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Abstract. Dengue fever is a significant global disease that is transmitted by female mosquitoes, specifically the

Aedes aegypti and Aedes albopictus species. As part of efforts to control the spread of this disease, the use of

mosquito repellent has emerged as an alternative. This research presents an analysis of the stability and optimal

control of a dengue transmission model incorporating the use of mosquito repellent. Dynamical analysis conducted

to see the impact of the control reproduction number on the stability of the equilibrium points. We find that due

to the limited treatment resources, the condition of control reproduction number less than one is not enough to

guarantee the disappearance of dengue from the population. Optimal control simulation conducted to see the

impact of mosquito repellent intervention to reduce dengue effectively under some specific scenario.
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1. INTRODUCTION

Dengue fever is a disease that spreads through the bites of female mosquitoes, specifically

the Aedes aegypti and Aedes albopictus species, carrying different strains of the dengue virus
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(DENV) [1]. In addition to transmitting the virus from mosquitoes to humans, mosquitoes

can also acquire infection from individuals who experience viremia, a phase during which the

DENV virus is present in the blood, occurring 24 to 48 hours before the onset of symptoms

[2, 3]. This transmission can occur in someone who is symptomatic, someone who is pre-

symptomatic, or even in individuals who are asymptomatic [3]. Dengue fever predominantly

occurs in tropical and subtropical regions worldwide. As of June 8, 2023, the European Centre

for Disease Prevention and Control (ECDC) reported a global total of 2,162,214 cases with 974

deaths from dengue fever [4].

The clinical manifestations of dengue can vary, ranging from asymptomatic infection to se-

vere cases with multiple organ failure [5]. It is possible for a person to experience dengue

infection multiple times throughout their life. Secondary dengue infections may occur due to

different serotypes of the virus and can present with more severe symptoms. In some severe

cases, dengue shock syndrome (DSS) can develop, which is believed to be associated with the

Antibody-Dependent Enhancement (ADE) hypothesis [6].

Although there is no specific therapy for the treatment of dengue [7, 3], the primary focus of

treatment is to maintain the patient’s fluid balance. Therefore, prevention plays a crucial role

in avoiding dengue infection. One preventive measure is the use of various forms of mosquito

repellent, such as lotions, sprays, gels, or creams. Mosquito repellent typically work by creating

a vapor barrier that prevents mosquitoes from coming into contact with the skin [8]. Some

commonly used active ingredients in mosquito repellent include DEET, picaridin, IR3535, Para-

menthane-diol (PMD), and 2-undecanone [7, 8].

Numerous studies have explored the efficacy of natural ingredients derived from plant ex-

tracts as mosquito repellent. Examples include pineapple peel extract (Ananas comosus) [9],

citronella extract (Cymbopogon nardus) [10], liquid crystal-based tea tree oil [11], lemon euca-

lyptus oil [8], mint extract (Mentha spicata) [12], Mecca basil extract (Ocimum gratissimum)

[12], moringa leaf extract (Moringa oleifera) [12], among others [8]. Mosquito repellent lotions

or creams can be applied to the skin to create an effective protective layer, while sprays or gels

can be used on areas prone to mosquito bites. By choosing mosquito repellent that suit personal
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preferences and needs, and following the provided instructions, the effectiveness of protection

against mosquito bites can be maximized, reducing the risk of dengue fever transmission.

The mathematical model of dengue infection spread, considering recurrent infections, has

been analyzed in several studies. Jan et al. [13] introduced a model of dengue infection with

asymptomatic carriers using fractional-order derivatives, highlighting the role of memory ef-

fects and analyzing the influence of input parameters and fractional order on the basic repro-

duction number and infected individuals. Onyejekwe et al. [14] constructed an epidemiological

model to study the dynamics of dengue fever spread in the human population and applied op-

timal control theory to reduce the population of infected individuals through education and

therapeutic drug treatment. Ndii et al. [15] investigated the effects of vaccination on the dy-

namics of dengue fever transmission using mathematical models and found that vaccination

of seropositive individuals can help reduce the proportion of severe dengue cases. Schäfer et

al. [16] focused on qualitative estimation of the dynamics of dengue fever transmission and

proposed a single-compartment vector-host model and a multi-patch model to depict seasonal

effects and inter-region mobility. Shah et al. [17] developed nonlinear differential equation

models to separately and jointly explain the dynamics of malaria and dengue fever transmis-

sion, emphasizing the role of control parameters and treatment. Siddik et al. [18] formulated

a mathematical model that incorporates predator-prey dynamics in the mosquito larval stage to

control the spread of dengue fever virus. Chamnan et al. [19] analyzed the impact of vaccination

on the dynamics of dengue fever transmission in Thailand, emphasizing the importance of con-

sidering specific serotype differences for optimal intervention delivery. Sanusi et al. [20] built

and analyzed an SIRS model for dengue fever, predicting the number of cases and assessing the

endemic status of the disease in South Sulawesi. Bonyah et al. [21] discussed the influence of

climate change on the control of dengue fever in Africa using fractional-order models. Ndii et

al. [22] studied the effects of various dengue fever elimination strategies, including vector con-

trol, vaccination, and media campaigns, on seasonally varying mosquito populations. Aldila

et al. [23] investigated the impact of media campaigns and case detection in controlling the

spread of dengue fever in Jakarta, finding that media campaigns were more effective in reduc-

ing the basic reproduction number. In other research, Aldila et al. [24] construct their simple
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dengue model considering human ignorance on dengue. They found that this ignorance may

trigger the existence of backward bifurcation phenomena. Hanif et al. [25] proposed a modified

fractional-order-based ShEhIhRh− SvIv model to simulate the dynamics of dengue fever trans-

mission, considering treatment compartments and protected travelers, and applied an optimal

control approach to study the impact of control strategies.

Previously, several studies have discussed mathematical models considering mosquito repel-

lents. Prasetyo et al. [26] showed that vaccination and the use of mosquito repellents can reduce

the number of dengue fever-infected human subpopulations with minimum costs in control im-

plementation. Khan et al. [27] revealed that the use of mosquito repellents and insecticides is

the best strategy to minimize the number of infected hosts and dengue fever vectors in a popula-

tion. Srivastav et al. [28] demonstrated that the use of mosquito repellents is more constructive

or provides better outcomes or more effective solutions in reducing the impact of epidemics at

high severity levels (R0 > 4). Hamid et al. [29] demonstrated that the infected and exposed

population experiences a significant decline with the variable use of mosquito repellents. Hasan

et al. [30] indicated that human awareness of protecting individuals from dengue fever by us-

ing bed nets and insect repellents has a greater impact than other factors in epidemic control.

Saha et al. [31] revealed that protective measures (such as using mosquito repellents) combined

with stronger treatment are more effective compared to human efforts in mosquito control and

treatment for dengue control.

However, it is important to note that the use of mosquito repellent may have certain limita-

tions that can reduce their effectiveness in controlling the spread of mosquito-borne diseases.

Factors such as inconsistent use, inappropriate application, variations in product effectiveness,

and limitations in range or duration of use can impact the overall effectiveness of control mea-

sures [32, 33, 8]. In our study, we conducted an analysis of a dengue transmission model that in-

corporates the use of mosquito repellent. The mathematical model takes into account the growth

rates of human and mosquito populations, the transmission of viruses between mosquitoes and

humans, and the impact of mosquito repellent on reducing mosquito bite rates in humans. The

model includes differential equations that describe the changes in relevant variables over time.
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We then performed a stability analysis to determine the equilibrium points of the model.

Equilibrium points are states where the model variables remain constant over time. Using

the linearization method, we examined the stability of these equilibrium points to determine

whether the system tends toward a stable or unstable state. Next, we incorporated the concept

of optimal control in our analysis. We considered the optimal strategy for using mosquito repel-

lent to minimize the transmission rate of dengue fever. Within a mathematical framework, we

applied the principle of optimal control to describe the interactions between human populations,

mosquitoes, and mosquito repellent. By applying the Pontryagin Principle, we can determine

the optimal control strategy to reduce dengue transmission. This strategy involves selecting the

optimal timing and frequency of using mosquito repellent. We hope that this analysis provides

a deeper understanding of the impact of mosquito repellent on dengue transmission. The results

can serve as a valuable guide for designing effective interventions and control policies aimed at

reducing the spread of this disease.

The structure of this article is outlined as follows: We introduce our model in Section 2, fol-

lowed by model analysis in Section 3. Section 4 presents the elasticity and sensitivity analysis,

while Section 5 provides the characterization of optimal control and simulation. Lastly, our

conclusions are presented in Section 6.

2. MODEL CONSTRUCTION

At the beginning, a compartmental model is constructed, divided into two populations: the

human population N and the mosquito population M. The human population is further divided

into two subpopulations: S, representing individuals susceptible to Dengue fever virus, and I,

representing individuals infected with the Dengue fever virus. Meanwhile, the vector population

is divided into two subpopulations: U , representing vectors susceptible to the Dengue fever

virus, and V , representing vectors infected with the Dengue fever virus. Hence, the total of

human and mosquito population is given by N = S+ I and M =U +V , respectively.

Before constructing the model, certain limitations or assumptions need to be made, such as:

a) the population is constant, b) the recruitment rate in subpopulations S and U is constant, c)

there is no human to human transmission disease and vector to vector disease transmission, d)

natural deaths occur in each subpopulation, e) there is no disease-induced mortality, f) there is
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saturation of human recovery, g) after the infectious period, humans become susceptible again,

and h) infected vectors do not experience recovery due to their short lifespan. Based on the

compartmental model shown in Figure 1, a mathematical model can be formulated as follows:

dS
dt

= Λh− (1−u+uξ )βhSV −µhS+
γ

1+bI
I,(1a)

dI
dt

= (1−u+uξ )βhSV −µhI− γ

1+bI
I,(1b)

dU
dt

= Λv− (1−u+uξ )βvUI−µvU,(1c)

dV
dt

= (1−u+uξ )βvUI−µvV,(1d)

completed with a non-negative initial conditions. Here, u represents the control variable, which

is the use of mosquito repellent. The effectiveness of the control can be reduced, represented

by the parameter ξ . Other parameters include Λh and Λv, which represent the recruitment rates

of humans and vectors, respectively. βh and βv represent the transmission rates from S to I and

from U to V , respectively. µh and µv represent the natural death rates for humans and vectors,

respectively. γ represents the recovery rate for humans. We assume that there is a saturation

on human recovery rate due to the lack of hospital bed capacity. Hence, assuming b as the

saturation parameter of recovery rate, then total of recovery infected human per day is given by
γ

1+bI
I.

In the given model, the term (1−u+uξ ) represents the reduction in control effectiveness on

the spread of mosquito-borne diseases, specifically referring to the extent to which the use of

mosquito repellent and control effectiveness can diminish disease transmission by mosquitoes.

The term (1− u + uξ ) represents a combination of them who use mosquito repellent (uN)

and who do not ((1− u)N). The explanation is as follows. Let there is proportion u of N

who use mosquito repellent. We assume that the efficacy of this mosquito repellent to reduce

effective contact rate βh and βv is given by ξ . Hence, smaller ξ shows a better quality of

mosquito repellent. On the other hand, if human population do not use any mosquito repellent,

then the infection rate will not reduced. Hence, the total of new infection per day is given

by (1− u+ uξ )βhSV and (1− u+ uξ )βvUI for human and mosquito population, respectively.

Therefore, the larger the value of (1− u+ uξ ), the smaller the impact of mosquito repellent
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FIGURE 1. Transmission diagram of the dengue model in system (1)

usage and control effectiveness in reducing disease transmission by mosquitoes. Conversely,

the smaller the value of (1− u+ uξ ), the greater the impact of mosquito repellent usage in

reducing disease transmission.

TABLE 1. Table of parameters in system (1).

Par. Description Unit

b Saturation coefficient affecting the transfer from infected to susceptible

individuals

1
individual

βh Transmission rate from infected vectors to susceptible individuals 1
individual.day

βv Transmission rate from infected individuals to susceptible vectors 1
vector.day

γ Recovery rate of individuals 1
day

Λh Natural birth rate of individuals individual
day

Λv Natural birth rate of vectors vector
day

µh Natural death rate of individuals 1
day

µv Natural death rate of vectors 1
day

u Proportion of mosquito repellent usage intervention -

ξ Reduced control effectiveness -
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3. MODEL ANALYSIS

Before we analyzed our model, it is necessary to show that our model solution always has

a biological interpretation, which means that the solution should always be non-negative. The

results are given in the following theorem.

Theorem 3.1. System (1) is positively invariant in the following region.

Ω =
{
(S, I,U,V ) ∈ R4

≥0| S≤ N, I ≤ N,U ≤M,V ≤M, S+ I ≤ N,U +V ≤ N
}
.(2)

Proof. We prove this theorem using the same approach with authors in [34]. System (1) can be

rewritten as follows:

dX
dt

=CX +D,(3)

where

X = (S, I,U,V )T , C =


d1 d2 0 0

d3 d4 0 0

0 0 d5 0

0 0 d6 −µv

 ,(4)

with d1 = −(1− u− uξ )βhV − µh, d2 =
γ

1+bI , d3 = (1− u+ uξ )βhV , d4 = −µh− γ

1+bI , d5 =

−(1−u+uξ )βvI−µv, d6 = (1−u+uξ )βvI, and D = (Λh,0,Λv,0).

Since C has non-negative values off the main diagonal, C is a Metzler matrix. With the value

of D≥ 0, the system (3) has a positive invariant in R4
+, which implies that any trajectory of (3)

starting from an initial state in the positive orthant R4
+ will remain in R4

+ indefinitely. In other

words, the system will not cross over to reach the negative regions in the 4-dimensional space

and will continue to stay in the positive region forever. �

3.1. Non-dimensionalization and Model Reduction. To reduce the number of parameters

and variables, we derive the non-dimensional form of our model by setting Λh = µhN and

Λv = µvM, x1 =
S
N
,x2 =

I
N
,y1 =

U
M

, and y2 =
V
M

. Furthermore, let b1 =
βh

γ
M, b2 =

βv

γ
N,
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b3 = bN, m1 =
µh

γ
, and m2 =

µv

γ
. Thus, model in system (1) can be reduced to

dx2

dτ
= (1−u+uξ )b1(1− x2)y2−m1x2−

x2

1+b3x2
,

dy2

dτ
= (1−u+uξ )b2(1− y2)x2−m2y2.

(5)

3.2. Existence of Equilibria and the reproduction number. System (5) has a trivial dengue-

free equilibrium which given by E0 = (0,0). Defining the transmission (F) and transition (V )

matrix of system (5) as

F =

 0 (1−u+uξ )b1

(1−u+uξ )b2 0

 , V =

−1−m1 0

0 −m2

 ,
then the next-generation matrix of system (5) is given by

NGM =

 0 (1−u+uξ )b1
m2

(1−u+uξ )b2
m1+1 0

 .(6)

Hence, the control reproduction number of system (5) as the spectral radius of NGM is given

by

Rc =

√
(m1 +1)m2b1b2(1−u+uξ )

(m1 +1)m2
.

When no mosquito repellent is given, then the basic reproduction number of system (5) is given

by

R0 =

√
(m1 +1)m2b1b2

(m1 +1)m2
.

In the context of our dengue model under the impact of mosquito repellent, Rc represent the

expected number of secondary cases caused by one single infection during it infection period

in a virgin population under the impact of dengue repellent. In many mathematical model,

reproduction number play an important role to determine the endemicity of a disease in the

population. Please see [35, 36, 37, 38, 39, 40] for more examples. In our model, the importance

of the control reproduction number in determining the stability of the dengue-free equilibrium

stated in the following theorem.
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Theorem 3.2. The equilibrium point E0 in the system (5) is locally asymptotically stable if

Rc < 1, and unstable if Rc > 1.

Proof. The Jacobian matrix evaluated at E0 is given by

JE0 =

 −1−m1 (1−u+uξ )b1

(1−u+uξ )b2 −m2

 .(7)

The eigenvalues of JE0 are the solutions of

pi(λ ) = λ
2 +(m1 +m2 +1)λ − (1−u+uξ )2b1b2 +(1+m1)m2 = 0.

The real parts of (λ ) that satisfy pi(λ ) = 0 are negative if and only if λ1+λ2 < 0 and λ1λ2 > 0.

It is easy to see that λ1 + λ2 = −(m1 +m2 + 1) < 0 is always satisfied. On the other hand,

λ1λ2 = m2(1+m1)(1−R2
c ) > 0 only if Rc < 1. Hence, E0 is locally asymptotically stable if

Rc < 1, and unstable if Rc > 1. The proof is completed. �

Next, we analyze the existence of the dengue endemic equilibrium point (E1) of system (5).

Taking the right hand side of system (5) equal to zero, and solve it respect to x2 and y2, we have

(8) E1 = (x∗2,y
∗
2) =

(
x∗2,

b2x∗2(1−u+uξ )

x∗2b2(1−u+uξ )+m2

)
,

where x∗2 is taken from the positive roots of the following polynomial.

(9) f (x2) = a2(x2)
2 +a1x2 +a0 = 0,

where a2 = b2b3m1(1−u+uξ )+R2
c b3m2(m1 +1), a1 = (m1 +1)(1−u+uξ )b2 +b3m1m2−

R2
c m2(1− b3)(1−m1), and a0 = m2(m1 + 1)(1−R2

c ). With this expression, we have the

following theorem.

Theorem 3.3. Let R∗c is Rc that satisfy a2
1− 4a0a2 and K = (1 + m1− b3)m2 + (1− u +

uξ )b2(1+m1). Dengue model in system (5) has:

(1) One endemic equilibrium if Rc > 1,

(2) No endemic equilibrium for Rc < 1 if K ≥ 0,

(3) No endemic equilibrium for Rc < R∗c < 1 if K < 0,

(4) Two endemic equilibrium for R∗c ≤Rc < 1 if K < 0.
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Proof. To analyze the existence of the dengue endemic equilibrium, it is necessary to guarantee

the existence of a positive of polynomial (9). If the roots is positive, then y∗2 will automatically

positive. From Descartes rule of signs in Table 2, it is easy to see that when Rc > 1, then the

polynomial always has a unique endemic equilibrium. Hence part (1) proofed. Furthermore,

we can see that if a2 < 0, then it is possible that the polynomial will have 0 or two positive

roots. Hence, further analysis needed. We conduct gradient analysis of the polynomial at

Rc = 1,x2 = 0. Using implicit differential on polynomial 9, we have

∂x2

∂Rc
|Rc=1,x2=0 =

2(m1m2 +m2)

(1+m1−b3)m2 +(1−u+uξ )b2(1+m1)
.(10)

Hence, if K = (1+m1− b3)m2 +(1− u+ uξ )b2(1+m1) < 0, then we will have a negative

gradient of x2 at Rc = 1,x2 = 0. This indicates an existence of positive roots x2 for Rc < 1.

Using the fact from (a) and f (x2) is a two degree polynomial, then f (x2) will have a turning

point at Rc = R∗c where R∗c is Rc that satisfy the discriminant of f (x2) equal to zero, which

is a2
1−4a0a2 = 0. Hence, we have (3) proofed. I Rc < R∗c , then we will have no positive root

(part 4 proofed). Lastly, if K ≥ 0, then we will have the gradient is positive which confirm part

(2). The illustration of this proof is given in Figure 2. �

TABLE 2. The maximum number of roots for x∗2 can be determined using the

Descartes’ Rule of Signs for equation

Case a2 a1 a0 Rc Change of Sign Number of Possible Roots

1 + + + Rc < 1 0 0

2 + + - Rc > 1 1 1

3 + - + Rc < 1 2 0 or 2

4 + - - Rc > 1 1 1

3.3. Existence of backward bifurcation. Next, we will analyze the local stability of the

dengue-endemic equilibrium around Rc = 1 using the Castillo-Song bifurcation theorem [41].

Theorem 3.4. Dengue model in system (5) undergoes backward bifurcation at Rc = 1 if K < 0,

and forward bifurcation when K > 0.
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FIGURE 2. Illustration of Theorem 3.3.

Proof. The stability of the endemic equilibrium points is analyzed using the theory of Cen-

ter Manifold [41] with the following steps. The reduced system (5) can be expressed as the

following equations (11).

f1 = (1−u+uξ )b1(1− z1)z2−m1z1−
z1

1+b3z1

f2 = (1−u+uξ )b2(1− z2)z1−m2z2

(11)

By setting Rc = 1, we obtain the bifurcation point b1 = b∗1 = m2(m1+1)
b2(1−u+uξ )2 , also known as the

bifurcation parameter, then the linearized matrix around the DFE is given by

J|E0,b1=b∗1
=

 −1−m1
m2(m1+1)

b2(1−u+uξ )

(1−u+uξ )b2 −m2

 .(12)

Equation (12) has a right eigenvector w and a left eigenvector v given by

w =

 m2

b2(1−u+uξ )

 ,
v =

[
b2(1−u+uξ ) 1+m1

]
.

The second partial derivatives of equation (11) are as follows

∂ 2 f1

∂ z1∂ z1
=

2b3

(b3z1 +1)2 (1−
b3z1

b3z1 +1
),

∂ 2 f2

∂ z1∂ z1
= 0,

∂ 2 f1

∂ z1∂ z2
= (−1+u−uξ )b1,

∂ 2 f2

∂ z1∂ z2
= (−1+u−uξ )b2,

∂ 2 f1

∂ z2∂ z1
= (−1+u−uξ )b1,

∂ 2 f2

∂ z2∂ z1
= (−1+u−uξ )b2,



DENGUE TRANSMISSION MODEL WITH MOSQUITO REPELLENT 13

∂ 2 f1

∂ z2∂ z2
= 0,

∂ 2 f2

∂ z2∂ z2
= 0.

The partial derivatives of equation (11) with respect to the bifurcation parameter are as follows

∂ 2 f1

∂ z1∂b∗1
= (−1+u−uξ )y2,

∂ 2 f2

∂ z1∂b∗1
= 0,

∂ 2 f1

∂ z2∂b∗1
= (1−u+uξ ),

∂ 2 f2

∂ z2∂b∗1
= 0.

Next, we will determine the values of A and B.

A =
2

∑
k,i,j=1

vkwiw j
∂ 2 fk

∂ zi∂ z j
(0,0) =−2m2b2(1−u+uξ ) [(1+m1−b3)m2 +(1−u+uξ )b2(1+m1)] .

(13)

B =
2

∑
k,i=1

vkwi
∂ 2 fk

∂ zi∂b∗1
(0,0) = b2

2(1−u+uξ )3.

(14)

From equations (13) and (14), it can be observed that B always has a positive sign. On the other

hand, A is positive when K < 0 and negative when K > 0 where K = (1+m1− b3)m2 +

(1− u+ uξ )b2(1+m1). Therefore, system (5) undergoes backward bifurcation when K > 0,

and forward bifurcation when K < 0. Hence the proof is complete. �

To conduct numerical experiments on this article, the base for parameter values for system

in (1) is given as follows.

N = 1000,M = 2000,Λh =
1000

73.6×365
,Λv =

2000
21

,γ =
1

21
,µv =

1
21

,

µh =
1

73.6×365
,βh =

0.1
N

,βv =
0.2
N

,u ∈ [0,1],ξ = 3%,b > 0.

With this chosen parameters, we can calculate our parameter values for system (5), and use it

to draw the bifurcation diagram in Figure 3. Our results in Theorem 3.4 indicates an existence

of backward bifurcation if K < 0. When backward bifurcation appears, then we have a stable

dengue-free and dengue-endemic equilibrium appears together. This phenomena indicates that

a condition of Rc < 1 is not enough to guarantee the extinction of dengue from population.

Figure 3 calculated when b = 4 (represent the lack of hospital bed capacity) such that K < 0.

Hence, we have R∗c = 0.88. Hence, we have no endemic equilibrium when Rc < 0.88, two
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endemic equilibrium when Rc ∈ (0.88,1), and one endemic equilibrium when Rc > 1. We

draw the phase portrait of system (5) based on this region by choosing one example point in

each region, namely P1,P2, and P3. The Backward bifurcation diagram shown in panel (a),

while the phase portrait in panel (b), (c), and (d). In panel (b), we can see that all solution will

tends to a stable dengue-endemic equilibrium. Similarly in panel (c) shown that all solution

tends to the dengue-free equilibrium. On the other hand, we can see from panel (b) that the

trajectory of the solution depend on it initial condition, since bistability phenomena appears.

On the other hand, when the quantity of hospital bed capacity becomes better (smaller value

of b3), then Theorem 3.4 shows a bigger chance that no endemic equilibrium point appears

when Rc < 1. This phenomena illustrated in Figure 4. To conduct this simulation, we use

a same parameter values in Figure 3, except b3 = 2. Hence, we have K > 0, and forward

bifurcation appears. Hence, when Rc < 1 ⇐⇒ u> 0.336, then no dengue-endemic equilibrium

appears, and the dengue-free equilibrium become stable. On the other hand, when Rc > 1 ⇐⇒

u < 0.336, dengue-free equilibrium becomes unstable, but the dengue-endemic equilibrium is

stable.

Figure 5 shows a sensitivities of Bifurcation threshold K depending on mosquito repellent

use u and saturated treatment parameter b3 due to hospital bed capacity. Smaller b3 means a

larger hospital bed capacity. We can see that a combination of u and b3 can determine the type

of bifurcation of system (5) at Rc = 1. A smaller b3 requires will reduce the chance K < 0.

From Theorem 3.4, smaller value of K will increase the chance of Forward bifurcation.

4. SENSITIVITY AND ELASTICITY ANALYSIS

In this section, we conduct a sensitivity analysis of our model respect to it parameters. Sen-

sitivity analysis reveals the impact of model parameters that have the greatest influence on the

basic reproduction number of the dengue fever model system (1). To evaluate the sensitivity, we

employ the forward sensitivity index, which is normalized with respect to the basic reproduction

number R0 and is denoted as

ε
σ

Rc
=

∂Rc

∂σ
× σ

Rc
(15)
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(a)

(b) (c) (d)

FIGURE 3. A backward bifurcation diagram of system (5) with respect to u

given in panel (a). Parameter values are: b1 = 1.05,b2 = 2.1,b3 = 4,m1 =

0.000752,m2 = 1,ξ = 0.03, while u varying. The Branching Point BP is when

Rc(u = 0.336) = 1, and the Fold point FP is when Rc(u = 0.379) =R∗c = 0.88.

Panels (b), (c) and (d) show the phase portrait of system (5) at P1 when only

dengue-endemic equilibrium stable, at P2 when bistability appears, and at P3

when only dengue-free equilibrium stable, respectively. Blue and red curve

present the solution which tends to dengue-free and dengue-endemic equilib-

rium, respectively.

We calculate elasticities indices of Rc respect to all parameter values to see the results of

relative changes of Rc respect to parameter change. Using above formula, then we have the
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(a)

(b) (c)

FIGURE 4. A Forward bifurcation diagram of system (5) with respect to u

given in panel (a). Parameter values are: b1 = 1.05,b2 = 2.1,b3 = 2,m1 =

0.000752,m2 = 1,ξ = 0.03, while u varying. The Branching Point BP is when

Rc(u = 0.336) = 1. No Fold Point appears. Panels (b) and (c) show the phase

portrait of system (5) at P1 when only dengue-endemic equilibrium stable and at

P2 when only dengue-free equilibrium stable, respectively. Blue and red curve

present the solution which tends to dengue-free and dengue-endemic equilib-

rium, respectively.

following results.

ε
b1
Rc

=
(1−u+uξ )b2

2G
> 0, ε

b2
Rc

=
(1−u+uξ )b1

2G
> 0, ε

m1
Rc

=−(1−u+uξ )b1b2

2(1+m1)G
< 0,

ε
m2
Rc

=−(1−u+uξ )b1b2

2m2G
< 0, ε

u
Rc

=− (1−ξ )G
(1+m1)m2)

< 0, ε
ξ

Rc
=

uG
(1+m1)m2)

> 0,(16)



DENGUE TRANSMISSION MODEL WITH MOSQUITO REPELLENT 17

FIGURE 5. Sensitivity area of bifurcation type at Rc = 1 depend on u and b3.

where, G =
√

(1+m1)m2b1b2. Using parameter values as in Figure 3 except b1 varying from

0.9 to 1.4 (10 sample values) and u = 0.336, then the average value of elasticity index for each

parameter to Rc is given in Table 3.

TABLE 3. Average value of sensitivity indices of Rc to the parameter values of

the model for 11 set of data.

Parameter b1 b2 m1 m2 u ξ

Sensitivity index 0.459 0.249 -0.522 -0.522 -1.503 0.521

Sensitivity analysis reveals that the most sensitive parameter is the use of mosquito repellent,

denoted as u. Positive sensitivity indices indicate that Rc increases with an increase in this

parameter. Conversely, negative sensitivity indices indicate that Rc decreases with an increase

in this parameter. In summary, Rc increases due to an increase in the mosquito-to-human trans-

mission rate b1, the human-to-mosquito transmission rate b2, and a decrease in the effectiveness

of control measures ξ . On the other hand, Rc decreases due to an increase in the mosquito death

rate m1, the human death rate m2, and the use of mosquito repellent u. Sensitivity of Rc respect

to u is -1.503, which means that by increasing u for 1% will reduce Rc for 1.503%. Further-

more, we can since the elasticity of mosquito repellent efficacy is 0.521, then increasing ξ for
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1% will increase Rc for 0.521%. With this findings, we suggest that the most effective mit-

igation strategy for reducing Rc is the use of an effective mosquito control measure, such as

mosquito repellent u.

5. OPTIMAL CONTROL

System (1) considers a single control variable (u), which represents the human effort to pro-

tect themselves from mosquito bites using mosquito repellent. We assume that mosquito repel-

lent use is depend on time t and are applied as needed. The main objective of the researchers is

to minimize the total losses caused by mosquitoes and infected individuals, as well as the costs

associated with implementing the control. Therefore, the researchers formulate the objective

function that needs to be minimized as follows

J =
∫ T

0
ω1x2 +ω2y2 +ωuu2 dx, with U = {u(t) : 0≤ u(t)≤ 1,∀t ∈ [0,T ]} .(17)

Here, the constants ω1 and ω2 represent the per-individual losses caused by the presence of

infected individuals and infected mosquitoes, respectively. The constant ωu represents the cost

associated with awareness efforts to protect individuals from mosquito bites, specifically the

use of mosquito repellent.

Next, we form the Hamiltonian H which consists of the cost function components and the

right-hand side of the state system (5) through the adjoint variables λi, where i = 1,2. Thus, H

is defined as

H(x2,y2) = ω1x2 +ω2y2 +ωuu2

+λ1

(
(1−u+uξ )b1(1− x2)y2−m1x2−

x2

1+b3x2

)
+λ2((1−u+uξ )b2(1− y2)x2−m2y2).

To determine the adjoint equations and transversality conditions, the researchers utilize the

Pontryagin’s maximum principle [42], which gives

dλ1(t)
dt

=−∂H
∂x2

=−ω1−λ1

(
−(uξ −u+1)b1y2−m1−

1
b3x2 +1

+
x2b3

(b3x2 +1)2

)
. . .
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−λ2 (uξ −u+1)b2 (1− y2) ,

dλ2(t)
dt

=−∂H
∂y2

=−ω2−λ1 (uξ −u+1)b1 (1− x2)−λ2 (−(uξ −u+1)b2x2−m2) ,

(18)

subject to the transversality conditions λi(T ) = 0, i = 1,2. Now, using the optimality condition
∂H
∂u = 0, we obtain

u =
(((b1λ1 +b2λ2)y2−b2λ2)x2−b1λ1y2)(ξ −1)

2ωu
.

Therefore, the optimal control for the minimum value of the optimal problem is given by

u∗ = max
{

0,min
{
(((b1λ1 +b2λ2)y2−b2λ2)x2−b1λ1y2)(ξ −1)

2ωu
,1
}}

.(19)

From the above explanation, our optimal control problem consists of a state system in sys-

tem (5) with the initial condition given, cost function J in (17) adjoint system in (18) with

transversality condition λi(T ) = 0, and optimality condition u∗ in (19). To solve this problem,

we use a forward-backward iterative method as in [43]. At first, we give an initial condition

for u for all time t. With this initial guess, we find xi(t) forward in time and use the result to

find λi(t) for all time t. With this result, we update our optimal u using the formula in (19).

This iteration is terminated when the cost function in (17) converges or the maximum iteration

is achieved.

We conduct our numerical simulation for the optimal control problem in several scenarios as

follows.

5.1. Effect of mosquito repellent efficacy. In this numerical experiment, we want to under-

stand the impact of mosquito repellent efficacy on the dynamics of the control. To analyze this,

we run our simulation for four different values of ξ , while the other parameter values are the

same with in Figure 3. The dynamic result of system (5) and its optimal control trajectories are

given in Figure 6, while the comparison of the cost and reduced infected are given in Table 4.

We can see clearly that when the efficacy of mosquito repellent is better (smaller ξ ), then the

proportion of human who uses mosquito repellent reach its maximum value over a longer period
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(see panel (a)). As a result, we can see that the proportion of infected humans reduced better

compared to the other result.
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FIGURE 6. Effect of ξ to the trajectory of u(t). The value of ξ is 0.03,0.1,0.2,

and 0.5 for panel (a) to (d), respectively. The x−axis represent the time scale

τ where τ = γt, while y−axis represent the proportion of infected human and

mosquitoes in panel (i) and (ii) and control in (iii).

Table 4 shows a better quality of mosquito repellent could give a smaller cost of intervention,

more infected averted, and a larger Infected Averted Ratio (IAR). This IAR represent the aver-

age cost needed for each 1% Infected averted. For example, we can see that when the efficacy of
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mosquito repellent is 97% (ξ = 0.03), then infected averted reach 61% compared when u = 0.

Hence, IAR for the case ξ = 0.03 is 0.716.

Scenario ξ J Infected averted IAR

(a) 0.03 0.854 61% of N 0.716

(b) 0.1 1.162 57.2% of N 0.492

(c) 0.2 2.646 41.3% of N 0.156

(d) 0.5 5.616 9.3% of N 0.016

TABLE 4. Comparison of the cost function for each scenario in Figure 6.

5.2. Effect of the different initial condition of population. In this section, we run our sim-

ulation for two different initial conditions of the infected population. The first scenario is when

the number of infected individuals and mosquitoes is relatively small, i.e. (x2(0),y2(0)) =

(0.05,0.05). We called this scenario as the endemic prevention scenario since the purpose of

control is to avoid further infection or even an outbreak. On the other hand, the second sce-

nario is called endemic reduction since the purpose of the control is to reduce the spread of

dengue that already occur. The initial condition for this scenario is (x2(0),y2(0)) = (0.5,0.5).

All parameter values are the same as in scenario (a) in Figure 6, and the results are given in

Figure 7. The optimal cost for the endemic prevention scenario is 0.837, which is smaller than

the endemic reduction scenario (J=1.774). This results means that it is better to implement the

intervention of mosquito repellent at the begining of disease spread rather than wait it until it

reach high number of infected individuals.

6. CONCLUSION

In this paper, we analyze the stability and optimal control of the dengue transmission model

SIS−UV considering the use of mosquito repellent. Mathematical analysis of the equilibrium

points, local stability of the equilibrium points, and the basic reproduction number have been

shown analytically. We show that the model may exhibits forward or backward bifurcations at

Rc = 1, indicating that a control reproduction number less than one alone is not always sufficient
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FIGURE 7. Effect of different initial conditions to the trajectory of u(t). Panel

(a) and (b) shows the result for endemic prevention and endemic reduction sce-

nario, respectively. The infected averted ratio for scenario (a) is 0.634 while

scenario (b) is 0.317.

to guarantee the eradication of dengue from the population. Sensitivity analysis reveals that the

use of mosquito repellent is promising to help to control the spread of dengue.

Furthermore, we consider an optimal control problem aiming to minimize the total loss

caused by mosquitoes and infected individuals, as well as the cost associated with the imple-

mentation of control u with effectiveness 1−ξ . To minimize the intervention cost, we treat u as

a time-dependent variable. The Pontryagin’s Minimum Principle is used to formulate the opti-

mal control problem. Numerical simulations of the optimal control illustrate the contribution of

the control parameter in the dynamics of the infection, highlighting the importance of not only

using mosquito repellent but also ensuring its high effectiveness for significant impact. Further-

more, we show that it is better to give an intervention to the spread of dengue using mosquito

repellent at the beginning of dengue spread, instead of wait the dengue incidence increases.
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