIES 

Max Plus Algebra and Some Related Notation 

We will briefly introduce max plus algebra, which will use in the following discussion.   Max 

plus algebra is a discrete algebraic system used to represent the behavior of a class of discrete event 

systems by simple linear equations, allowing for modeling, analyzing, and controlling these 

systems. It is an idempotent semiring and dioid used in the modeling of timed systems, and it is 

typically used in the completion time of a production system that has "max" occurring in the 

equations. The max-plus algebra is based on the set of real numbers extended by the upper reals, 

with addition and multiplication, and it is isomorphic to the min-plus algebra, which is based on 

the set of real numbers developed by the lower reals, with addition and multiplication. A more 

detailed explanation of max plus algebra can be found in various sources. [16][17][18][19] 

Definition 1. Given ℝ𝜀 ≔ ℝ ∪ {𝜀} where ℝ is the set of all real numbers and 𝜀 ≔ −∞. At ℝ𝜀 

the following operations are defined: ∀𝑥, 𝑦 ∈ ℝ𝜀, 𝑥 ⊕ 𝑦 ≔ 𝑚𝑎𝑥{𝑥, 𝑦}  and 𝑥 ⊗ 𝑦 ≔ 𝑥 + 𝑦. 

(ℝ𝜀 , ⊕, ⊗) is called max-plus algebra and is denoted by ℝ𝑚𝑎𝑥. Like in regular algebra, the ⊗ 
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operation in max-plus algebra has priority over the ⊕ operation. 

Matrices on Max-Plus Algebra 

The set of 𝑛 × 𝑚 matrices in max-plus algebra is denoted by ℝ𝜀
𝑛×𝑚. For 𝑛,𝑚 ∈ ℕ, defined 

𝑛 ≔ {1, 2, … , 𝑛} dan 𝑚 ≔ {1, 2, … ,𝑚}. 

Element 𝐴 𝜖 ℝ𝜀
𝑛×𝑚 𝑖 −th row, 𝑗 −th column denoted by 𝑎𝑖,𝑗 for 𝑖 ∈ 𝑛 and ∈ 𝑚 . Matrices 𝐴 

is written as 

𝐴 = [

𝑎1,1 𝑎1,2 … 𝑎1,𝑚

     
𝑎2,1

⋮

𝑎2,2

⋮

…
⋱

𝑎2,𝑚

⋮
     𝑎𝑛,1 𝑎𝑛,2 ⋯ 𝑎𝑛,𝑚

]. 

The elements 𝑎𝑖,𝑗 are also denoted as 

[𝐴]𝑖,𝑗  ,   𝑖 ∈ 𝑛, 𝑗 ∈ 𝑚. 

Definition 2. [max plus at work] Let ℝ𝜀
𝑛×𝑚: =  {𝐴} , where 𝐴  is a matrix whose elements the 

𝑖𝑗 −th is denoted by [𝐴]𝑖,𝑗 , where [𝐴]𝑖,𝑗 ∈ ℝ𝜀 , 𝑖 ∈ 𝑛, 𝑗 ∈ 𝑚, holds: 

a)  for scalar 𝛼 ∈ ℝ𝜀 , 𝐴, 𝐵 ∈ ℝ𝜀
𝑛×𝑚, 𝑖 ∈ 𝑛, 𝑎𝑛𝑑 𝑗 ∈ 𝑚 is defined  

𝛼 ⊗ 𝐴  is a matrix whose 𝑖𝑗 −th element is :𝛼 ⊗ [𝐴]𝑖,𝑗 = 𝛼 ⊗ 𝑎𝑖,𝑗 

and 

𝐴 ⊕ 𝐵 is a matrix whose 𝑖𝑗 −th element : [𝐴 ⊕ 𝐵]𝑖,𝑗 = 𝑎𝑖,𝑗 ⊕ 𝑏𝑖,𝑗, 

b)  for 𝐴 ∈ ℝ𝜀
𝑛×𝑝, 𝐵  ∈ ℝ𝜀

𝑝×𝑚, 𝑖 ∈ 𝑛, 𝑎𝑛𝑑 𝑗 ∈ 𝑚   is defined 𝐴 ⊗  𝐵  is a matrix whose 

𝑖𝑗 −th element is: 

[𝐴 ⊗ 𝐵]𝑖,𝑗= ⊕𝑘=1
𝑝 𝑎𝑖,𝑘 ⊗ 𝑏𝑘,𝑗 = 𝑚𝑎𝑥{𝑎𝑖,𝑘 + 𝑏𝑘,𝑗}.   

Petri Net  

A petri net is a directed bipartite graph and first developed by a German mathematician, Carl 

Adam Petri in early 1960. The advantages of system modeling using Petri nets include the ability 

to graphically depict a system model, allowing for easy visualization of complex systems. Petri 

net can model the hierarchy of a system in detail so that with analytical techniques from Petrinet, 

it is possible to develop a good system with systematic and qualitative analysis [12], [20], [13][10].  

Petri net consists of 4 tuples (P, T, A, w) with: 
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𝑃 : a finite set of places, P= {𝑝1, 𝑝2, . . . , 𝑝𝑛}, 

𝑇 : finite transition set, 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, 

𝐴 : set of arcs, 𝐴 ⊂  (𝑃 ×  𝑇)  ∪ (𝑇 ×  𝑃), 

𝑤 : weight function, 𝑤 ∶  𝐴 →  {1, 2, 3, . . . }. 

 The Petri net graph consists of two nodes: circles and lines. Circle represent places, while lines 

represent transitions. The place can serve as the input or output of a transition. Place as input states 

conditions that must be met for the transition to occur. After the transition occurs, then things will 

change. The place that expresses this condition is the output of the transition. Arcs are symbolized 

by arrows connecting place and transition. If the arc weight from place 𝑝𝑖 to transition 𝑡𝑗 is 𝑘, 

write 𝜔(𝑝𝑖, 𝑡𝑗) = 𝑘, then there are 𝑘 arcs from place 𝑝𝑖 to transition 𝑡𝑗. 

The marked Petri net is a 5-tuple (𝑃, 𝑇, 𝐴, 𝑤, 𝑥0) where (𝑃, 𝑇, 𝐴, 𝑤) is the Petri net and 𝑥0 is 

the starting marker, and the state of marked Petri net is 𝑥 = [𝑥(𝑝1), 𝑥(𝑝2),… , 𝑥(𝑝𝑛)]𝑇[2]. 

The number of elements 𝑥 is equals to the number of places in the Petri net. 𝑥(𝑝𝑖) shows 

the number of tokens in the 𝑖 − th place, so 𝑥(𝑝𝑖) ∈  {0, 1, 2,· , 𝑛} . Token used in determining 

whether a transition is enabled or not. The transition 𝑡𝑗 ∈ 𝑇 in a marked Petri net is said to be 

enabled if 

𝑥(𝑝𝑖) ≥ 𝑤(𝑝𝑖, 𝑡𝑗)         (1) 

The Petri net can be represented in an incidence matrix of size 𝑛 × 𝑚, where 𝑛 is the 

number of places, and 𝑚 is the number of transitions. 

Definition 3. Matrices of backward incidence and forward incidence that represents the Petri net 

is a matrix of size 𝑛 × 𝑚 with row elements 𝑖 −th, 𝑗 −th column is  

(𝑨𝒃)𝒊,𝒋 ≔ 𝒘(𝒑𝒊, 𝒕𝒋),     

                    (𝑨𝒇)𝒊,𝒋
 ≔ 𝒘(𝒕𝒋, 𝒑𝒊),               (2) 

where 

𝐴𝑓 : forward incidence matrices, 

𝐴𝑏 : backward incidence matrices 
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𝑤(𝑝𝑖, 𝑡𝑗  ): arc weight from i-th place to 𝑗 −th transition, 

𝑤(𝑡𝑗, 𝑝𝑖): arc weight from jth transition to 𝑖 −th place. 

 The element in the backward incidence matrix is the arc weight that connects the place to the 

transition, while the elements in the matrix forward incidence is the arc weight that relates the 

transition to the place. If not, there is an arc that connects the place to the transition or vice versa, 

then the arc weight is filled with zero . 

 The incidence matrix 𝐴̇ is the difference between the forward incidence matrix and backward 

incidence. 

𝐴̇ = 𝐴𝑓 − 𝐴𝑏                 (3) 

One of the uses of the backward incidence matrices is to determine the transition enabled. 

Look again at Equation 2, the equation is valid only for place inputs. If 𝑝𝑖 is not the input place 

of the transition 𝑡𝑗 i.e. 𝑝𝑖  ∉  𝐼(𝑡𝑗), then the arc weight from place 𝑝𝑖 to transition 𝑡𝑗 is zero 

because there is no arc connecting them, is written 𝑤(𝑝𝑖, 𝑡𝑗  )  =  0 . Here is the equation to 

determine where the next token is 

𝑥′ = 𝑥 + 𝐴̇𝑢         (4) 

where 𝑢 represents the column vector having 𝑚 elements obtained from the identity matrices 

column . 

Coverability Tree 

A coverability tree is a technique used to solve some aspects of analysis on discrete event 

systems and can be built from a Petri net with the initial state. The initial state of Petri Net is 

defined as the root node. The child of the root node is a state that can be reached from the initial 

state by firing a transition. These states are linked to the root node with edges. Each edge in the 

coverability tree has a transition weight, i.e., transitions fired to reach that state. 

The coverability tree of Petri net (𝑃, 𝑇, 𝐴, 𝑤) can be expressed by 3 tuple i.e. (𝑆, 𝐸, 𝑣), which 

each represent the set of states, the set of edges and weight function. The members of the state set 

are 𝑛 with 𝑛 is the number of places on the Petri net [21][22][23][16][17]. 
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Lyapunov Stability of Petri Net 

A system modeled with Petri Net is said to be stable if there exists an m-vector with all its elements 

being positive, denoted as Φ, or in other words, a strictly positive vector Φ can be found such that 

the following holds: Δ𝑣 = 𝑒𝑇𝐴𝑇Φ ≤ 0. Since the firing vector 𝑒 is always non-negative (at least 

one element of vector 𝑒𝑒 is non-zero), this inequality can be proved as follows: 𝐴𝑇 Φ ≤ 0. 

Furthermore, a system modeled with Petri Net can be stabilized if a firing vector for transitions 

can be found, denoted as 𝑒, such that the following holds : 𝐴e ≤ 0 .  More detailed information 

regarding the Lyapunov stability of a Petri Net can be found in [21], [24], [25], and [26], [27],[28]. 

 

3. MAIN RESULTS 

COVID-19 Patient Services System  

In serving patients, different paths are determined depending on the patient’s cases [5]. A 

referral patient service flow can be formed via SISRUTE (System Integrated Hospital Referral 

Information) and FKTP (First Level Health Facility) referrals with positive or suspected PDP 

COVID-19 along with variables, as shown in Figure 1. 

Based on Figure 1, patients who tested positive for COVID-19 treated in the positive room for 

COVID-19 and then managed according to the clinical path of COVID-19. Patients with negative 

COVID-19 swab test results are transferred to the usual inpatient room for further management 

according to PPK (Clinical Practice Manual) Basic Disease. 
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An ambulance that referred patients from the hospital.../from 

institutions.../from FKTP arrived at Hospital 

The ambulance that refers the patient is directed by the IGD 

security guard to the isolation installation 

Examination of the patient by the doctor on duty at the isolation triage, screening examination of the patient's 

psychiatric condition (DASS score) and laboratory examination and chest X-ray of the patient 

The results of the patient's examination were consulted with the COVID DPJP who was on 

guard 

The patient tested positive for COVID-19 The patient tested suspect pdp for COVID-19

Inpatients were transferred to the COVID-19 positive The patient was transferred to the suspect room 

The patient is in the COVID-19 positive room and 

managed according to the COVID-19 clinical pathway 

The patient is treated in the suspect room and 

waiting to be swabbed for COVID-19 

The patient tested positive based on the results of the 

first COVID-19 swab
The COVID-19 swab examination is scheduled

The patient was declared negative based on the results 

of the 1st COVID-19 swab and the patient is waiting 

for the 2nd COVID-19 swab 

The 2nd COVID-19 swab examination is scheduled for 

the next day by the designated lab worker 
The patient tested positive based on the 

results of the 2nd COVID-19 swab 

The patient was declared negative based on the results of the 2nd COVID-

19 swab and the patient was declared transferred to the droplet precaution 

The patient is transferred to the inpatient room of the intended inpatient 

Patients are managed according to basic disease 

Figure. 1 The Flow of Service for COVID-19 Patients 
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The Petri Net Model for COVID-19 Patient Services 

Based on the patient service flow data for COVID-19 in Figure 1, the Petri Net model can be 

formed as follows. 

 

Figure 2 Petri Net Model for COVID-19 Patient Services  

  

Based on Figure 2 above, a variable that shows time is defined as follows. 

𝑡1 : patient was directed to the room isolation after the ambulance that refers patients from the 

hospital · · · / from agency · · · / from FKTP arrived at the hospital, 

𝑡2 : the examination was completed by the doctor in charge of isolation triage, mental condition 

screening test (DASS score), and examination laboratory and chest x-ray 

𝑡3: patient tested positive for COVID-19, 

𝑡4: patient was named as a PDP suspect, 

𝑡5: patient was treated in the COVID-19 positive room for further management by the clinical 

pathway of COVID-19, 

𝑡6 : patient waits to be swabbed for COVID-19, 

𝑡7: patient tested positive based on the results of the first COVID-19 swab, 

𝑡8 : the patient was declared negative based on the results of the first COVID-19 swab and waiting 

to do the 2nd COVID-19 swab, 
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𝑡9 : the patient was declared positive based on the results of the COVID-19 swab, 

𝑡10 : the patient was declared negative by the DPJP room based on the results of the 2nd COVID-

19 swab, so the patient was transferred to a regular inpatient room, 

𝑡11 : time is taken for the 𝑘 −th patient since arrival at the hospital until it is managed according 

to basic disease PPK by DPJP room. 

 Variables that indicate the length of time in each process service are defined as follows. 

𝑣𝑡1,𝑘 : length of time for the 𝑘 −th patient to wait to be directed to the isolation room, 

𝑣𝑡2,𝑘 : length of time to go to the isolation room and examine the 𝑘 −th patient, 

𝑣𝑡3,𝑘 : the length of time the 𝑘 −th patient waits for the examination results to be declared positive 

for COVID-19, 

𝑣𝑡4,𝑘 : length of time for the 𝑘 −th patient to wait for the examination results to be declared PDP 

suspects 

𝑣𝑡5,𝑘 : the length of time the 𝑘 −th patient was transferred to the COVID-19 positive room for 

then managed according to the clinical path of COVID-19, 

𝑣𝑡6,𝑘 : the length of time the 𝑘 −th patient was transferred to the suspect room and waited to do 

a COVID-19 swab, 

𝑣𝑡7,𝑘 : length of time for the 𝑘 −th patient swab examination and waiting for it to test positive 

based on the results of the first COVID-19 swab, 

𝑣𝑡8,𝑘 : length of time for the 𝑘 −th patient swab examination and waiting for it to tested negative 

based on the results of the first COVID-19 swab and are waiting to carry out the 2nd COVID-19 

swab, 

𝑣𝑡9,𝑘 : length of patient's 𝑘 −th swab examination and waiting for it tested positive for COVID-

19, 

𝑣𝑡10 ,𝑘 : length of patient's 𝑘 −th swab examination and waiting until tested negative for COVID-

19, 



11 

PETRI NET MODEL FOR THE COVID-19 PATIENT SERVICE SYSTEM 

𝑣𝑡11 ,𝑘 : the time it takes for the 𝑘 −th patient to arrive at the room hospitalization for management 

according to PPK Basic Diseases by the DPJP room. 

Based on Figure 2, it can be seen that there are 7  places with a set of places 𝑃 =

 {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6, 𝑃7} , and there are 11  transitions with a transition set 𝑇 =

 {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6, 𝑇7, 𝑇8, 𝑇9, 𝑇10, 𝑇11}, so that a matrix of order 7 ×  11 can be formed. Weight 

for each arc is as large as one. The following is a representation of the Petri net in Figure 2 using 

Incidence matrix. 

Backward Incidence Matrix (𝐴𝑏) 

𝑨𝒃 =

[
 
 
 
 
 
 
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏
𝟎 𝟎 𝟎

𝟎 𝟎 𝟎
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

𝟎 𝟎 𝟏
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎
𝟏 𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 𝟏 𝟏 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏]
 
 
 
 
 
 

 

Forward Incidence Matrix (𝐴𝑓 ) 

𝑨𝒇 =

[
 
 
 
 
 
 
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎
𝟏 𝟎 𝟏 𝟎 𝟎

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

𝟏 𝟎 𝟎
𝟎 𝟎 𝟏
𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟎]
 
 
 
 
 
 

 

Incidence Matrix (𝐴̇) 

𝐴̇ =

[
 
 
 
 
 
 
1 −1    0
0    1 −1
0    0    1

   0    0    0
−1    0    0
   0 −1    0

   
0    0    0
0    0    0
1    0    1

    
0    0
0    0
0    0

0    0    0
0    0    0
0    0    0

   1    0 −1
   0    0    1
   0    0    0

   0    0    0
−1 −1    0
   0    1 −1

   0    0
   0    0
−1    0

0    0    0    0    0    0    0    0    0     1 −1]
 
 
 
 
 
 

 

Next, the Coverability Tree is built with the initial conditions 𝑥0 =

[0 0 0 0 0 0 0]𝑇. This state is defined with the root node and shows that place 𝑃1 has 

not been filled by tokens until transition 𝑇1   fired. Based on Figure 2 and Equation 4, the 

coverability tree is obtained as follows. 
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Figure 3. Coverability Tree of the service Petri Net Model COVID-19 patient  

Based on Figure 3, it can be seen that the states 𝑥5 and 𝑥11 appear which makes 𝑇1 re-

enable and the process will repeat so on. Furthermore, the max-plus algebra model is built based 

on the Petri net model and coverability tree that has been obtained. 

The Max-Plus Algebra Model for COVID-19 Patient  

Based on the Petri net in Figure 2, the max-plus algebra model is obtained as follows with 

 𝑘 = 1,2, … . 

𝑡1(𝑘) = 𝑣𝑡1,𝑘 ⊗ 𝑡1(𝑘 − 1), 

𝑡2(𝑘) = 𝑣𝑡2,𝑘 ⊗ 𝑡1(𝑘)  

          = 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘 ⊗ 𝑡1(𝑘 − 1), 

𝑡3(𝑘) = 𝑣𝑡3,𝑘 ⊗ 𝑡2(𝑘)  

          = 𝑣𝑡3,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘 ⊗ 𝑡1(𝑘 − 1), 

𝑡4(𝑘) = 𝑣𝑡4,𝑘 ⊗ 𝑡2(𝑘)  

          = 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘 ⊗ 𝑡1(𝑘 − 1), 

𝑡6(𝑘) = 𝑣𝑡6,𝑘 ⊗ 𝑡4(𝑘)  
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          = 𝑣𝑡6,𝑘 ⊗ 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘 ⊗ 𝑡1(𝑘 − 1), 

𝑡7(𝑘) = 𝑣𝑡7,𝑘 ⊗ 𝑡6(𝑘)  

          = 𝑣𝑡7,𝑘 ⊗ 𝑣𝑡6,𝑘 ⊗ 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘 ⊗ 𝑡1(𝑘 − 1), 

𝑡8(𝑘) = 𝑣𝑡8,𝑘 ⊗ 𝑡6(𝑘)  

          = 𝑣𝑡8,𝑘 ⊗ 𝑣𝑡6,𝑘 ⊗ 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘 ⊗ 𝑡1(𝑘 − 1), 

𝑡9(𝑘) = 𝑣𝑡9,𝑘 ⊗ 𝑡8(𝑘)  

          = 𝑣𝑡9,𝑘 ⊗ 𝑣𝑡8,𝑘 ⊗ 𝑣𝑡6,𝑘 ⊗ 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘 ⊗ 𝑡1(𝑘 − 1), 

𝑡5(𝑘) = 𝑣𝑡5,𝑘 ⊗ {𝑡3(𝑘) ⊕ 𝑡7(𝑘) ⊕ 𝑡9(𝑘)}  

          = (𝑣𝑡5,𝑘 ⊗ 𝑡3(𝑘)) ⊕ (𝑣𝑡5,𝑘 ⊗ 𝑡7(𝑘)) ⊕ (𝑣𝑡5,𝑘 ⊗ 𝑡9(𝑘))  

          = (𝑣𝑡5,𝑘 ⊗ 𝑣𝑡3,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘 ⊗ 𝑡1(𝑘 − 1) ) ⊕ (𝑣𝑡5,𝑘 ⊗ 𝑣𝑡7,𝑘 ⊗ 𝑣𝑡6,𝑘 ⊗

𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘 ⊗ 𝑡1(𝑘 − 1))  ⊕ (𝑣𝑡5,𝑘 ⊗ 𝑣𝑡9,𝑘 ⊗ 𝑣𝑡8,𝑘 ⊗ 𝑣𝑡6,𝑘 ⊗ 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗

𝑣𝑡1,𝑘 ⊗ 𝑡1(𝑘 − 1)), 

𝑡10(𝑘) = 𝑣𝑡10,𝑘 ⊗ 𝑡8(𝑘)  

            = 𝑣𝑡10,𝑘 ⊗ 𝑣𝑡8,𝑘 ⊗ 𝑣𝑡6,𝑘 ⊗ 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘 ⊗ 𝑡1(𝑘 − 1), 

𝑡11(𝑘) = 𝑣𝑡11,𝑘 ⊗ 𝑡10(𝑘)  

            = 𝑣𝑡11,𝑘 ⊗ 𝑣𝑡10 ,𝑘 ⊗ 𝑣𝑡8,𝑘 ⊗ 𝑣𝑡6,𝑘 ⊗ 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘 ⊗ 𝑡1(𝑘 − 1), 

Based on the Petri net in Figure 2 and the max-plus algebra model that has been obtained 

above, a particular model can be formed that can be expressed in the following matrix according 

to the condition of the patient's examination results. 

Based on the Petri net in Figure 2 and the max-plus algebra model that has been obtained 

above, a particular model can be formed that can be expressed in the following matrix according 

to the condition of the patient's examination results. 
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i). The Max-Plus Algebra Model in the Covid-19 Positive Referral Patient Service Process 

[

𝑡1(𝑘)
𝑡2(𝑘)
𝑡3(𝑘)
𝑡5(𝑘)

] = [

𝑣𝑡1,𝑘 𝑎 𝑎 𝑎

     
𝑏
𝑐

𝑎
𝑎

𝑎
𝑎

𝑎
𝑎

     𝑒 𝑎 𝑎 𝑎

] ⊗

[
 
 
 
𝑡1(𝑘 − 1)

𝑡2(𝑘 − 1)

𝑡3(𝑘 − 1)

𝑡5(𝑘 − 1)]
 
 
 

, 

ii). Max-Plus Algebra Model of Referral Patients with Suspected PDP Covid-19 and The 

Results of the 1st Positive Swab Test for Covid-19 

[
 
 
 
 
 
 
𝑡1(𝑘)
𝑡2(𝑘)

𝑡4(𝑘)

𝑡6(𝑘)

𝑡7(𝑘)

𝑡5(𝑘)]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝑣𝑡1,𝑘 𝑎 𝑎 𝑎 𝑎 𝑎

     
𝑏
𝑑

𝑎
𝑎

𝑎
𝑎

𝑎 𝑎 𝑎
𝑎 𝑎 𝑎

     𝑓 𝑎 𝑎 𝑎 𝑎 𝑎

     
𝑔 𝑎 𝑎 𝑎 𝑎 𝑎

𝑒 𝑎 𝑎 𝑎 𝑎 𝑎]
 
 
 
 
 

⊗

[
 
 
 
 
 
 
𝑡1(𝑘 − 1)

𝑡2(𝑘 − 1)

𝑡4(𝑘 − 1)

𝑡6(𝑘 − 1)

𝑡7(𝑘 − 1)

𝑡5(𝑘 − 1)]
 
 
 
 
 
 

, 

iii). Max-Plus Algebra Model of Referral Patients with Conjecture PDP Covid-19 where The 

Results of the 1st Swab Examination were Negative and The Results of The 2nd Swab 

Examination were Positive for Covid-19 

[
 
 
 
 
 
 
 
𝑡1(𝑘)

𝑡2(𝑘)
𝑡4(𝑘)

𝑡6(𝑘)

𝑡8(𝑘)

𝑡9(𝑘)

𝑡5(𝑘)]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑣𝑡1,𝑘 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎

     
𝑏
𝑑

𝑎
𝑎

𝑎
𝑎

𝑎 𝑎 𝑎 𝑎
𝑎 𝑎 𝑎 𝑎

     𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎

     
ℎ
𝑖

𝑎
𝑎

𝑎
𝑎

𝑎
𝑎

𝑎
𝑎

𝑎 𝑎
𝑎 𝑎

𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎]
 
 
 
 
 
 

⊗

[
 
 
 
 
 
 
 
𝑡1(𝑘 − 1)

𝑡2(𝑘 − 1)

𝑡4(𝑘 − 1)

𝑡6(𝑘 − 1)

𝑡8(𝑘 − 1)

𝑡9(𝑘 − 1)

𝑡5(𝑘 − 1)]
 
 
 
 
 
 
 

, 

iv). The Max-Plus Algebra Model in the Service Process for Referral Patients with Negative 

Covid-19 

[
 
 
 
 
 
 
 
𝑡1(𝑘)
𝑡2(𝑘)
𝑡4(𝑘)

𝑡6(𝑘)

𝑡8(𝑘)

𝑡10(𝑘)

𝑡11(𝑘)]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑣𝑡1,𝑘 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎

     
𝑏
𝑑

𝑎
𝑎

𝑎
𝑎

𝑎 𝑎 𝑎 𝑎
𝑎 𝑎 𝑎 𝑎

     𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎

     
ℎ
𝑗

𝑎
𝑎

𝑎
𝑎

𝑎
𝑎

𝑎
𝑎

𝑎 𝑎
𝑎 𝑎

𝑘̇ 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎]
 
 
 
 
 
 

⊗

[
 
 
 
 
 
 
 
𝑡1(𝑘 − 1)

𝑡2(𝑘 − 1)

𝑡4(𝑘 − 1)

𝑡6(𝑘 − 1)

𝑡8(𝑘 − 1)

𝑡10(𝑘 − 1)

𝑡11(𝑘 − 1)]
 
 
 
 
 
 
 

, 

with 𝑘 = 1, 2, …, and 

𝑎 = 𝜀,  

𝑏 = 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘, 
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𝑐 = 𝑣𝑡3,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘, 

𝑑 = 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘, 

𝑓 = 𝑣𝑡6,𝑘 ⊗ 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘, 

 𝑔 = 𝑣𝑡7,𝑘 ⊗ 𝑣𝑡6,𝑘 ⊗ 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘, 

ℎ = 𝑣𝑡8,𝑘 ⊗ 𝑣𝑡6,𝑘 ⊗ 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘, 

𝑖 = 𝑣𝑡9,𝑘 ⊗ 𝑣𝑡8,𝑘 ⊗ 𝑣𝑡6,𝑘 ⊗ 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘, 

𝑗 = 𝑣𝑡10,𝑘 ⊗ 𝑣𝑡8,𝑘 ⊗ 𝑣𝑡6,𝑘 ⊗ 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘, 

𝑘̇ = 𝑣𝑡11,𝑘 ⊗ 𝑣𝑡10,𝑘 ⊗ 𝑣𝑡8,𝑘 ⊗ 𝑣𝑡6,𝑘 ⊗ 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘, 

𝑒 = (𝑣𝑡5,𝑘
⊗ 𝑣𝑡3,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘 ) ⊕ (𝑣𝑡5,𝑘

⊗ 𝑣𝑡7,𝑘 ⊗ 𝑣𝑡6,𝑘
⊗ 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘) ⊕ (𝑣𝑡5,𝑘

⊗

         𝑣𝑡9,𝑘 ⊗ 𝑣
𝑡8,𝑘

⊗ 𝑣𝑡6,𝑘 ⊗ 𝑣𝑡4,𝑘 ⊗ 𝑣𝑡2,𝑘 ⊗ 𝑣𝑡1,𝑘). 

To achieve Lyapunov stability, we need to find a vector Φ that satisfies the condition that a Petri 

net is considered stable if there exists a strictly positive vector Φ such that 𝑒𝑇𝐴𝑇Φ ≤ 0.. Since 𝑒𝑇 

is a non-negative vector, it is sufficient to show that 𝐴𝑇Φ ≤ 0. Proposition 1 states that the vector 

Φ given in equation (25) should be strictly positive. However, it has been shown that the system 

modeled by the timed Petri net is unstable. The system can be stabilized by solving the 

homogeneous linear equation Ae=0, which yields Φ = [0, 0, 0, 0, 0, 0, 0]𝑇 . By solving this 

equation, we also obtain a non-zero vector 𝑒 = [𝑎, 𝑎, 𝑏, 𝑐, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, 𝑔] which allows us to 

conclude that the system can be stabilized. 
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