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Abstract: A mathematical model is a beautiful and powerful way to depict the condition of epidemiological disease 

transmission. In this work, we used a nonlinear differential equation to construct a mathematical model of COVID-

19. Nonlinear differential equation illustrates the spread of COVID-19 disease incorporating the vaccinated and 

quarantined subpopulations. A compartment of a model of COVID-19 disease was carried out involving several 

control variables and several biological assumptions. Applying the control variables to a mathematical model is 

the prevention of direct contact between infected and susceptible subpopulations, a vaccination control process, 

and an intensive handling of infected and quarantined populations. In the next section, an investigation of the 

positivity and boundedness of the solution COVID-19 disease, and an analysis of the existence and uniqueness of 

the solution was carried out. Then, the existence of the control variables involved in the mathematical model that 

has been designed is demonstrated. Furthermore, by applying the Pontryagin Principle to determine the optimal 

conditions and best values for each control variable that holds on. On the other hand, in addition to the mathematical 

analysis result, provides numerical simulations using MATLAB software as one of the steps in describing the 

behavior of the dynamical solution or the phase portrait. Finally, the last section shows that the optimal control 
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condition carried out is able to reduce the density of infected and quarantined subpopulations, respectively. Hence, 

it is in line with the functional objective that has been constructed. 

Keywords: epidemiological model; COVID-19; vaccination; quarantined; optimal control; pontryagin principle. 
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1. INTRODUCTION 

A specific destructive disease has been shocked humans around the world near the end of 2019 

i.e. COVID-19 disease, and it is an illness caused by the SARS-CoV-2 virus that primarily touches 

the human pulmonary chronic infection [1], [2]. In general, the cases are spread by droplets on an 

object or individual between one and two meters away, as well as through coughing and sneezing 

[3]. In most incidences, the virus induces relatively minor to serious respiratory transmittal, such 

as influenza, and clears up on its own. On the other hand, the virus causes serious respiratory 

disorders such as lung disease (pneumonia) and potentially death [4]. In addition, this illness 

affects the public health care mechanism, and human mobilizations, and slows the growth of 

developing country economies [5]. 

The Biggest Health Organization in the world reports that the Coronavirus or COVID-19 

disease was found in China (Wuhan) on 31 December 2019. Furthermore, on March 11, 2020, the 

Health Organization revealed that COVID-19 had infected around 118,000 people worldwide, 

spanning across 114 countries [6]. Then, on October 5, 2021, the total number of confirmed 

positive cases was seriously around 4.221.610 people, including 142.338 deaths. The mortality 

rate for COVID-19 is around 3.37% [7]. On the other side, on March 2, 2020, the Indonesian 

government recognized the first incidence of COVID-19, involving two Indonesians who tested 

positive for Coronavirus [6]. Unfortunately, the illness will continue to spread over the whole 

world, as in influenza, cancer, and hepatitis, etc.  Further, WHO has categorized COVID-19 as a 

global disease. 

COVID-19 has placed a tremendous strain on nations all around the world, and many countries 

are looking for ways to manage and safeguard their humans while maintaining the economic 
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stability. Various western ways, traditional ways, and home treatments may ease or diminish 

COVID-19 symptoms, and especially result from research no particular drug or medicine has been 

suggested to prevent COVID-19 [7]. Despite the fact, by recalling Indonesian government, several 

strategies for managing the transmission of COVID-19 in Indonesia are being implemented, such 

as wearing masks, washing hands periodically, staying away from crowds, keeping a distance, and 

limiting contact and mobility [6], [8]. With respect to Wuhan, the government has proposed an 

isolation strategy or quarantine for infected persons, perhaps to reduce interaction between the 

infected subtype and the people public [9]. Many countries all across the world, adopt quarantine 

regulations [10], [11]. Several clinical studies on both Western and traditional techniques are now 

underway. Health organizations in the world maintain to coordinate several vaccine developments 

works for COVID-19 and to offer the goal. Several COVID-19 vaccines have been produced and 

tested by some companies, such as Sinovac, Moderna, AstraZeneca, Pfizer, and Janssen [12], [13]. 

The other point of view, scientists and epidemiologists support to find a strategy by using a 

mathematical model approach. Several researchers have developed some models to examine the 

dynamic behavior and COVID-19 transmission, which could be useful in predicting to next disease 

or disease prevention. In fact, 1927, Kermack and McKendrick proposed the first epidemic model, 

the SIR compartment model [14]. This model is the basic conceptual model to establish of COVID-

19 mathematical model, as deep research by Li et al [15], Awasthi [16], Mandal et al [17], Yang 

et al [18]. Additionally, some mathematical models have been established by Haq et al [5], Musafir 

et al [11], Ega et al [19], Ali et al [20], Khan et al [21] depend on isolation and quarantine strategies. 

To reduce the COVID-19 outbreak, the mathematical dynamic was specifically redesigned by 

including the usage of masks. The farther a systematical behavior model of COVID-19 with a 

vaccine effort in a compartment provides as a further resource[3], [5], [22]–[24]. 

As far as we can see from previously mentioned, the optimal control problem needs to be 

pursued to conduct some control. Utilizing optimal control principles to control the Ebola disease 

[25], [26], Malaria disease [27], Diabetes Meletus [28], Tuberculosis and HIV [29]–[31], and 
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Cervical Cancer Model [32]. Furthermore, optimal control was implemented in the control of 

Measles illness [33], [34], Type B of Hepatitis [35], Cholera disease [36], SARS-Cov-2 (COVID-

19) [6], [37]–[39]. Based on earlier research, the optimal control theorem was used as an infection 

control tool. The objective of this study is to construct a modified model for predicting the 

dynamics of the COVID-19 epidemic with a control variable in a previous model [5], taking into 

consideration a variety of intervention scenarios that may offer insight into the best way to proceed 

to reduce the threat spread. This work's sections have been laid out as follows: The background 

and research introduction declared in Section 1, and Section 2 deal with some biological 

assumptions and construction models involving the control variable. The properties of the model 

are discussed in section 3, with part 3.1 about the nonnegativity and boundedness, then existence 

and uniqueness in part 3.2, respectively. Section 4 covers the characterization of the optimal 

control condition. This part is broken into two sub-chapters i.e. objective function, and the 

Hamiltonian function. Section 5, on the other hand, examines a numerical and its interpretation of 

the model. Finally, the last Section 6 we offer about final remarks and conclusion. 

 

2. ASSUMPTIONS AND CONSTRUCTION OF THE EPIDEMIC MODEL WITH CONTROL 

According to the biological assumptions, we formulated a compartment model of 

COVID-19 by recalling the model of COVID-19 given by Haq et al [5]. Then, for 

controlling the COVID-19 disease, we reconstruction the model that developed by Haq 

et al [5] with several control variables, namely: 

1. Control variable 𝑢1(𝑡)  is the education and effort of direct control between 

susceptible populations with infected and exposed subpopulations. 

2. Control variable 𝑢2(𝑡) is a vaccination effort into susceptible subpopulations 𝑆(𝑡). 

3. Control variable 𝑢3(𝑡)  is a treatment for exposed subpopulations 𝐸(𝑡)  by giving 

extra medicine, vitamins, and food to prevent exposed subpopulations from becoming 

infected subpopulations. 
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4. Control variable 𝑢4(𝑡) is a treatment effort into infected subpopulations 𝐼(𝑡) by using 

extra medicine, vitamins, and food to speed up healing an infection process. 

Based on the descriptions and assumptions of the control variable above, we have the 

deterministic system model with some controls given by 

𝑑𝑆(𝑡)

𝑑𝑡
= (1 − 𝛿)𝜏 − (𝜇 + 𝜃)𝑆(𝑡) − (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)(𝐸(𝑡) + 𝐼(𝑡)) − 𝑢2(𝑡)𝑆(𝑡) 

𝑑𝑉(𝑡)

𝑑𝑡
= 𝛿𝜏 + 𝜃𝑆(𝑡) − (𝛾 + 𝜇)𝑉(𝑡) + 𝑢2(𝑡)𝑆(𝑡) 

𝑑𝐸(𝑡)

𝑑𝑡
= (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)(𝐸(𝑡) + 𝐼(𝑡)) + 𝛾𝑉(𝑡) − (𝜇 + 𝛼 + 𝜋)𝐸(𝑡) − 𝑢3(𝑡)𝐸(𝑡) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜋𝐸(𝑡) − (𝜔 + 𝜇)𝐼(𝑡) − 𝑢4(𝑡)𝐼(𝑡) 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝛼𝐸(𝑡) + 𝜔𝐼(𝑡) − (𝜂 + 𝜇)𝑄(𝑡) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝜂𝑄(𝑡) − 𝜇𝑅(𝑡) + 𝑢3(𝑡)𝐸(𝑡) + 𝑢4(𝑡)𝐼(𝑡), 

(1) 

the total populations 𝑁(𝑡) = 𝑆(𝑡) + 𝑉(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑅(𝑡), and the control 

variables in domain 𝒰 = {𝑢𝑖: 0 ≤ 𝑢𝑖 ≤ 1, 𝑖 = 1,2,3,4}. The variable 𝑆(𝑡) describes the 

density of the susceptible subpopulation in time and this class who are at risk of infection. 

Variable 𝐸(𝑡)  interpret the density of the vaccinated subpopulation. 𝐸(𝑡)  is a 

subpopulation that has been infected by the COVID-19 virus but does not seem a 

hazardous infection and is well-known by exposed populations. 𝐼(𝑡) figure the density of 

the infected subpopulation, i.e. humans who have the hazardous infection and symptoms 

of the disease. Variable 𝑄(𝑡) and 𝑅(𝑡) represent the size of the quarantine subpopulation, 

and the last variable is declared as a subpopulation that is fully healthy and recovered 

from COVID-19 infection respectively. The positive parameters of systems (1) are 

explained in the Table 1. 
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Table 1. Parameters Interpretation 

Parameter Description Value Source 

𝜏 A recruitment rate of susceptible 

subpopulation 

1,5 Assumed 

𝛿 Proportions of recruitment rate 1/40 [40] 

𝜇 The natural mortality rate 0,0991 [40] 

𝜃 The vaccination rate 0,4 [5] 

𝛽 The contact rate of susceptible with infected or 

exposed subpopulation 

0,25 Assumed 

𝛾 A vaccination subpopulation rate becomes 

exposed 

0,3002 [40] 

𝛼 The quarantine rate of exposed subpopulation 0,2 [40] 

𝜋 An infected rate 0,1 Assumed 

𝜔 The quarantine rate of infected subpopulation 0,05 Assumed 

𝜂 Recovery rate 1/14 [41] 

 

3. PROPERTIES OF THE MATHEMATICAL MODEL WITH CONTROL VARIABLE 

3.1 Positivity and Boundedness Condition Of Solution 

In this passage, we will indicate the non-negativity and boundedness of the solutions toward the 

model (1), and for declaring that the model is most impactfully. 

Theorem 1. The set 𝒲 is the invariant manifold of model (1), and is ultimately bounded. 

Proof.  The total populations 𝑁(𝑡) = 𝑆(𝑡) + 𝑉(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑅(𝑡) , and it is 

satisfying 

𝑑𝑁(𝑡)

𝑑𝑡
=

𝑑𝑆(𝑡)

𝑑𝑡
+

𝑑𝑉(𝑡)

𝑑𝑡
+

𝑑𝐸(𝑡)

𝑑𝑡
+

𝑑𝐼(𝑡)

𝑑𝑡
+

𝑑𝑄(𝑡)

𝑑𝑡
+

𝑑𝑅(𝑡)

𝑑𝑡
. (2) 

Then, by substituting equations (1) in equation (2) gives 
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𝑑𝑁(𝑡)

𝑑𝑡
= (1 − 𝛿)𝜏 − (𝜇 + 𝜃)𝑆(𝑡) − (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)(𝐸(𝑡) + 𝐼(𝑡)) − 𝑢2(𝑡)𝑆(𝑡)

+ 𝛿𝜏 + 𝜃𝑆(𝑡) − (𝛾 + 𝜇)𝑉(𝑡) + 𝑢2(𝑡)𝑆(𝑡)

+ (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)(𝐸(𝑡) + 𝐼(𝑡)) + 𝛾𝑉(𝑡) − (𝜇 + 𝛼 + 𝜋)𝐸(𝑡)

− 𝑢3(𝑡)𝐸(𝑡) + 𝜋𝐸(𝑡) − (𝜔 + 𝜇)𝐼(𝑡) − 𝑢4(𝑡)𝐼(𝑡) + 𝛼𝐸(𝑡) + 𝜔𝐼(𝑡)

− (𝜂 + 𝜇)𝑄(𝑡) + 𝜂𝑄(𝑡) − 𝜇𝑅(𝑡) + 𝑢3(𝑡)𝐸(𝑡) + 𝑢4(𝑡)𝐼(𝑡). 

(3) 

By operating simple algebra, we have 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝜏 − 𝜇(𝑆(𝑡) + 𝑉(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑅(𝑡)). (4) 

Since 𝑆(𝑡) + 𝑉(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑅(𝑡) = 𝑁(𝑡), we obtain 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝜏 − 𝜇𝑁(𝑡). (5) 

After rearranging equation (5), we get the first-order linear ordinary differential equation i.e. 

𝑑𝑁(𝑡)

𝑑𝑡
+ 𝜇𝑁(𝑡) = 𝜏. (6) 

It is obvious to solve equation (6), through integrating factors we have the solution form as 

𝑁(𝑡) =
𝜏

𝜇
+ 𝐾𝑒−𝜇𝑡, (7) 

where 𝐾 is constant, and by taking 𝑡 = 0, we have 𝑁(0) =
𝜏

𝜇
+ 𝐾. Therefore, 

𝐾 = 𝑁(0) −
𝜏

𝜇
. (8) 

Applying the value of 𝐾 into equation (7), the solutions of equation (6) with the initial condition 

is  

𝑁(𝑡) =
𝜏

𝜇
+ (𝑁(0) −

𝜏

𝜇
) 𝑒−𝜇𝑡. (9) 

It is clear that lim
𝑡→∞

𝑁(𝑡) =
𝜏

𝜇
, and thus 𝑁(𝑡) is bounded with value 

𝜏

𝜇
. Then we can conclude that 

all solutions in equation (1) are in line with the field 

𝒲 = {(𝑆, 𝑉, 𝐸, 𝐼, 𝑄, 𝑅) ∈ ℝ+
6 : 0 ≤ 𝑁 ≤

𝜏

𝜇
}, 
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with 𝑆(0), 𝑉(0), 𝐸(0), 𝐼(0), 𝑅(0) ∈ 𝒲.                  ⊡ 

Theorem 2. If the initial conditions 𝑆(0), 𝑉(0), 𝐸(0), 𝐼(0), 𝑅(0) ≥ 0 ∈ 𝒲, the general solutions 

of the equation (1) are positive values. 

Proof.  It is obvious to represent that all solutions of the equation (1) are non-negative values 

𝑑𝑆(𝑡)

𝑑𝑡
|
𝑆=0

= (1 − 𝛿)𝜏 > 0,      
𝑑𝑉(𝑡)

𝑑𝑡
|
𝑉=0

= 𝛿𝜏 + (𝜃 + 𝑢2(𝑡))𝑆(𝑡) > 0  

𝑑𝐸(𝑡)

𝑑𝑡
|
𝐸=0

= (1 − 𝑢1(𝑡))𝛽𝐼(𝑡) + 𝛾𝑉(𝑡) ≥ 0,
𝑑𝐼(𝑡)

𝑑𝑡
|
𝐼=0

= 𝜋𝐸(𝑡) ≥ 0 

𝑑𝑄(𝑡)

𝑑𝑡
|
𝑄=0

= 𝛼𝐸(𝑡) + 𝜔𝐼(𝑡) ≥ 0,
𝑑𝑅(𝑡)

𝑑𝑡
|
𝑅=0

= 𝜂𝑄(𝑡) + 𝑢3(𝑡)𝐸(𝑡) + 𝑢4(𝑡)𝐼(𝑡) ≥ 0, 

which summarizes all of the results as positive values.               ⊡ 

3.2 Uniqueness and Existence Of Solution 

In this passage, we present about the existence properties and uniqueness properties of the 

equation system (1). By recalling the equation (1) in the form other as 

𝑓𝑆(𝑡, 𝜓) = (1 − 𝛿)𝜏 − (𝜇 + 𝜃 + (1 − 𝑢1)𝛽(𝐸 + 𝐼) + 𝑢2)𝑆 

𝑓𝑉(𝑡, 𝜓) = 𝛿𝜏 − (𝛾 + 𝜇)𝑉 + (𝜃 + 𝑢2)𝑆 

𝑓𝐸(𝑡, 𝜓) = (1 − 𝑢1)𝛽𝑆𝐼 + 𝛾𝑉 + ((1 − 𝑢1)𝛽𝑆 − 𝜇 − 𝛼 − 𝜋 − 𝑢3)𝐸 

𝑓𝐼(𝑡, 𝜓) = 𝜋𝐸 − (𝜔 + 𝜇 + 𝑢4)𝐼 

𝑓𝑄(𝑡, 𝜓) = 𝛼𝐸 + 𝜔𝐼 − (𝜂 + 𝜇)𝑄 

𝑓𝑅(𝑡, 𝜓) = 𝜂𝑄 − 𝜇𝑅 + 𝑢3𝐸 + 𝑢4𝐼, 

(10) 

where 𝜓 = (𝑆, 𝑉, 𝐸, 𝐼, 𝑄, 𝑅). 

Theorem 3. Suppose that 𝑓(𝑡, 𝜓) holds the Lipschitz condition 

|𝑓(𝑡, 𝜓1) − 𝑓(𝑡, 𝜓2)| ≤ 𝐾|𝜓1 − 𝜓2|, 

with the pair (𝑡, 𝜓1) and (𝑡, 𝜓2) belong to the feasible region 𝒲, where 𝐾 is a positive constant, 

such that exactly one solution (uniqueness). 
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Proof.  Now, we provided the Lipschitz condition in system (1). Let, we start with the susceptible 

subpopulation of the system (10), and continue to other population classes. 

|𝑓(𝑡, 𝜓𝑆1
) − 𝑓(𝑡, 𝜓𝑆2

)| = |(𝜇 + 𝜃 + (1 − 𝑢1)𝛽(𝐸 + 𝐼) + 𝑢2)(𝑆2 − 𝑆1)| 

 = |𝜇 + 𝜃 + (1 − 𝑢1)𝛽(𝐸 + 𝐼) + 𝑢2||𝑆2 − 𝑆1| 

 ≤ (|𝜇| + |𝜃| + |(1 − 𝑢1)𝛽𝐸 + (1 − 𝑢1)𝛽𝐼| + |𝑢2|)|𝑆1 − 𝑆2| 

 ≤ (𝜇 + 𝜃 + (1 − 𝑢1)𝛽 𝑠𝑢𝑝
𝑡∈𝐷𝑆

|𝐸| + (1 − 𝑢1)𝛽 𝑠𝑢𝑝
𝑡∈𝐷𝑆

|𝐼| + 𝑢2) |𝑆1 − 𝑆2| 

 ≤ (𝜇 + 𝜃 + (1 − 𝑢1)𝛽𝑀𝐸 + (1 − 𝑢1)𝛽𝑀𝐼 + 𝑢2)|𝑆1 − 𝑆2| 

 ≤ 𝐾𝑆|𝑆1 − 𝑆2|, 

where 𝐾𝑆 = (𝜇 + 𝜃 + (1 − 𝑢1)𝛽𝑀𝐸 + (1 − 𝑢1)𝛽𝑀𝐼 + 𝑢2). Furthermore, analogous to the same 

way in the susceptible subtype, we describe the Lipchitz condition to other subpopulations, as 

below:  

|𝑓(𝑡, 𝜓𝑉1
) − 𝑓(𝑡, 𝜓𝑉2

)| = |(𝛾 + 𝜇)(𝑉2 − 𝑉1)| 

 = |𝛾 + 𝜇||𝑉2 − 𝑉1| 

 ≤ (𝛾 + 𝜇)|𝑉1 − 𝑉2| 

 ≤ 𝐾𝑉|𝑉1 − 𝑉2| 

where 𝐾𝑉 = (𝛾 + 𝜇). 

|𝑓(𝑡, 𝜓𝐸1
) − 𝑓(𝑡, 𝜓𝐸2

)| = |((1 − 𝑢1)𝛽𝑆 − 𝜇 − 𝛼 − 𝜋 − 𝑢3)(𝐸1 − 𝐸2)| 

 = |(1 − 𝑢1)𝛽𝑆 − 𝜇 − 𝛼 − 𝜋 − 𝑢3||𝐸1 − 𝐸2| 

 ≤ (|(1 − 𝑢1)𝛽𝑆| + |𝜇| + |𝛼| + |𝜋| + |𝑢3|)|𝐸1 − 𝐸2| 

 ≤ ((1 − 𝑢1)𝛽 𝑠𝑢𝑝
𝑡∈𝐷𝐸

|𝑆| + 𝜇 + 𝛼 + 𝜋 + 𝑢3) |𝐸1 − 𝐸2| 

 ≤ ((1 − 𝑢1)𝛽𝑀𝑆 + 𝜇 + 𝛼 + 𝜋 + 𝑢3)|𝐸1 − 𝐸2| 

 ≤ 𝐾𝐸|𝐸1 − 𝐸2|, 

where 𝐾𝐸 = ((1 − 𝑢1)𝛽𝑀𝑆 + 𝜇 + 𝛼 + 𝜋 + 𝑢3). 
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|𝑓(𝑡, 𝜓𝐼1) − 𝑓(𝑡, 𝜓𝐼2)| = |(𝜔 + 𝜇 + 𝑢4)(𝐼2 − 𝐼1)| 

 = |𝜔 + 𝜇 + 𝑢4||𝐼2 − 𝐼1| 

 ≤ (𝜔 + 𝜇 + 𝑢4)|𝐼1 − 𝐼2| 

 ≤ 𝐾𝐼|𝑆1 − 𝑆2|, 

where 𝐾𝐼 = (𝜔 + 𝜇 + 𝑢4). 

 

|𝑓(𝑡, 𝜓𝑄1
) − 𝑓(𝑡, 𝜓𝑄2

)| = |(𝜂 + 𝜇)(𝑄2 − 𝑄1)| 

 = |(𝜂 + 𝜇)||𝑄2 − 𝑄1| 

 ≤ (𝜂 + 𝜇)|𝑄1 − 𝑄2| 

 ≤ 𝐾𝑄|𝑄1 − 𝑄2|, 

where 𝐾𝑄 = (𝜂 + 𝜇). 

|𝑓(𝑡, 𝜓𝑅1
) − 𝑓(𝑡, 𝜓𝑅2

)| = |𝜇(𝑅2 − 𝑅1)| 

 ≤ 𝜇|𝑅1 − 𝑅2| 

 ≤ 𝐾𝑅|𝑅1 − 𝑅2|, 

where 𝐾𝑅 = 𝜇. Therefore, system (1) holds on to the Lipchitz conditions, and thus model admits a 

unique solution. 

Theorem 4. Suppose that 𝑓(𝑡, 𝜓) has a continuous partial derivative and satisfies a Lipschitz 

condition such that there exists a solution of the system that is bounded. 

Proof.  By taking the right side of the system (10), then obvious that 
𝜕𝑓𝑖

𝜕𝜓𝑗
 is continuous and |

𝜕𝑓𝑖

𝜕𝜓𝑗
| <

∞,  with the set 𝑖, 𝑗 = 𝑆, 𝑉, 𝐸, 𝐼, 𝑄, 𝑅. From the susceptible class equation, we have the partial 

derivate as follows, 

𝜕𝑓𝑆
𝜕𝑆

= −(𝜇 + 𝜃) − (1 − 𝑢1)𝛽(𝐸 + 𝐼) − 𝑢2, then 

|
𝜕𝑓𝑆
𝜕𝑆

| = |−(𝜇 + 𝜃) − (1 − 𝑢1)𝛽(𝐸 + 𝐼) − 𝑢2| < ∞. 
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𝜕𝑓𝑉
𝜕𝑉

= −(𝛾 + 𝜇), then    |
𝜕𝑓𝑉
𝜕𝑉

| = |−(𝛾 + 𝜇)| < ∞. 

𝜕𝑓𝐸
𝜕𝐸

= (1 − 𝑢1)𝛽𝐼 − (𝜇 + 𝛼 + 𝜋) − 𝑢3, then 

|
𝜕𝑓𝐸
𝜕𝐸

| = |(1 − 𝑢1)𝛽𝐼 − (𝜇 + 𝛼 + 𝜋) − 𝑢3| < ∞. 

𝜕𝑓𝐼
𝜕𝐼

= −(𝜔 + 𝜇 + 𝑢4), then   |
𝜕𝑓𝐼
𝜕𝐼

| = |−(𝜔 + 𝜇 + 𝑢4)| < ∞. 

𝜕𝑓𝑄
𝜕𝑄

= −(𝜂 + 𝜇), then  |
𝜕𝑓𝑄
𝜕𝑄

| = |−(𝜂 + 𝜇)| < ∞.  
𝜕𝑓𝑅
𝜕𝑅

= −𝜇, then |
𝜕𝑓𝑅
𝜕𝑅

| = |−𝜇| < ∞. 

Then, analogous to the above in susceptible subpopulations, we obtain that all systems (10) are 

continuous and bounded. 

 

4. CHARACTERIZATION OF OPTIMAL CONTROL PROBLEMS 

4.1 The Functional Objective 

The goal of control characteristic is to be carried out with the best value criteria of the model 

(1). Then the following section, we elaborate on an optimum control condition to figure out by 

using the minimum functional objective, such that 

𝐽(𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡))  

= ∫(𝐸(𝑡) + 𝐼(𝑡) + 𝐶1𝑢1
2(𝑡) + 𝐶2𝑢2

2(𝑡) + 𝐶3𝑢3
2(𝑡) + 𝐶4𝑢4

2(𝑡))𝑑𝑡

𝑡𝑓

𝑡0

. 

(11) 

Thus, functional objective equations were created to minimize the exposed and infected 

subpopulation. While the parameters 𝐶1, 𝐶2,  𝐶3, and 𝐶4 represent the weight of the effort required 

to implement the control process. By recalling all nonnegative parameters in a functional objective, 

we derive the best control 𝑢1
∗(𝑡), 𝑢2

∗(𝑡), 𝑢3
∗(𝑡), and 𝑢4

∗(𝑡) such that: 

𝐽(𝑢1
∗(𝑡), 𝑢2

∗(𝑡), 𝑢3
∗(𝑡), 𝑢4

∗(𝑡)) = min{𝐽(𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), (𝑡), 𝑢4(𝑡))}, (12) 

where the 𝑢𝑖(𝑡) ∈ 𝒰, 𝑖 = 1,2,3,4, 𝑡 = [𝑡0, 𝑡𝑓] and the regard domain is 

𝒰 = {(𝑢𝑖(𝑡))|0 ≤ 𝑢𝑖(𝑡) ≤ 1, 𝑖 = 1,2,3,4}. 
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Therefore, we have an existence condition of control problem (3) in the system (1), provided by 

the succeeding theorem. 

Theorem 5. Suppose any control variable 𝒰 = (𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), (𝑡), 𝑢4(𝑡))  exists in the 

system (1), such that the following term is hold 

min
𝑢∈𝒰

𝐽(𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), (𝑡), 𝑢4(𝑡)) = 𝐽(𝑢1
∗(𝑡), 𝑢2

∗(𝑡), 𝑢3
∗(𝑡), 𝑢4

∗(𝑡)). 

Proof. Based on the analysis in [42], [43], we determine that the optimal control will exist in the 

system (1), if several conditions below are satisfied. 

1. The control 𝒰 is not an empty set. 

It is obvious, that giving control can realize the objective function. By using the contradiction 

proof, suppose we set the functional objective below 

max 𝐽(�⃗� )  = ∫(𝐸(𝑡) + 𝐼(𝑡) + 𝐶1𝑢1
2(𝑡) + 𝐶2𝑢2

2(𝑡) + 𝐶3𝑢3
2(𝑡) + 𝐶4𝑢4

2(𝑡))𝑑𝑡

𝑡𝑓

𝑡0

. 

It means that the goal of the objective function is to maximize the exposed and infected 

subpopulation. On the other side, we have that the range 𝑡 = [𝑡0, 𝑡𝑓] is bounded i.e. there is a 

process to restrain disease. Then, the control variable must be a minimum form 

min 𝐽(�⃗� )  = ∫(𝐸(𝑡) + 𝐼(𝑡) + 𝐶1𝑢1
2(𝑡) + 𝐶2𝑢2

2(𝑡) + 𝐶3𝑢3
2(𝑡) + 𝐶4𝑢4

2(𝑡))𝑑𝑡

𝑡𝑓

𝑡0

, 

and proved that control is not an empty set. 

2. The set of control 𝒰 is convex and closed. 

a. Let 𝑢 ∈ 𝒰, and 𝑢′ ∈ 𝒰, will be shown that 𝑧 = 𝜃𝑢 + (1 − 𝜃)𝑢′ ∈ 𝒰, ∀θ ∈ [0,1]. It is 

clear, if 𝜃𝑢 ≤ 𝜃  and (1 − 𝜃)𝑢′ ≤ (1 − 𝜃) , then we obtain 𝜃𝑢 + (1 − 𝜃)𝑢′ ≤ 𝜃 +

(1 − 𝜃) = 1. Finally, obtained 0 ≤ 𝜃𝑢 + (1 − 𝜃)𝑢′ ≤ 1, ∀𝑢 ∈ 𝒰, and ∀θ ∈ [0,1]. Then, 

the set of control 𝒰 is a convex set. 

b. Suppose the anything of control 𝑢 ∉ [𝑎, 𝑏], it means 𝑢 < 𝑎 or 𝑢 > 𝑏. Now, if 𝑢 < 𝑎, then 

exist 𝜖𝑢 = |𝑢 − 𝑎| > 0, such that we have the intersection of the set and the neighborhood 
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of control is an empty set,  [𝑎, 𝑏] ∩ 𝑉𝜖(𝑢) = ∅. If 𝑢 > 𝑏𝑎, then exist 𝜖𝑢 = |𝑢 − 𝑏| > 0, such 

that we get the intersection of the set and the neighborhood of control is an empty set,  

[𝑎, 𝑏] ∩ 𝑉𝜖(𝑢) = ∅. So, the control 𝑢 is a closed set, where 𝑢 ∈  𝒰. 

3. The right-hand equation of the systems (1) is bounded by some control design and linear 

function. 

Based on the system (1), we manipulate to matrix form, namely 

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑑𝑆(𝑡)

𝑑𝑡
𝑑𝑉(𝑡)

𝑑𝑡
𝑑𝐸(𝑡)

𝑑𝑡
𝑑𝐼(𝑡)

𝑑𝑡
𝑑𝑄(𝑡)

𝑑𝑡
𝑑𝑅(𝑡)

𝑑𝑡 ]
 
 
 
 
 
 
 
 
 
 
 
 

 = 

[
 
 
 
 
 
 

−(𝜇 + 𝜃)𝑆 − 𝛽𝑆(𝐸 + 𝐼)

𝜃𝑆 − (𝛾 + 𝜇)𝑉

𝛽𝑆(𝐸 + 𝐼) + 𝛾𝑉 − (𝜇 + 𝛼 + 𝜋)𝐸

𝜋𝐸 − (𝜔 + 𝜇)𝐼

𝛼𝐸 + 𝜔𝐼 − (𝜂 + 𝜇)𝑄
𝜂𝑄 − 𝜇𝑅 ]

 
 
 
 
 
 

+ 

[
 
 
 
 
 

𝑢1𝛽𝑆(𝐸 + 𝐼) − 𝑢2𝑆
𝑢2𝑆

−𝑢1𝛽𝑆(𝐸 + 𝐼) − 𝑢3𝐸
𝑢4𝐼
0

𝑢3𝐸 + 𝑢4𝐼 ]
 
 
 
 
 

+

[
 
 
 
 
 
(1 − 𝛿)𝜏

𝛿𝜏
0
0
0
0 ]

 
 
 
 
 

 

 

=

[
 
 
 
 
 

0
𝜃𝑆

𝛽𝑆(𝐸 + 𝐼) + 𝛾𝑉
𝜋𝐸

𝛼𝐸 + 𝜔𝐼
𝜂𝑄 ]

 
 
 
 
 

− 

[
 
 
 
 
 
(𝜇 + 𝜃)𝑆 + 𝛽𝑆(𝐸 + 𝐼)

(𝛾 + 𝜇)𝑉
(𝜇 + 𝛼 + 𝜋)𝐸

(𝜔 + 𝜇)𝐼
(𝜂 + 𝜇)𝑄

𝜇𝑅 ]
 
 
 
 
 

+ 

[
 
 
 
 
 
𝑢1𝛽𝑆(𝐸 + 𝐼)

𝑢2𝑆
0

𝑢4𝐼
0

𝑢3𝐸 + 𝑢4𝐼 ]
 
 
 
 
 

−

[
 
 
 
 
 

𝑢2𝑆
𝑢2𝑆

𝑢1𝛽𝑆(𝐸 + 𝐼) + 𝑢3𝐸
0
0
0 ]

 
 
 
 
 

+

[
 
 
 
 
 
(1 − 𝛿)𝜏

𝛿𝜏
0
0
0
0 ]

 
 
 
 
 

 

 

<

[
 
 
 
 
 

0
𝜃𝑆

𝛽𝑆(𝐸 + 𝐼) + 𝛾𝑉
𝜋𝐸

𝛼𝐸 + 𝜔𝐼
𝜂𝑄 ]

 
 
 
 
 

+ 

[
 
 
 
 
 
𝑢1𝛽𝑆(𝐸 + 𝐼)

𝑢2𝑆
0

𝑢4𝐼
0

𝑢3𝐸 + 𝑢4𝐼 ]
 
 
 
 
 

+

[
 
 
 
 
 
(1 − 𝛿)𝜏

𝛿𝜏
0
0
0
0 ]
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≤
|

|

[
 
 
 
 
 

0
𝜃𝑆

𝛽𝑆(𝐸 + 𝐼) + 𝛾𝑉
𝜋𝐸

𝛼𝐸 + 𝜔𝐼
𝜂𝑄 ]

 
 
 
 
 

|

|
+

|

|

[
 
 
 
 
 
𝑢1𝛽𝑆(𝐸 + 𝐼)

𝑢2𝑆
0

𝑢4𝐼
0

𝑢3𝐸 + 𝑢4𝐼 ]
 
 
 
 
 

|

|
+

|

|

[
 
 
 
 
 
(1 − 𝛿)𝜏

𝛿𝜏
0
0
0
0 ]

 
 
 
 
 

|

|
≤ �⃗⃗� =

[
 
 
 
 
 
𝑀1

𝑀2

𝑀3

𝑀4

𝑀5

𝑀6]
 
 
 
 
 

 

Obvious that the right-part side of the system (1) is bounded by some control design and linear 

function. 

4. The integrand of the functional objective is convex in region 𝒰 

Take any variable 𝑢𝑖 , 𝑣𝑗 ∈ 𝒰, with 𝑖, 𝑗 = 1,2,3,4, and interval of 0 ≤ 𝜃 ≤ 1. In this part, 

will be shown that 

𝐽((1 − 𝜃)�⃗� (𝑡) + 𝜃𝑣 (𝑡)) ≤ (1 − 𝜃)𝐽(�⃗� (𝑡)) + 𝜃𝐽(𝑣 (𝑡)), (13) 

with �⃗� = (𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡))
𝑇

, and 𝑣 = (𝑣1(𝑡), 𝑣(𝑡), 𝑣3(𝑡), 𝑣4(𝑡))
𝑇
. Then, by 

implementing the objective function (11) into equation (13), such that 

𝐸(𝑡) + 𝐼(𝑡) + 𝐶1((1 − 𝜃)𝑢1(𝑡) + 𝜃𝑣1(𝑡))
2
+ 𝐶2((1 − 𝜃)𝑢2(𝑡) + 𝜃𝑣2(𝑡))

2

+ 𝐶3((1 − 𝜃)𝑢3(𝑡) + 𝜃𝑣3(𝑡))
2
+ 𝐶4((1 − 𝜃)𝑢4(𝑡) + 𝜃𝑣4(𝑡))

2

≤ (1 − 𝜃)(𝐸(𝑡) + 𝐼(𝑡) + 𝐶1𝑢1
2(𝑡) + 𝐶2𝑢2

2(𝑡) + 𝐶3𝑢3
2(𝑡) + 𝐶4𝑢4

2(𝑡))

+ 𝜃(𝐸(𝑡) + 𝐼(𝑡) + 𝐶1𝑢1
2(𝑡) + 𝐶2𝑢2

2(𝑡) + 𝐶3𝑢3
2(𝑡) + 𝐶4𝑢4

2(𝑡)). 

(14) 

Next, by operating and arranging the equation (14) that we have the detail and equivalent 

representation term 

(1 − 𝜃)𝐶1𝑢1
2(𝑡) + 𝜃𝐶1𝑣1

2(𝑡) − 𝐶1(1 − 𝜃)2𝑢1
2(𝑡) − 2𝐶1(1 − 𝜃)𝜃𝑢1(𝑡)𝑣1(𝑡) − 𝐶1𝜃

2𝑣1
2

+ (1 − 𝜃)𝐶2𝑢2
2(𝑡) + 𝜃𝐶2𝑣2

2(𝑡) − 𝐶2(1 − 𝜃)2𝑢2
2(𝑡)

− 2𝐶2(1 − 𝜃)𝜃𝑢2(𝑡)𝑣2(𝑡) − 𝐶2𝜃
2𝑣2

2 + (1 − 𝜃)𝐶3𝑢3
2(𝑡) + 𝜃𝐶3𝑣3

2(𝑡)

− 𝐶3(1 − 𝜃)2𝑢3
2(𝑡) − 2𝐶3(1 − 𝜃)𝜃𝑢3(𝑡)𝑣3(𝑡) − 𝐶3𝜃

2𝑣1
2 + (1 − 𝜃)𝐶4𝑢4

2(𝑡)

+ 𝜃𝐶4𝑣4
2(𝑡) − 𝐶4(1 − 𝜃)2𝑢4

2(𝑡) − 2𝐶4(1 − 𝜃)𝜃𝑢4(𝑡)𝑣4(𝑡) − 𝐶4𝜃
2𝑣4

2 ≥ 0, 
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𝐶1𝑢1
2(𝑡)((1 − 𝜃) − (1 − 𝜃)2) + 𝐶1𝜃𝑣1

2(𝑡)(1 − 𝜃) − 2𝐶1(1 − 𝜃)𝜃𝑢1(𝑡)𝑣1(𝑡)

+ 𝐶2𝑢2
2(𝑡)((1 − 𝜃) − (1 − 𝜃)2) + 𝐶2𝜃𝑣2

2(𝑡)(1 − 𝜃)

− 2𝐶2(1 − 𝜃)𝜃𝑢2(𝑡)𝑣2(𝑡) + 𝐶3𝑢3
2(𝑡)((1 − 𝜃) − (1 − 𝜃)2)

+ 𝐶3𝜃𝑣3
2(𝑡)(1 − 𝜃) − 2𝐶3(1 − 𝜃)𝜃𝑢3(𝑡)𝑣3(𝑡)

+ 𝐶4𝑢4
2(𝑡)((1 − 𝜃) − (1 − 𝜃)2) + 𝐶4𝜃𝑣4

2(𝑡)(1 − 𝜃)

− 2𝐶4(1 − 𝜃)𝜃𝑢4(𝑡)𝑣4(𝑡) ≥ 0, 

𝐶1𝜃((1 − 𝜃)𝑢1
2(𝑡) − 2(1 − 𝜃)𝑢1(𝑡)𝑣1(𝑡) + (1 − 𝜃)𝑣1

2(𝑡))

+ 𝐶2𝜃((1 − 𝜃)𝑢2
2(𝑡) − 2(1 − 𝜃)𝑢2(𝑡)𝑣2(𝑡) + (1 − 𝜃)𝑣2

2(𝑡))

+ 𝐶3𝜃((1 − 𝜃)𝑢3
2(𝑡) − 2(1 − 𝜃)𝑢3(𝑡)𝑣3(𝑡) + (1 − 𝜃)𝑣3

2(𝑡))

+ 𝐶4𝜃((1 − 𝜃)𝑢4
2(𝑡) − 2(1 − 𝜃)𝑢4(𝑡)𝑣4(𝑡) + (1 − 𝜃)𝑣4

2(𝑡)) ≥ 0, 

𝐶1𝜃 (√(1 − 𝜃)𝑢1(𝑡) − √(1 − 𝜃)𝑣1(𝑡))
2

+ 𝐶2𝜃 (√(1 − 𝜃)𝑢2(𝑡) − √(1 − 𝜃)𝑣2(𝑡))
2

+ 𝐶3𝜃 (√(1 − 𝜃)𝑢3(𝑡) − √(1 − 𝜃)𝑣3(𝑡))
2

+ 𝐶4𝜃 (√(1 − 𝜃)𝑢4(𝑡) − √(1 − 𝜃)𝑣4(𝑡))
2

≥ 0. 

Therefore, the integrand value of the functional objective is convexity. 

5. The integrand of functional objectives is bounded 

If there are parameters ξ1 > 𝐶1, 𝜉2 > 𝐶2, 𝜉3 > 𝐶3, 𝜉4 > 𝐶4, and variable 𝐸(𝑡), 𝐼(𝑡) bounded 

by the interval [𝑡0. 𝑡𝑓], such that we have the size of exposed population 𝐸(𝑡) ≤ 𝐸(𝑡𝑓), and 

𝐼(𝑡) ≤ 𝐼(𝑡𝑓). Hence, the objective function (11), 

𝐸(𝑡) + 𝐼(𝑡) + 𝐶1𝑢1
2(𝑡) + 𝐶2𝑢2

2(𝑡) + 𝐶3𝑢3
2(𝑡) + 𝐶4𝑢4

2(𝑡)

≤ 𝐸(𝑡𝑓) + 𝐼(𝑡𝑓) + 𝜉1𝑢1
2(𝑡) + 𝜉2𝑢2

2(𝑡) + 𝜉3𝑢3
2(𝑡) + 𝜉4𝑢4

2(𝑡)

≤ 𝐸(𝑡𝑓) + 𝐼(𝑡𝑓) + 𝜉1|𝑢1
2|(𝑡) + 𝜉2|𝑢2

2|(𝑡) + 𝜉3|𝑢3
2|(𝑡) + 𝜉4|𝑢4

2|(𝑡) = ℳ. 

Then, obvious that the objective function bounded by the ℳ = 𝐸(𝑡𝑓) + 𝐼(𝑡𝑓) + 𝜉1|𝑢1
2|(𝑡) +

𝜉2|𝑢2
2|(𝑡) + 𝜉3|𝑢3

2|(𝑡) + 𝜉4|𝑢4
2|(𝑡). 
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4.2 The Hamiltonian Function 

Pontryagin Minimum Principle leads to an optimal control condition, that the minimum 

principle brings out the system (1), (11), and (12), into a Hamiltonian model, as shown below: 

𝐻 = 𝐸(𝑡) + 𝐼(𝑡) + 𝐶1𝑢1
2(𝑡) + 𝐶2𝑢2

2(𝑡) + 𝐶3𝑢3
2(𝑡) + 𝐶4𝑢4

2(𝑡)

+ 𝜆𝑆 ((1 − 𝛿)𝜏 − (𝜇 + 𝜃)𝑆(𝑡) − (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)(𝐸(𝑡) + 𝐼(𝑡))

− 𝑢2(𝑡)𝑆(𝑡)) + 𝜆𝑉(𝛿𝜏 + 𝜃𝑆(𝑡) − (𝛾 + 𝜇)𝑉(𝑡) + 𝑢2(𝑡)𝑆(𝑡))

+ 𝜆𝐸 ((1 − 𝑢1(𝑡))𝛽𝑆(𝑡)(𝐸(𝑡) + 𝐼(𝑡)) + 𝛾𝑉(𝑡) − (𝜇 + 𝛼 + 𝜋)𝐸(𝑡)

− 𝑢3(𝑡)𝐸(𝑡)) + 𝜆𝐼(𝜋𝐸(𝑡) − (𝜔 + 𝜇)𝐼(𝑡) − 𝑢4(𝑡)𝐼(𝑡))

+ 𝜆𝑄(𝛼𝐸(𝑡) + 𝜔𝐼(𝑡) − (𝜂 + 𝜇)𝑄(𝑡))

+ 𝜆𝑅(𝜂𝑄(𝑡) − 𝜇𝑅(𝑡) + 𝑢3(𝑡)𝐸(𝑡) + 𝑢4(𝑡)𝐼(𝑡)), 

(15) 

and some costate (adjoint) variables denoted by 𝜆𝑆, 𝜆𝑉, 𝜆𝐸 , 𝜆𝐼 , 𝜆𝑄 , 𝜆𝑅. Hence, the optimal control 

theorem is figured by using Pontryagin's Minimum Principle, which is denoted by the following 

theorem. 

Theorem 6. If any control 𝑢1
∗(𝑡), 𝑢2

∗(𝑡), 𝑢3
∗(𝑡), 𝑢4

∗(𝑡), 𝑢5
∗(𝑡)  exist, and the well solution of 

𝑆∗(𝑡), 𝑉∗(𝑡), 𝐸∗(𝑡), 𝐼∗(𝑡),  𝑄∗(𝑡),  𝑅∗(𝑡)  holds on the autonomous system (1), that reduces 

𝐽(𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡)) in 𝒰. Therefore, the adjoint (costate) variables 𝜆𝑆, 𝜆𝑉 , 𝜆𝐸 , 𝜆𝐼 , 𝜆𝑄 , 𝜆𝑅 

exist and all the variables satisfy the equations system, 

𝑑𝜆𝑆

𝑑𝑡
= 𝜆𝑆(𝜇 + 𝜃 + (1 − 𝑢1(𝑡))𝛽(𝐸(𝑡) + 𝐼(𝑡)) + 𝑢2(𝑡)) − 𝜆𝑉(𝜃 + 𝑢2(𝑡))  

− 𝜆𝐸 ((1 − 𝑢1(𝑡))𝛽(𝐸(𝑡) + 𝐼(𝑡))) 

𝑑𝜆𝑉

𝑑𝑡
= 𝜆𝑉(𝛾 + 𝜇) − 𝜆𝐸𝛾 

𝑑𝜆𝐸

𝑑𝑡
= −1 + 𝜆𝑆(1 − 𝑢1(𝑡))𝛽𝑆(𝑡) − 𝜆𝐸 ((1 − 𝑢1(𝑡))𝛽𝑆(𝑡) − (𝜇 + 𝛼 + 𝜋) − 𝑢3(𝑡))

− 𝜆𝐼𝜋 − 𝜆𝑄𝛼 − 𝜆𝑅𝑢3(𝑡) 

(16) 
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𝑑𝜆𝐼

𝑑𝑡
= −1 + 𝜆𝑆(1 − 𝑢1(𝑡))𝛽𝑆(𝑡) − 𝜆𝐸(1 − 𝑢1(𝑡))𝛽𝑆(𝑡) + 𝜆𝐼(𝜔 + 𝜇 + 𝑢4(𝑡)) − 𝜆𝑄𝜔

− 𝜆𝑅𝑢4(𝑡) 

𝑑𝜆𝑄

𝑑𝑡
= 𝜆𝑄(𝜂 + 𝜇) − 𝜆𝑅𝜂 

𝑑𝜆𝑅

𝑑𝑡
= 𝜆𝑅𝜇. 

Incorporate the transversality condition 𝜆𝑆(𝑡𝑓) =  𝜆𝑉(𝑡𝑓) = 𝜆𝐸(𝑡𝑓) =  𝜆𝐼(𝑡𝑓) = 𝜆𝑄(𝑡𝑓) =

𝜆𝑅(𝑡𝑓) = 0, such that the best value of control sets 𝑢1
∗(𝑡), 𝑢2

∗(𝑡), 𝑢3
∗(𝑡) and 𝑢4

∗(𝑡) are provided by 

𝑢1
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 (0,

(𝜆𝐸 − 𝜆𝑆)𝛽𝑆(𝑡)(𝐸(𝑡) + 𝐼(𝑡))

2𝐶1
) , 1} 

𝑢2
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 (0,

(𝜆𝑆 − 𝜆𝑉)𝑆(𝑡)

2𝐶2
) , 1} 

𝑢3
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 (0,

(𝜆𝐸 − 𝜆𝑅)𝐸(𝑡)

2𝐶3
) , 1} 

𝑢3
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 (0,

(𝜆𝐼 − 𝜆𝑅)𝐼(𝑡)

2𝐶4
) , 1} 

(17) 

Proof:  According to the convexity theorem of functional objective 𝐽(𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡)) 

and involved into Lipschitz criteria of the state autonomous system. Working through Pontryagin's 

Minimum Principle, we can examine for the existence condition of an optimum control. The 

costate variables are achieved by differentiating the Hamiltonian function toward the state variable, 

and the autonomous system is directly identified below. 

𝑑𝜆𝑆

𝑑𝑡
= 𝜆𝑆(𝜇 + 𝜃 + (1 − 𝑢1(𝑡))𝛽(𝐸(𝑡) + 𝐼(𝑡)) + 𝑢2(𝑡)) − 𝜆𝑉(𝜃 + 𝑢2(𝑡))  

− 𝜆𝐸 ((1 − 𝑢1(𝑡))𝛽(𝐸(𝑡) + 𝐼(𝑡))) 

𝑑𝜆𝑉

𝑑𝑡
= 𝜆𝑉(𝛾 + 𝜇) − 𝜆𝐸𝛾 

𝑑𝜆𝐸

𝑑𝑡
= −1 + 𝜆𝑆(1 − 𝑢1(𝑡))𝛽𝑆(𝑡) − 𝜆𝐸 ((1 − 𝑢1(𝑡))𝛽𝑆(𝑡) − (𝜇 + 𝛼 + 𝜋) − 𝑢3(𝑡)) − 𝜆𝐼𝜋

− 𝜆𝑄𝛼 − 𝜆𝑅𝑢3(𝑡) 
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𝑑𝜆𝐼

𝑑𝑡
= −1 + 𝜆𝑆(1 − 𝑢1(𝑡))𝛽𝑆(𝑡) − 𝜆𝐸(1 − 𝑢1(𝑡))𝛽𝑆(𝑡) + 𝜆𝐼(𝜔 + 𝜇 + 𝑢4(𝑡)) − 𝜆𝑄𝜔

− 𝜆𝑅𝑢4(𝑡) 

𝑑𝜆𝑄

𝑑𝑡
= 𝜆𝑄(𝜂 + 𝜇) − 𝜆𝑅𝜂 

𝑑𝜆𝑅

𝑑𝑡
= 𝜆𝑅𝜇. 

with the condition transfer 𝜆𝑆(𝑡𝑓) =  𝜆𝑉(𝑡𝑓) = 𝜆𝐸(𝑡𝑓) =  𝜆𝐼(𝑡𝑓) = 𝜆𝑄(𝑡𝑓) = 𝜆𝑅(𝑡𝑓) = 0 . 

Further step is an optimal control can be shown by differentiating of Hamiltonian toward the 

control variables, and calculating the outcome to be zero, such that 

𝜕𝐻

𝜕𝑢1(𝑡)
= 2𝐶1𝑢1(𝑡) + 𝜆𝑆𝛽𝑆(𝑡)(𝐸(𝑡) + 𝐼(𝑡)) − 𝜆𝐸𝛽𝑆(𝑡)(𝐸(𝑡) + 𝐼(𝑡)) = 0 

𝜕𝐻

𝜕𝑢2(𝑡)
= 2𝐶2𝑢2(𝑡) − 𝜆𝑆𝑆(𝑡) + 𝜆𝑉𝑆(𝑡) = 0 

𝜕𝐻

𝜕𝑢3(𝑡)
= 2𝐶3𝑢3(𝑡) − 𝜆𝐸𝐸(𝑡) + 𝜆𝑅𝐸(𝑡) = 0 

𝜕𝐻

𝜕𝑢4(𝑡)
= 2𝐶4𝑢4(𝑡) − 𝜆𝐼𝐼(𝑡) + 𝜆𝑅𝐼(𝑡) = 0. 

Consequently, it is clear that an optimization problem gives 

𝑢1
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 (0,

(𝜆𝐸 − 𝜆𝑆)𝛽𝑆(𝑡)(𝐸(𝑡) + 𝐼(𝑡))

2𝐶1
) , 1} 

𝑢2
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 (0,

(𝜆𝑆 − 𝜆𝑉)𝑆(𝑡)

2𝐶2
) , 1} 

𝑢3
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 (0,

(𝜆𝐸 − 𝜆𝑅)𝐸(𝑡)

2𝐶3
) , 1} 

𝑢4
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 (0,

(𝜆𝐼 − 𝜆𝑅)𝐼(𝑡)

2𝐶4
) , 1}. 
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5. NUMERICAL SIMULATIONS 

To back up and confirm the analytical works of the optimum control theorem previously. 

Using the MATLAB program, we show a numerical of a system (2). In this passage, we perform 

the weight value for the functional objective are 𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 0,75  and some initial 

condition values are 𝑆(0) = 10, 𝑉(0) = 2, 𝐸(0) = 2, 𝐼(0) = 𝑄(0) = 𝑅(0) = 1. According to 

the parameter value in Table 1, we get the number of reproductions 𝑅0 = 653,81 > 1, which 

indicates the spreading of COVID-19 will persist in a population. Hence, implementing an optimal 

control to reduce COVID-19 disease must be carried out to minimize the disease, and will be 

shown in some figures below by using the Runge Kutha method. 

 

Figure 1. Dynamical solution of susceptible subpopulation (𝑆) without control and with control 
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Figure 2. Dynamical solution of vaccination subpopulation (𝑉) without control and with control 

 

Figure 1 demonstrates the dynamical solutions of susceptible subpopulations without control and 

with some controls. We have seen in Figure 1 that the dynamical solution of susceptible without 

control has decreased from the beginning. Hence, the part of the susceptible subpopulation has 
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𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡) and their combination can prevent the size of susceptible subpopulations. 

From the simulation, we know that the best control to prevent the susceptible is control 𝑢1(𝑡) rates, 

namely the effort to handle the direct interaction between susceptible with the exposed and infected 

subpopulation is impactfully. Figure 2 illustrates the size transformation of the vaccinated 

subpopulation, according to the simulation, all of the controls can keep the density of the 

vaccinated subpopulation without applying control, and the best strategy was combining the all of 

control variables. 
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Figure 3. Dynamical solution of exposed subpopulation (𝐸) without control and with control 

 

 

Figure 4. Dynamical solution of infected subpopulation (𝐼) without control and with control 
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In this part and based on Figure 3, we describe that the control variable seems good to reduce the 

size number of the exposed population from the start in implementing all controls. In fact, a control 

𝑢2(𝑡) is not enough good to manage the exposed subpopulation, since it works slowly, and 

additionally, the control 𝑢1(𝑡), 𝑢3(𝑡) works better than other controls. Further, the best strategy is 

to apply the combination of all of the controls to reduce the density of the exposed subpopulation. 

Building upon Figure 4, it is shown that the control 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), and 𝑢4(𝑡) are working 

together to reduce the infected subpopulation. This simulation brings out that the control variable 

is used suitably with the functional objective constructed. 

 

 

Figure 5. Dynamical solution of quarantined subpopulation (𝑄) without control and with control 
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Figure 6. Dynamical solution of recovered subpopulation (𝑅) without control and with control 

 

 

Figure 7. Dynamical profile of control variable 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡) 
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The simulation results in Figure 5 provide an understanding that the application of control variables 

has been able to reduce the density of quarantined. All of the controls have been used through an 

intensive handling process intended for quarantined subpopulations. As a result, it will mitigate 

the size of the quarantined subpopulation by recovering from Covid-19 infection. Figure 6 shows 

that the recovered population has increased very sharply due to several controls. This gives a 

conclusion that the combination of all controls can increase the total of recovered populations. 

Figure 7 illustrates the dynamics of the solution for each control assignment in system (1). Based 

on the simulation, it can be seen that the weight that correlates with the effort to give and apply 

control 𝑢3(𝑡) is greater than the other control variables, then the largest weight lies in the control 

𝑢4 (𝑡) and 𝑢1(𝑡). The application of control 𝑢1(𝑡) looks so significant because, for the 5th time, 

it can control the system (1). However, based on all the simulations that have been carried out, in 

order to realize an optimal objective function (11), the control variables must be carried out 

together. 

 

6. CONCLUSION 

This work, we develop a mathematical system of COVID-19 by adding control variables to 

diminish the spread of COVID-19 disease. Several biological assumptions are used as controls, 

namely efforts to provide education and understanding that COVID-19 transmission can be 

through direct interaction. Other control variables used include vaccine strategy, as well as 

intensive prevention and management of infected and quarantined subpopulations. In addition, the 

constructed optimal control problem is examined about non-negativity properties, boundedness, 

existence condition, and uniqueness criteria of the behavior’s solution. Then, by applying the 

Pontryagin Principle, the characteristics of optimal control problem are obtained, i.e. the existence 

of control variable, and the existence of adjoint equations that hold on the autonomous system. 

Finally, the confirmation is carried out with numerical simulations to support the results of the 

previous investigation. Simulation results suggest that implementing the optimal control problem 
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can decrease the infected and quarantine subpopulations. On the other hand, it follows and does 

not conflict with the functional objective previously that has been formulated. 
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