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Abstract. A bacterial and zoonotic disease called bovine tuberculosis (bTB) can be contracted by breathing in

aerosols, consuming unpasteurized milk, or eating raw meat. The evolution of bovine tuberculosis transmission

in both human and animal populations is investigated in this research using a fractional order model with caputo

sensing and a compartment for human vaccination. The threshold quantity R0 was also constructed using Volterra-

type Lyapunov functions, LaSalle’s invariance principle, and the Routh-Hurwitz criterion to identify the sick state

and provide conditions that guarantee the local and global asymptotic stability of the equilibria. In order to de-

termine the variables that control the dynamics of bTB, we performed a sensitivity study. The analysis indicates

that factors influencing the spread of bTB include the rate of environmental contamination, the rate of bTB trans-

mission from animal to animal, and the rate at which bTB is contracted by people from infected animals and the

environment. However, the disease becomes less common in humans as vaccination rates rise and consumption

of the contaminated environment’s products (meat and dairy products) declines. For the management of bTB, it is

recommended to implement educational initiatives, monitor the environment, treat affected individuals, administer
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immunizations, and confine contaminated animals. Numerical experiments are used to show how useful the found

theoretical results are.

Keywords: fractional order model; zoonotic disease; bovine tuberculosis; vaccination compartiment.
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1. INTRODUCTION

In recent years, Africa has made strides in the fight against tuberculosis (TB), but numer-

ous challenges still stand in the way of efforts to eradicate this avoidable and treatable illness.

Global efforts to eradicate the illness by 2030 appear to be lagging behind schedule at the

present time [1, 2]. Tuberculosis (TB) is a chronic infectious illness that mostly affects the res-

piratory system. Africa had the highest cases, followed by India, China, and Indonesia in order

of prevalence, with 72%, 27%, 9%, and 8%, respectively, according to studies in [3].

COVID-19 has an effect on both TB research and the relationship between TB and care. The

reallocation of resources to the COVID-19 response has made it more difficult for numerous

countries to provide essential services. Many people with tuberculosis have had trouble get-

ting treatment because of the lockdowns. COVID-19 has an impact on the ability to identify

drug-resistant tuberculosis, according to World Health. In 2020, there were 28% fewer cases

recorded in the WHO’s African Region than there were in 2019[1].

Bovine tuberculosis is a zoonotic infectious disease that the OIE (Office International des

Epizooties) designates as a class B animal pandemic. Infected animals can be the main source

of infection for both humans and other animals. The main pathways of transmission are the

gut and respiratory systems. Healthy people and animals can become infected by sick animals

by coming into contact with them or drinking their raw milk, [4], [5]. The disease has a major

negative economic impact due to the slaughter of bTB-infected animals when they become

ill. [5]. Furthermore, bTB has a negative impact on people’s health, which can occasionally

result in fatalities [6]. It may lead to the loss of their self-employment for some employees,

particularly those who depend on raising cattle as their main source of income [7]. Inhaling

aerosols, consuming raw meat, and drinking unpasteurized milk are the three main ways that

bovine tuberculosis spreads from animals to humans. Additional methods that bTB spreads
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among animals include intimate contact between infected and uninfected animals, consumption

of contaminated milk, particularly during lactation, and inhalation of aerosols[8] [9].

The most well-known and often employed method for diagnosing bTB is the intradermal skin

test [10]. According to numerous articles, its main shortcomings are its varying sensitivity and

specificity. Additionally, tuberculosis vaccination techniques hinder this test since sensitized

animals produce false-positive results [9]. A deterministic mathematical model is developed in

[5] to investigate the dynamics of bTB transmission in people and animals living in contami-

nated environments. The fundamental reproduction number R0 is determined to ascertain the

disease’s behavior.According to the sensitivity analysis, the rate of production of dairy products,

the rate of bTB transmission from animal to animal, and the rate at which humans contract bTB

from infected dairy products and animals are what propel bTB transmission.

An intriguing article [11] evaluates the effects of the BCG vaccination on cattle and is based

on a meta-analysis by experts from Ethiopia, the Netherlands, the United States, the United

Kingdom, and India. In endemic locations, BCG vaccination may speed the control of bTB,

according their findings. The immunology of Mycobacterium bovis (Mb) infection has been

covered in some papers. Lung and lymph node lesions, which ultimately lead to the forma-

tion of granulomas, define the pathophysiology of bovine TB. The chronic development and

immunopathology of bTB have many characteristics with those of human TB, according to a

new study by Blanco [9]. Ahmad, Khan, Ahmad, Stanimirovic, and Chu in [12] created the

reaction-diffusion model and used the fractional differential equation to derive standard solu-

tions to the nonlinear partial differential equation. The fractional differential equation, which

may be used in a variety of contexts, is an effective tool for comprehending the dynamics of

diverse life events in fractional order.

In [13], differential equations of integer and fractional orders are used to build mathematical

models for the dynamics of Potato Leaf Roll Virus propagation. The models considered both the

Potato and Vector populations. The potato leaf roll virus (PLRV) model was initially proposed

in integer order, and it was then extended into fractional order since fractional order provides

memory and other benefits for replicating actual events.
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Review of fractional epidemic models is the title of a publication by Chen et al[14]. that

focuses on reviewing various fractional epidemic model types and evaluating the results of

epidemiological modeling, particularly the fractional epidemic model. To address fractional

epidemic models, they created straightforward and efficient analytical procedures that may be

readily expanded and applied to other fractional models. These methods can help the concerned

organizations stop, manage, and even predict infectious disease epidemics.

To the authors’ knowledge, no studies have been conducted to model the transmission of

bovine TB using classes for vaccination and contaminated environment. Therefore, this paper

created a fractional-order mathematical model of bovine TB by accounting for vaccination and

a contaminated environment. According to the findings, lowering the infection rate σA and con-

tact rate σH significantly aids in the management of the TB disease in animal human population

respectively. Additionally, disinfecting by warming the dairy products and cooking very well

the meat has a significant positive impact on the disease’s control. This is because it increases

the elimination rate of contaminated environment ω .

This paper is organized as follows: In Section 2, the formulation and outline of the suggested

model are presented. Section 3’s primary objective is the model’s analysis. Section 4 covers the

numerical simulation of the model. Section 5 concludes with a summary and recommendations.

2. MODEL DESCRIPTION AND FORMULATION

According to their disease condition in the system, the model separates the overall human

and animal populations into seven (7) sub-populations (compartments) at any given time (t),

and another compartment for the contaminated environment Ce.

We have the following assumptions:

(1) It is assumed that birth rates and immigration rates into the susceptible human popula-

tion are stable.

(2) The direct transmission between people, between people and animal, and between ani-

mals follows the usual occurrence.

(3) The model does not have a recovery class because it is presumed that there is no natural

recovery.
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(4) It is believed that after contracting bTB, people or animals take some time before devel-

oping clinical symptoms.

(5) Humans can catch the disease by consuming dairy products and meat from infected

animals.

The sub-populations of Susceptible animal (SA), Exposed animal (EA), and Infectious animal

(IA) make up the overall animal population, denoted by ΩA(t).

The total Animal population becomes:

ΩA(t) = SA(t)+EA(t)+ IA(t).

The total human population also represented by ΩH , is divided into sub-populations of Sus-

ceptible humans (SH), Vaccinated humans VH , Exposed humans EH , and Infected humans IH .

The total human population is given by:

ΩH(t) = SH(t)+VH(t)+EH(t)+ IH(t).

Our current model is formulated by modifying the bovine tuberculosis model for human and

animal which was developed by [5] which have seven compartments.

2.1. Model formulation. The list of variables and parameters used are as below

Symbol Definition

SH Susceptible human population

EH Exposed human population

IH Infected human population

VH Vaccinated human population

SA Susceptible aniamal population

EA Exposed aniamal population

IA Infected aniamal population

Ce Contamineted environment

TABLE 1. Model Variables and their defintions for bovine TB

Humans who are susceptible to bovine tuberculosis are recruited through birth and migration

at a rate of ΛH , and they contract the latent infection through contact with infected humans and
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animals as well as through consumption of raw meat and dairy products from infected animals

at a rate of ΛH .

(1) λH =
η1IH +η2IA +η3Ce

ΩH

A portion of people obtain effective immunizations at a rate of κ , with κ ∈ [0,1]. The fol-

lowing latent infection of susceptible humans SH is enhanced at a rate of λH by the exposed

compartment EH and decreased at a rate of γH by the advancement to the infectious stage. Due

to disease-related deaths, human infections IH grow at γH and diminish at αH .

Every human compartment is subject to natural death at a rate of µH . Humans that have re-

ceived vaccinations may transition to the exposed class at a pace of dλH due to the vaccine’s

effectiveness’s decreasing impact with (1− d) ∈ [0,1]. Humans may become susceptible and

lose their immunity at a rate of φ .

At a rate of ΛA, susceptible animals SA are bred and migrated into populations, where they are

latently infected with bovine tuberculosis through contact with diseased people and animals as

well as dairy consumption.

(2) λA =
η4IH +η5IA +η6Ce

ΩA

After susceptible animals, exposed animals EA increase at a rate of λA as SA become latently

infected. However, as they progress to the infectious stage, they begin to diminish at a rate of

γA. Due to disease-induced death, infected animals IA grow at a rate of γA and drop at a rate of

αA.

Natural mortality occurs at a rate of µA in every animal compartment. As sensitive humans

and animals consume dairy products at rates of η3 and η6, respectively, infected animals pro-

duce dairy products or raw meat at rate of ρ and leak them out at rate of ω .

We will consider the fractional model using Caputo derivatives of order α such that 0 < α <

1.
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FIGURE 1. Schematic diagrams for bovine TB transmission among humans

and animals

In our present work we will use Diethelm’s approach [15], from Figure 1, we have the fol-

lowing system of fractional order equations:

(3)
C
0 Dα

t SH (t) = (1−κ
α)Λ

α
H +φ

αVH −
(

ηα
1 IH +ηα

2 IA +ηα
3 Ce

ΩH

)
SH −µ

α
H SH ,

C
0 Dα

t EH (t) =
(

ηα
1 IH +ηα

2 IA +ηα
3 Ce

ΩH

)
SH +d

(
ηα

1 IH +ηα
2 IA +ηα

3 Ce

ΩH

)
VH − (µα

H +σ
α
H )EH −κ

αEH ,

C
0 Dα

t VH (t) = κ
α

Λ
α
H +κ

αEH − (µα
H +φ

α)VH −d
(

ηα
1 IH +ηα

2 IA +ηα
3 Ce

ΩH

)
VH ,

C
0 Dα

t IH (t) = σ
α
H EH − (µα

H + γ
α
H ) IH ,

C
0 Dα

t SA (t) = Λ
α
A −

(
ηα

4 IH +ηα
5 IA +ηα

6 Ce

ΩA

)
SA−µ

α
A SA,

C
0 Dα

t EA (t) =
(

ηα
4 IH +ηα

5 IA +ηα
6 Ce

ΩA

)
SA− (µα

A +σ
α
A )EA,

C
0 Dα

t IA (t) = σ
α
A EA− (µα

A + γ
α
A ) IA,

C
0 Dα

t Ce (t) = ρ
α IA−ω

αCe
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with initial condition,

SH(0)≥ 0, EH(0)≥ 0, IH(0)≥ 0, VH(0)≥ 0, SA(0)≥ 0, EA(0)≥ 0,

IA(0)≥ 0, Ce(0)≥ 0

where C
0 Dα is the Caputo fractional derivative.

Note that, for simplification, in the following, we will use the notation Dα instead of C
0 Dα .

3. ANALYSIS OF THE MODEL

We look for invariant regions and evaluate the positivity of solutions to see if the model makes

sense mathematically and epidemiologically. When the model’s solutions are both positive and

bounded, it becomes mathematically and biologically significant.

3.1. Invariant Region. The model solutions’ viability is demonstrated by the invariant area.

We use the initials ΩH and ΩA to represent the human and animal groups of individuals, respec-

tively, to examine the viability of the model solutions.

Theorem 3.1. Let Ψ = {(SH(t),EH(t),VH(t), IH(t),SA(t),EA(t), IA(t),Ce(t)) ∈ R8
+ :

0≤ NH ≤ ΛH
µH
∪0≤ NA ≤ ΛA

µA
∪0≤Ce ≤ ΛA

µA

ρ

ω
}

The feasible solution set {(SH(t),EH(t),VH(t), IH(t),SA(t),EA(t), IA(t),Ce(t))} of the system

equation of the model enter and bounded in the region Ψ

Proof of Theorem 3.1. To prove this, let us consider the human population, animal population,

and contaminatted environment separately.

• The fractional derivative of the total human population, obtained by adding all the human

equations of the model (3), is given by

NH(t) = SH(t)+EH(t)+VH(t)+ IH(t)

DαNH = DαSH +DαEH +DαVH +Dα IH

DαNH = Λ
α
H +φ

αVH−λ
α
H SH−κ

αSH−µ
α
H SH +λ

α
H SH− (µα

H +σ
α
H )EH

+κ
α(SH +EH)−µ

α
HVH +σ

α
H EH− (µα

H + γ
α
H )IH

DαNH = Λ
α
H−µ

α
H SH−µ

α
H EH−µ

α
HVH−µ

α
H IH− γ

α
HVH− γ

α
H IH
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(4) DαNH = Λ
α
H−µ

α
H NH− γ

α
H IH

(5) DαNH ≤ Λ
α
H−µ

α
H NH

Note: To make simple the expressions, we’ll do the calculations without α on the right hand

side.

Let us take the Laplace transform [16] of equation (4) on both sides:

(6) L {Dα
t NH(t)}(s)+L {µHNH(t)}(s)≥L {ΛH}(s)

On the LHS:

L {aDα
t NH(t)}(s) = sαNH(t)−∑

n−1
k=0 sα−k−1N(k)

H (0), n−1 < α ≤ n

Here 0 < α < 1, so n = 1,

then, L {Dα
t NH(t)}(s) = sαNH(s)− sα−1NH(0), and

L {µHNH(t)}(s) = µHNH(s)

On the RHS

L {ΛH}(s) = ΛHL {1}

=
ΛH

S

Now the equation (6) becomes:

L {Dα
t NH(t)}(s)+L {µHNH(t)}(s)≥L {ΛH}(s)(7)

sαNH(s)− sα−1NH(0)+µHNH(s)≥
ΛH

S
(8)

NH(s)(sα +µH)≥
ΛH

S
+ sα−1NH(0)(9)

(10)
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Hence, take sα−1NH(0) = 0 at t = 0, [17]

then

(11) NH(s)≥ ΛH
s−1

sα +µH

Taking the inverse Laplace transform of NH(s), and by using the Mittag-Leffler function, we

have:

NH(t)≤ ΛHL −1
{

s−1

sα +µH

}
≤ ΛHtαEα,α+1(−µHtα)

≤ ΛH

µH
[1−Eα(−µHtα)]

(12) NH(t)≤
ΛH

µH
[1−Eα(−µHtα)]

We have µH > 0 and then, as t −→ 0, thus NH(t)−→ ΛH
µH
≥ 0. Therefore

(13) 0≤ NH(t)≤
ΛH

µH

(14) ΨH =

{
(SH ,EH ,VH , IH) ∈ R4

+ : SH +EH +VH + IH ≤
Λα

H
µα

H

}
.

• By the same approach, for animal population, we’ll get:

(15) ΨA =

{
(SA,EA, IA) ∈ R3

+ : SH +EH + IH ≤
Λα

A
µα

A

}
.

• For the case of contaminated environment:

(16) Dα
t Ce(t) = ρ

α IA−ω
αCe,

with the assumption that 0 < IA ≤
Λα

A
µα

A
.

Then we have from the equation (16)

(17) DαCe(t)≤ ρ
α

Λα
A

µα
A
−ω

αCe

Now by taking the Laplace transform of the equation (17) on both sides and using the equality

case, we have:
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(18) L {Dα
t Ce(t)}(s)≤L

{
(ρα

Λα
A

µα
A
)−ω

αCe(t)
}
(s)

Following the same calculus approach in the human population case,

On the LHS,

L {Dα
t Ce(t)}(s) = sαCe(s)− sα−1Ce(0),

On the RHS,

L

{
(ρ

ΛA

µA
)−ωCe(t)

}
(s) = (ρ

ΛA

µA
)L {1}−ωL {Ce(t)}

=
(ρ ΛA

µA
)

S
−ωCe(s)

Now the equation (18) becomes:

(19) Ce(s) = (ρ
ΛA

µA
)

s−1

sα +ω
+

sα−1

sα +ω
Ce(0)

Hence, take sα−1Ce(0) = 0 at t = 0,

then

(20) Ce(s) = (ρ
ΛA

µA
)

s−1

sα +ω

Taking the inverse Laplace transform of (20), we have:

Ce(t) = (ρ
ΛA

µA
)L −1

{
s−1

sα +ω

}
= (ρ

ΛA

µA
)tαEα,α+1(−ωtα)

(21) Ce(t)≤
ΛA

µA

ρ

ω
[1−Eα(−ωtα)]

We have ω > 0 and then, as t −→ 0, thus Ce(t)−→ ΛA
µA

ρ

ω
≥ 0. Therefore

(22) 0≤Ce(t)≤
ΛA

µA

ρ

ω

and so

(23) ΨCe =

{
Ce ∈ R+ : Ce ≤

Λα
A

µα
A

ρα

ωα

}
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The feasible region for the system of fractional differential equations in (3) is given by:

(24) Ψ = ΨH×ΨA×Ψce ⊂ R4
+×R3

+×R+,

which is a positive invariant set.

This shows the boundedness of the solution of the model. �

3.2. Positivity of the Solution. In this section, we showed all the solution of the models

Equation (3) remains positive for future time if their respective initial values are positive.

To establish this second result, we introduce the following lemma.

Lemma 3.1. (Generalized Mean Value Theorem) [18]

Suppose that z(t) ∈C[a,b] and C
0 Dα

t z(t) ∈C[a,b] for 0 < α ≤ 1, then

(25) z(t) = z(a)+
1

Γ(α)
C
0 Dα

t z(η).(t−a)α ,

where a≤ η ≤ t,∀t ∈ (a,b].

Remark 3.1. Assume that z(t) ∈ C[a,b] and C
0 Dα

t z(t) ∈ C[a,b] for 0 < α ≤ 1. It follows from

Lemma (3.1) that if C
0 Dα

t z(t) ≥ 0,∀t ∈ (a,b), then z(t) is increasing for ∀t ∈ [a,b], and if

C
0 Dα

t z(t)≤ 0,∀t ∈ (a,b) then z(t) is decreasing for ∀t ∈ [a,b]

Theorem 3.2. If SH(0),EH(0),VH(0), IH(0),SA(0),EA(0), IA(0),Ce(0) are positives,

then SH(t),EH(t),VH(t), IH(t),SA(t),EA(t), IA(t),Ce(t) are also positives for all time t > 0;

Proof of theorem 3.2. Let us take all the equations of the model in Equation (3) at t = 0, we

have:

C
0 Dα

t SH |SH=0 = (1−κ
α)Λα

H +φ
αVH ≥ 0(26)

C
0 Dα

t EH |EH=0 = λHSH +dλHVH ≥ 0(27)

C
0 Dα

t VH |VH=0 = κ
α

Λ
α
H +κ

αEH ≥ 0(28)

C
0 Dα

t IH |IH=0 = σ
α
H EH ≥ 0(29)

C
0 Dα

t SA|SA=0 = Λ
α
A > 0(30)

C
0 Dα

t EA|EA=0 = λASA ≥ 0(31)
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C
0 Dα

t IA|IA=0 = σ
α
A EA ≥ 0(32)

C
0 Dα

t Ce|Ce=0 = ρ
α IA ≥ 0(33)

Since SH(0),EH(0),VH(0), IH(0),SA(0),EA(0), IA(0),Ce(0) are positives, according to (26)-

(33) and the remark (3.1), the solution (SH(t),EH(t),VH(t), IH(t),SA(t),EA(t), IA(t),Ce(t)) can’t

scape from the hyperplanes of SH = 0,EH = 0,VH = 0,VH = 0, IH = 0,SA = 0

EA = 0, IA = 0, and Ce = 0. Therefore, all the solutions of the model with initial conditions in

Ψ remain in Ψ for all t > 0. Thus, this region is a positive invariant set.

The model (3) is mathematically and epidemiologically meaningful; therefore, we can con-

sider the flow generated by the model for analysis. �

3.3. Disease-Free Equilibrium (DFE), for the model of bTB. The situation in which there

are no diseases affecting the populace is known as the disease-free equilibrium point. According

to Φ0, the disease-free equilibrium is established when bTB is absent from both the human and

animal populations.

(34)



C
0 Dα

t SH(t) = 0,

C
0 Dα

t EH(t) = 0,

C
0 Dα

t VH(t) = 0,

C
0 Dα

t IH(t) = 0,

C
0 Dα

t SA(t) = 0,

C
0 Dα

t EA(t) = 0,

C
0 Dα

t IA(t) = 0,

C
0 Dα

t Ce(t) = 0

After some calculus, we get:

(35) Φ0 =

(
Λα

H (φ α +(1−κα)µα
H )

µH(µ
α
H +φ α)

,0,
καΛα

H
µα

H +φ α
,0,

Λα
A

µα
A
,0,0,0

)
3.4. The Basic Reproduction Number. The basic reproduction number R0 describes the typ-

ical number of new cases that a single infectious person creates when they are introduced into

a community that is completely susceptible [19, 20, 21]. It establishes if the illness spreads or
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disappears in the community. When the fundamental reproduction number R0 is less than 1,

the disease disappears from the population. If R0 is more than 1, the disease continues. This is

true because the disease survives when an infectious person is brought to a community that is

completely vulnerable to infection[22, 23].

To determine the basic reproduction number R0 , we use the next-generation matrix technique

while accounting for new infections and transfer terms.[19, 22, 24]. The R0 is expressed as the

greatest eigenvalue if the new infectious and transfer terms for bTB are indicated by Fi and Vi,

respectively. We have,

R0 = ρ(FV−1)

where

F =

∣∣∣∣∂Fix(0)
∂x j

∣∣∣∣ , V =

∣∣∣∣∂Vix(0)
∂x j

∣∣∣∣ ,
ρ denotes here the spectral radius of a matrix which is the greatest eigenvalue of a given matrix.

We only take into account the infectious, the exposed, and contaminated environnement

classes in the system of fractional differential equations in (3) using the Next-Generation Ma-

trix.

(36)



C
0 Dα

t EH(t) = λ α
H SH +dλ α

HVH− (µα
H +σα

H )EH−καEH ,

C
0 Dα

t IH(t) = σα
H EH− (µα

H + γα
H )IH ,

C
0 Dα

t EA(t) = λ α
A SA− (µα

A +σα
A )EA,

C
0 Dα

t IA(t) = σα
A EA− (µα

A + γα
A )IA,

C
0 Dα

t Ce(t) = ρα IA−ωαCe

Let Fi represent the number of new infections entering the system and Vi represent the number

of infections leaving the system as a result of births or deaths.

Fi =



(
ηα

1 IH +ηα
2 IA +ηα

3 Ce

ΩH
)SH +d(

ηα
1 IH +ηα

2 IA +ηα
3 Ce

ΩH
)VH

0

(
ηα

4 IH +ηα
5 IA +ηα

6 Ce

ΩA
)SA

0

0
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Vi =



(µα
H +σα

H )EH +καEH

−σα
H EH +(µα

H + γα
H )IH

(µα
A +σα

A )EA

−σα
A EA +(µα

A + γα
A )IA

−ρα IA +ωαCe


Now let’us express the jacobien matrix of Fi and Vi by F and V respectively.

F =



0 η1SH
ΩH

+d η1VH
ΩH

0 η2SH
ΩH

+d η2VH
ΩH

η3SH
ΩH

+d η3VH
ΩH

0 0 0 0 0

0 η4SA
ΩA

0 η5SA
ΩA

η6SA
ΩA

0 0 0 0 0

0 0 0 0 0



V =



(µα
H +σα

H +κα) 0 0 0 0

−σα
H (µα

H + γα
H ) 0 0 0

0 0 (µα
A +σα

A ) 0 0

0 0 −σα
A (µα

A + γα
A ) 0

0 0 0 −ρα ωα



V−1 =



1
(µα

H+σα
H+κα ) 0 0 0 0

σα
H

(µα
H+σα

H+κα )(µα
H+γα

H )
1

(µα
H+γα

H ) 0 0 0

0 0 1
(µα

A +σα
A ) 0 0

0 0 σα
A

(µα
A +σα

A )(µα
A +γα

A )
1

(µα
A +γα

A ) 0

0 0 ρα σα
A

(µα
A +σα

A )(µα
A +γα

A )ωα

ρα

(µα
A +γα

A )ωα

1
ωα


Note: To simplify the claculus we’ll make the folowing notations and leave α , the order of

derivative.

(37) R0 = FV−1 =



A1 A2 A3 A4 A5

0 0 0 0 0

B1 B2 B3 B4 B5

0 0 0 0 0

0 0 0 0 0
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where,

A1 =
η1σH(dVH +SH)

(µH +σH +κ)(µH + γH)

A2 =
dVHη1 +η1SH

µH + γH

A3 =
(dVHη2 +η2SH)σA

(µA + γA)(µA +σA)
+

(dVHη3 +η3SH)ρ σA

(µA + γA)(µA +σA)ω

A4 =
dVHη2 +η2SH

µA + γA
+

(dVHη3 +η3SH)ρ

(µA + γA)ω

A5 =
dη3VH +η3SH

ω

B1 =
η4σHSA

(µH +σH +κ)(µH + γH)

B2 =
η4SA

µH + γH

B3 =
η5SAσA

(µA + γA)(µA +σA)
+

η6SAρσA

(µA + γA)(µA +σA)ω

B4 =
η5SA

µA + γA
+

η6SAρ

(µA + γA)ω

B5 =
η6SA

ω

Now let us compute the eigenvalues of FV−1 and selecte the dominant eigenvalue.

Let X represent the eigenvalue of the matrix

(38)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1−X A2 A3 A4 A5

0 −X 0 0 0

B1 B2 B3−X B4 B5

0 0 0 −X 0

0 0 0 0 −X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

The equation (38) is equivalent to:

(39) X3

∣∣∣∣∣∣ A1−X A3

B1 B3−X

∣∣∣∣∣∣= 0

We have the following characteristic equation:

(40) X3[X2− (A1 +B3)X +A1B3−A3B1] = 0
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The maximum eigenvalue is then:

(41)
X =

A1 +B3

2
+

√
(A1 +B3)2−4(A1B3−A3B1)

4

X =
A1 +B3

2
+

√
(A1−B3)2 +4A3B1

2
Now let us evaluate A1,A3,B1 and B3 at the DFE Φ0:

A1 =
η1σH (dκ µH−κ µH +φ +µH)

(µH +φ)(µH +σH +κ)(µH + γH)

A3 =
σA (dκ µH−κ µH +φ +µH)(ω η2 +ρ η3)

(µH +φ)(µA +σA)(µA + γA)ω

B1 =
η4σH

(µH +σH +κ)(µH + γH)

B3 =
σA(η5ω +η6ρ)

(µA +σA)(µA + γA)ω

By substituting A1,A3,B1 and the B3, we have:

(42) R1 = A1 +B3 =
η1σH (dκ µH−κ µH +φ +µH)

(µH +φ)(µH +σH +κ)(µH + γH)
+

σA(η5ω +η6ρ)

(µA +σA)(µA + γA)ω

(43) R2 = A1−B3 =
η1σH (dκ µH−κ µH +φ +µH)

(µH +φ)(µH +σH +κ)(µH + γH)
− σA(η5ω +η6ρ)

(µA +σA)(µA + γA)ω

(44) R3 = A3B1 =
η4σHσA (dκ µH−κ µH +φ +µH)(ω η2 +ρ η3)

ω (µH +φ)(µA +σA)(µA + γA)(µH +σH +κ)(µH + γH)

(45) R0 =
R1

2
+

√
R2

2 +4R3

2

In equation (42), the terms 1
(µH+σH+κ) and 1

(µA+σA)
stand for the average amount of time each

human and animal spend in their respective exposed classes, 1
(µH+φ) , the average amount of time

each human spend in the vaccineted class, 1
(µH+γH)

and 1
(µA+γA)

for the average amount of time
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each infectious human and animal spend in their infectious classes, η1σH [φ+µH(1+dκ−κ)]
(µH+φ)(µH+γH)(µH+σH+κ) is

the percentage of infected humans who develop bTB and move from the exposed class to the

infectious class after coming into contact with infectious humans and animals, respectively, and
σA(ωη5+ρη6)

ω(µA+γA)(µA+σA)
represents the overall proportion of diseased animals that pass from the exposed

class to the infectious class as a result of interaction with infected animals and consumption of

infectious dairy products.

The total of the proportions of infected people who contract bTB through contact with dis-

eased animals and after ingesting infectious meat or dairy products is given by (43) :

η4σHσA (dκ µH−κ µH +φ +µH)(ω η2 +ρ η3)

ω (µH +φ)(µA +σA)(µA + γA)(µH +σH +κ)(µH + γH)
.

3.5. Local stability Analysis for Disease-Free Equilibrium (DFE). To assess the local sta-

bility of a disease-free equilibrium when trace and determinant are used, we apply the lineariza-

tion method like in [5]. If the eigenvalues of the Jacobien matrix are negative or have a negative

real part, disease-free equilibrium is considered to be locally asymptotically stable.

Theorem 3.3. If all of the eigenvalues of the J(Φ0) satisfy the requirement that |argλ j|>
απ

2
,

where j = 1,2,3 · · · , and 0 < α ≤ 1. Then Φ0 is locally asymptotically stable.

Proof of theorem 3.3. Taking the partial derivatives of each equation with respect to each vari-

able, we get:

(46) J(x) =



−λ α
H −µα

H 0 φ α − ηα
1 SH
ΩH

0 0 − ηα
2 SH
ΩH

− ηα
3 SH
ΩH

λ α
H −µα

H −σα
H −κα dλ α

H d ηα
1 SH
ΩH

0 0 d ηα
2 SH
ΩH

d ηα
3 SH
ΩH

0 κα −µα
H −φ α −dλ α

H −d ηα
1 VH
ΩH

0 0 −d ηα
2 VH
ΩH

−d ηα
3 VH
ΩH

0 σα
H 0 −(µα

H + γα
H ) 0 0 0 0

0 0 0 − ηα
4 SA
NA

−λ α
1 −µα

A 0 − ηα
5 SA
ΩA

− ηα
6 SA
ΩA

0 0 0 ηα
4 SA
ΩA

λ α
A −µA−σA

ηα
5 SA
ΩA

ηα
6 SA
ΩA

0 0 0 0 0 σα
A −µα

A − γα
A 0

0 0 0 0 0 0 ρα −ωα



where x = [SH ,EH ,VH , IH ,SA,EA, IA,Ce] is the vector of variables, and J(x)i j represents the

partial derivative of the i-th equation with respect to the j-th variable.

After the Jacobian has been evaluated at DFE Φ0, we have
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(47)

J(Φ0) =



−µα
H 0 φ α ηα

1 0 0 −ηα
2 −ηα

3

0 −µα
H −σα

H −κα 0 dηα
1 0 0 dηα

2 dηα
3

0 κα −µα
H −φ α −d ηα

1 κα

µα
H+φα 0 0 −d ηα

2 κα

µα
H+φα −d ηα

3 κα

µα
H+φα

0 σα
H 0 −µα

H − γα
H 0 0 0 0

0 0 0 −ηα
4 −µα

A 0 −ηα
5 −ηα

6

0 0 0 ηα
4 0 −µA−σA ηα

5 ηα
6

0 0 0 0 0 σα
A −µα

A − γα
A 0

0 0 0 0 0 0 ρα −ωα


The Matrix (47) has negatitive eigenvalues −µα

H , −µα
A and −µα

H −φ α , and those three eigen-

values satisfy the condition: |argλ j|> απ

2 for all 0 < α ≤ 1.

Matrix (47) reduces now to:

(48) R =



−µα
H −σα

H −κα dηα
1 0 dηα

2 dηα
3

σα
H −µα

H − γα
H 0 0 0

0 ηα
4 −µA−σA ηα

5 ηα
6

0 0 σα
A −µα

A − γα
A 0

0 0 0 ρα −ωα


We employ trace tr and determinant det to examine matrix R. If the determinant is positive

det(R)> 0 and the trace is negative tr(K)< 0, then the disease-free equilibrium is locally stable.

The trace of the matrix R is given by:

(49) tr(R) =−((µα
H +σ

α
H +κ

α)+(µα
H + γ

α
H )+(µA +σA)+(µα

A + γ
α
A )+ω

α)< 0

The determinant of R is given by:

(50) det(R) =−(µα
H +σ

α
H +κ

α)

∣∣∣∣∣∣∣∣∣∣∣∣

−µα
H − γα

H 0 0 0

ηα
4 −µA−σA ηα

5 ηα
6

0 σα
A −µα

A − γα
A 0

0 0 ρα −ωα

∣∣∣∣∣∣∣∣∣∣∣∣
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−σ
α
H

∣∣∣∣∣∣∣∣∣∣∣∣

dηα
1 0 dηα

2 dηα
3

ηα
4 −µA−σA ηα

5 ηα
6

0 σα
A −µα

A − γα
A 0

0 0 ρα −ωα

∣∣∣∣∣∣∣∣∣∣∣∣
= (µα

H +σ
α
H +κ

α)(µα
H + γ

α
H ) [(σ

α
A (ωα

η
α
5 +ρ

α
η

α
6 )− (µA +σA)(µ

α
A + γ

α
A )ω

α ]

+σ
α
H dη

α
1 (µA +σA)(µ

α
A + γ

α
A )ω

α +dσ
α
H σ

α
A [ωα(ηα

2 η
α
4 −η

α
1 η

α
5 )+ρ

α(ηα
3 η

α
4 −η

α
1 η

α
6 )]

Let det(R) = 0 then,

(51)
0 =σ

α
A (µα

H +σ
α
H +κ

α)(µα
H + γ

α
H )(ω

α
η

α
5 +ρ

α
η

α
6 )

− (µα
H +σ

α
H +κ

α)(µα
H + γ

α
H )(µA +σA)(µ

α
A + γ

α
A )ω

α +σ
α
H dη

α
1 (µA +σA)(µ

α
A + γ

α
A )ω

α

+dσ
α
H σ

α
A [ωα(ηα

2 η
α
4 −η

α
1 η

α
5 )+ρ

α(ηα
3 η

α
4 −η

α
1 η

α
6 )]

=
σα

A (ωαηα
5 +ραηα

6 )

(µA +σA)(µ
α
A + γα

A )
+

σα
H dηα

1 ωα

(µα
H +σα

H +κα)

+
dσα

H σα
A

[
ωα(ηα

2 ηα
4 −ηα

1 ηα
5 )+ρα(ηα

3 ηα
4 −ηα

1 ηα
6 )
]

(µα
H +σα

H +κα)(µα
H + γα

H )(µA +σA)(µ
α
A + γα

A )ω
α
−1

Thus det(R)> 0 if

(52)
σα

A (ωα ηα
5 +ρα ηα

6 )

(µA +σA)(µ
α
A + γα

A )
+

σα
H dηα

1 ωα

(µα
H +σα

H +κα)
+

dσα
H σα

A

[
ωα(β α

2 ηα
4 −ηα

1 ηα
5 )+ρα(ηα

3 ηα
4 −ηα

1 ηα
6 )
]

(µα
H +σα

H +κα)(µα
H + γα

H )(µA +σA)(µ
α
A + γα

A )ω
α

> 1.

Then the conditions of trace and determinant are proved, thus the others eigenvalues have neg-

ative real part. So that: |argλ j|> απ

2 for all 0 < α ≤ 1.

Conclusion: The disease-free equilibrium ψ0 of the model (3) is locally asymptotically stable

whenever the condition (52) holds as well as R0 < 1 and it is unstable when R0 > 1. �

3.6. Global Stability of the Disease-Free Equilibrium. The global asymptotically stability

(GAS) of the disease-free state of the model is investigated using the theorem by [25, 26, 27].

So from the model (3) we have:

(53)



dU
dt

= F(U,Z),

dZ
dt

= G(U,Z), with G(U,0) = 0.
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where

• U = (SH ,VH ,SA) is the number of uninfected individuals, and

• Z = (EH , IH ,EA, IA,Ce) represents the number of infected individuals

Let U∗ be the disease-free equilibrium (DFE) of the system
dU
dt

= F(U,0), and

U∗ =
(

Λα
H (φ α +(1−κα)µα

H )

µH(µ
α
H +φ α)

,
καΛα

H
µα

H +φ α
,
Λα

A
µα

A

)
,

If R0 < 1 (which is locally asymptotically stable (LAS)), and the following two assumptions

A1 and A2 hold, the Disease-Free Equilibrium (DFE) point Φ0 of the model is guaranteed to

be GAS:

• A1: For
dU
dt

= F(U,0), U∗ is globally GAS for the model (3) provided that R0 < 1

(LAS) and assumptions A1 and A2 hold.

• A2 : G(U,Z) = AZ−G∗(U,Z), G∗(U,Z)≥ 0, ∀(U,Z) ∈Ψ.

The region where the model makes biological sense is Ψ0, and A =
∂G(Φ0)

∂Z
is an M-

matrix (the nondiagonal entries are nonnegative).

The following theorem is true if the model equation (3) satisfies the above two requirements.

Theorem 3.4. The disease-free equilibrium point, Φ0 is globally asymptotically stability (GAS)

for the model (3) provided that R0 < 1 locally asymptotically stable (LAS) and the conditions

A1 and A2 hold.

Proof of theorem 3.4. Let us show that the condition A1 and A2 hold when R0 < 1, to do that,

we need to show that U −→U∗.

(54) F(U,0) =


C
0 Dα

t SH(t) = Λ
α
H +φ

αVH−κ
α

Λ
α
H−µ

α
H SH ,

C
0 Dα

t VH(t) = κ
α

Λ
α
H− (µα

H +φ
α)VH ,

C
0 Dα

t SA(t) = Λ
α
A −µ

α
A SA

The second and the third equation of the equation (54) are the α’s order linear ODE’s and we

have their solution like following:
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C
0 Dα

t SH(t) = Λα
H +φ αVH−καΛα

H−µα
H SH , using the Laplace transform

(55)

L {Dα
t SA(t)}(W ) = L {Λα

A −µ
α
A SA(t)}(W ) =⇒

L {Dα
t SA(t)}(W )+L {µα

A SA(t)}(W ) = L {Λα
A}=⇒

W αSA(W )−D−(1−α)SA(0)+µ
α
A SA(W ) =

Λα
A

W

At t = 0 D−(1−α)SA(0) = 0. Then

(W α +µ
α
A )SA(W ) =

Λα
A

W
=⇒ SA(W ) =

Λα
A

W (W α +µα
A )

Now by taking the Laplace inverse transform of of SA(W ) and using the Mittag-Leffler function

we obtain:

SA(t) =
Λα

A
µα

A
[1−Eα(−µ

α
A tα)] with µ

α
A > O

Then we have: SA(t)−→
Λα

A
µα

A
if t −→ ∞.

By the same method we obtain:

VH(t) =
καΛα

H
µα

H +φ α
[1−Eα(−(µα

H +φ
α)tα)] with (µα

A +φ
α)> O

Then we have: VH(t)−→
καΛα

H
µα

H +φ α
if t −→ ∞.

Now by substuting VH(t) in the first equation of (54) yields:

(56) Dα
t SH(t) = Λ

α
H(1−κ

α)−µ
α
H SH +φ

α καΛα
H

µα
H +φ α

[1−Eα(−(µα
H +φ

α)tα)] .

Let us take the Laplace transform of (56):

(57)

L {Dα
t SH(t)}(W ) = L

{
Λ

α
H(1−κ

α)−µ
α
H SH +φ

α κα Λα
H

µα
H +φ α

[1−Eα(−(µα
H +φ

α)tα)]

}
(W ) =⇒

L {Dα
t SH(t)}(W )+L {µα

H SH(t)}(W ) = L {Λα
H(1−κ

α)}+L

{
φ

α κα Λα
H

µα
H +φ α

[1−Eα(−(µα
H +φ

α)tα)]

}
=⇒

W α SH(W )−D−(1−α)SH(0)+µ
α
H SH(W ) =

Λα
H(1−κα)

W
+φ

α κα Λα
H

µα
H +φ α

[
1

W
− W α−1

W α +(µα
H +φ α)

]

At t = 0 D−(1−α)SH(0) = 0.

Then
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(58)

(W α +µ
α
H )SH(W ) =

Λα
H(1−κα)

W
+φ

α κα Λα
H

µα
H +φ α

[
1

W
− W α−1

W α +(µα
H +φ α)

]
=⇒

SH(W ) =
Λα

H(1−κα)

W (W α +µα
H )

+φ
α κα Λα

H
(µα

H +φ α)(W α +µα
H )W

− φ α κα Λα
H

(µα
H +φ α)

1
W α +µα

H
× W α−1

W α +(µα
H +φ α)

Now by taking the Laplace Inverse Transform, we obtain

(59)

SH(t) =
Λα

H(1−κα)

µα
H

[1−Eα(−µ
α
H tα)]+

φ α κα Λα
H

µα
H (µ

α
H +φ α)

[1−Eα(−µ
α
H tα)]

− φ α κα Λα
H

(µα
H +φ α)

× tα−1Eα,α(−µ
α
H tα)×Eα,1 [−(µα

H +φ
α)]

(60)

lim
t→∞

SH(t) =
Λα

H(1−κα)

µα
H

+
φ ακαΛα

H
µα

H (µ
α
H +φ α)

=
Λα

H [φ α +µα
H (1−κα)]

µα
H (µ

α
H +φ α)

Thus all points with respect to this conditions converge at

U∗ =
(

Λα
H (φ α +(1−κα)µα

H )

µH(µ
α
H +φ α)

,
καΛα

H
µα

H +φ α
,
Λα

A
µα

A

)
. Hence U∗ is globally asymptotically stable.

For the next step, we have:

(61)

G(U,Z) =



G1(U,Z) =
(

ηα
1 IH +ηα

2 IA +ηα
3 Ce

ΩH

)
SH +d

(
ηα

1 IH +ηα
2 IA +ηα

3 Ce

ΩH

)
VH − (µα

H +σα
H +κα)EH

G2(U,Z) = σα
H EH − (µα

H + γα
H )IH ,

G3(U,Z) =
(

ηα
4 IH +ηα

5 IA +ηα
6 Ce

ΩA

)
SA− (µα

A +σα
A )EA,

G4(U,Z) = σα
A EA− (µα

A + γα
A )IA,

G5(U,Z) = ρα IA−ωαCe

We then obtain:

(62)

∂G
∂Z

=



−(µα
H +σα

H +κα)
ηα

1
ΩH

SH +d
ηα

1
ΩH

VH 0
ηα

2
ΩH

SH +d
ηα

2
ΩH

VH
ηα

3
ΩH

SH +d
ηα

3
ΩH

VH

σα
H −(µα

H + γα
H ) 0 0 0

0
ηα

4
ΩA

SA −(µα
A +σα

A )
ηα

5
ΩA

SA
ηα

6
ΩA

SA

0 0 σα
A −(µα

H + γα
H ) 0

0 0 0 ρα −ωα
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(63) A =
∂G(U∗,0)

∂Z
=



−(µα
H +σα

H +κα) ϒ1 0 ϒ2 ϒ3

σα
H −(µα

H + γα
H ) 0 0 0

0 ηα
4 −(µα

A +σα
A ) ηα

5 ηα
6

0 0 σα
A −(µα

H + γα
H ) 0

0 0 0 ρα −ωα


Where:

(64)

ϒ1 =
ηα

1 φ α +ηα
1 µα

H (1−κα +dκα)

φ α +µα
H

ϒ2 =
ηα

2 φ α +ηα
2 µα

H (1−κα +dκα)

φ α +µα
H

ϒ3 =
ηα

3 φ α +ηα
3 µα

H (1−κα +dκα)

φ α +µα
H

(65) G∗(U,Z) = AZ−G(U,Z) =



(ηα
1 +ηα

2 +ηα
3 )IH

(
1− SH +dVH

ΩH
+µα

H κα(d−1)
)

0

(ηα
4 +ηα

5 +ηα
6 )IH

(
1− SA

ΩA

)
0

0


Since all parameters are positives also we have

SH +dVH

ΩH
� 1 and µα

H κα(d− 1)� 1.It’s fol-

lows that G1≥ 0, it’s evident that G3≥ 0.

Hence G∗(U,Z)≥ 0 ∀(U,Z) ∈Ψ.

Therefore the DFE point Φ0 of the model (3) is globally assymptotically stable. End of the

proof. �

3.7. Endemic Equilibrium Points EE.

Now we introduce the (SH ,EH ,VH , IH ,SA,EA, IA,Ce) ∈ R8
+ disease. The model has an concor-

dance endemic equilibrium point shown by E∗ = (S∗H ,E
∗
H ,V

∗
H , I
∗
H ,S

∗
A,E

∗
A, I
∗
A,C

∗
e ).

The Endemic Equilibrium point is the solution of the (SH ,EH ,VH , IH ,SA,EA, IA,Ce) model

whose disease persist in the population of human, the population of animals and the environ-

mental impact. We can calculate it well by equating each equation of the system (3) by zero.
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Then

(66)

Λα
H +φ αV ∗H−

(
ηα

1 I∗H +ηα
2 I∗A +ηα

3 C∗e
ΩH

)
S∗H−καΛα

H−µα
H S∗H = 0,(

ηα
1 I∗H +ηα

2 I∗A +ηα
3 C∗e

ΩH

)
S∗H +d

(
ηα

1 I∗H +ηα
2 I∗A +ηα

3 C∗e
ΩH

)
V ∗H− (µα

H +σα
H +κα)E∗H = 0,

κα(Λα
H +E∗H)− (µα

H +φ α)V ∗H−d
(

ηα
1 I∗H +ηα

2 I∗A +ηα
3 C∗e

ΩH

)
V ∗H = 0,

σα
H E∗H− (µα

H + γα
H )I
∗
H = 0,

Λα
A −

(
ηα

4 I∗H +ηα
5 I∗A +ηα

6 C∗e
ΩA

)
S∗A−µα

A S∗A = 0,(
ηα

4 I∗H +ηα
5 I∗A +ηα

6 C∗e
ΩA

)
S∗A− (µα

A +σα
A )E∗A = 0,

σα
A E∗A− (µα

A + γα
A )I
∗
A = 0,

ρα I∗A−ωαC∗e = 0

(67)

S∗H =
[ΛH(1−κα)+φ αV ∗H ]ΩH

µα
H ΩH +(η1I∗H +(ηα

2 +ηα
3 ρα/ωα)I∗A)

E∗H =
µα

H + γα
H

σHα
I∗H

V ∗H =
καΩH(Λ

α
Hσα

H +µα
H + γα

H )

ΩH(µ
α
H +φ α)+d(η1I∗H +(ηα

2 +ηα
3 ρα/ωα)I∗A)

I∗H =
(µα

A + γα
A )(µ

α
A +σα

A )
[
ΩAµα

A +(ηα
5 +ηα

6 ρα/ωα)I∗A
]
−Λα

A σα(ηα
5 +ηα

5 ρα/ωα
A )

ηα
4 Λα

Hσα
H −ηα

4 (µ
α
A + γα

A )(µ
α
A +σα

A )

S∗A =
ΛA

µA
−

(µα
A + γα

A )(µ
α
A +σα

A )

µα
A σα

A
I∗A

E∗A =
µα

A + γα
A

σα
A

I∗A

I∗A = I∗A

C∗e =
ρα

ωα
I∗A

3.8. Global Stability of the Endemic Equilibrium Points: The global stability of the En-

demic Equilibrium E∗ = (S∗H ,E
∗
H ,V

∗
H , I
∗
H ,S

∗
A,E

∗
A, I
∗
A,C

∗
e ) for the fractional order of the system

model (3) is established following theorem as:
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Theorem 3.5. Let α ∈ (0,1], and R0 > 1. Then the endemic equilibrium E of the proposed

epidemic model (3) of fractional order model is globally stable in the interior of Ψ.

Proof of theorem 3.5. To prove the global stability of the point E∗, we consider the Volterra-

type Lyapunov functional approach [28] to define a function

L(t) : ε(t) = [SH(t),EH(t),VH(t), IH(t),SA(t),EA(t), IA(t),Ce(t)]T −→ R, as

(68)

L(t) =
1
a1

(SH−S∗H−S∗H log
SH

S∗H
)+

1
a2

(EH−E∗H−E∗H log
EH

E∗H
)

+
1
a3

(VH−V ∗H−V ∗H log
VH

V ∗H
)+

1
a4

(IH− I∗H− I∗H log
IH

I∗H
)

+
1
a5

(SA−S∗A−S∗A log
SA

S∗A
)+

1
a6

(EA−E∗A−E∗A log
EA

E∗A
)

+
1
a7

(IA− I∗A− I∗A log
IA

I∗A
)+

1
a8

(Ce−C∗e −C∗e log
Ce

C∗e
)

where

a1 = λ
α
H +µ

α
H

a2 = µ
α
H +σ

α
H +κ

α

a3 = µ
α
H +φ

α +dλ
α
H

a4 = µ
α
H + γ

α
H

a5 = λ
α
A +µ

α
A

a6 = µ
α
A +σ

α
A

a7 = µ
α
A + γ

α
A

a8 = ω
α

The function L(t) is defined, continuous and positive definite for all t ≥ 0. It can be verified that

the equality holds if and only if SH = S∗H ,EH = E∗H ,VH = V ∗H , IH = I∗H ,SA = S∗A,EA = E∗A, IA =

I∗A,Ce =C∗e .

The α order of L(SH ,EH ,VH , IH ,SA,EA, IA,Ce) is calculate to show Dα
t L ≤ 0 at the endemic

equilibrium point.



FRACTIONAL BOVINE TUBERCULOSIS MODEL 27

(69)

Dα
t L =

1
a1

(
SH−S∗H

SH

)
Dα

t SH +
1
a2

(
EH−E∗H

EH

)
Dα

t EH +
1
a3

(
VH−V ∗H

VH

)
Dα

t VH

+
1
a4

(
IH− I∗H

IH

)
Dα

t IH +
1
a5

(
SA−S∗A

SA

)
Dα

t SA +
1
a6

(
EA−E∗A

EA

)
Dα

t EA

+
1
a7

(
IA− I∗A

SA

)
Dα

t IA +
1
a8

(
Ce−C∗e

Ce

)
Dα

t Ce

By substituting, and on simplification using the endemic state condition of model (3), we

have from Eq. (69) as:

(70)
Dα

t L =−(SH−S∗H)
2

SH
− (EH−E∗H)

2

EH
− (VH−V ∗H)

2

VH
− (IH− I∗H)

2

IH
−

(SA−S∗A)
2

SA

−
(EA−E∗A)

2

EA
−

(IA− I∗A)
2

SA
− (Ce−C∗e )

2

Ce

From the above calculation we can see that Dα
t L≤ 0

We note that if R0 > 1, then the right-hand side of Eq. (70) is negative and it is equal to zero if

SH = S∗H ,EH = E∗H ,VH =V ∗H , IH = I∗H ,SA = S∗A,EA = E∗A, IA = I∗A,Ce =C∗e .

According to the LaSalle’s invariance principle [29, 30], and

[28], we know that all solutions in Ψ converge to E∗. Therefore, the endemic state of the model

(3) is globally asymptotically stable when R0 > 1 [31]. This completes the proof of (3.5). �
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TABLE 2. Sensitivity indices for R0.

Parameter Index

µA -0.0779

µH -0.1700

η1 0.0332

η4 0.1430

η5 0.4223

η6 0.2585

σA 0.0313

σH 0.1213

κ -0.1254

αA -0.7772

αH -0.0979

ρ 0.2585

φ -0.0571

d 0.0098

ω -0.4015
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TABLE 3. Descriptions and values of parameters in model.

Parameter Value Interpretation Source

ΛH Recruitment rate into the susceptible human population 36 [4], [5]

ΛA Recruitment rate into the susceptible animal population 200 [5]

µA Animal natural mortality rate 0.015 Estimated

µH Human natural mortality rate 0.04 Estimated

η1, η2, η3 Humans infection rate from IH , IA, and Ce, respectively 0.35, 0.55, 0.999 [5]

σA Animal incubation period 0.38 Estimated

σH Human incubation period 0.38 Estimated

κ Human vaccination rate 0.8 Estimated

αA Animal disease-related death rate 0.25 Estimated

αH Human disease-related death rate 0.05 [4]

ρ Dairy products production rate 0.6 Estimated

φ Human loss rate of immunity 0.03 Estimated

d The human efficacy of the vaccine 0.5 Estimated

ω The decay rate in the contaminated environment 0.7 Estimated

η4, η5, η6 Animals infection rate from IH , IA, and Ce, respectively 0.25, 0.7, 0.5 [5], Estimated, Estimated

4. NUMERICAL RESULTS AND DISCUSSION

4.1. The Basic reproduction number R0 without vaccination. Let us denote R0 without

vaccination as R∗0.

Using the parameters in table 3 and Maple software for computations, R∗0 and R0 are given as

follow:

R∗0 =
R1

2
+

√
R2

2 +4R3

2

where

R1 =
β1σH

(µH +σH)(µH +αH)
+

β5σA

(µA +σA)(µA +αA)
+

β6ρ σA

(µA +αA)(µA +σA)ω

R2 =
β1σH

(µH +σH)(µH +αH)
− β5σA

(µA +σA)(µA +αA)
− β6ρ σA

(µA +αA)(µA +σA)ω

R3 =
σAµH (β2ω +β3ρ)β4σH

µH (µH +σH)(µH +αH)(µA +σA)(µA +αA)ω

• R∗0 = 7.4296
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• R0 = 4.9574

From the above calculations, it indicates that the best way in minimizing the bovine tuberculosis

is to use more vaccination in both human and animal populations.

4.1.1. Herd Imminuty Threshold H1: We are therefore motivated to determine the number of

people or animals that should receive vaccinations when R∗0 = 7.4296 based on the previously

mentioned computations.

H1 = 1− 1
R∗0

= 0.86

This shows that if R∗0 = 7.4296, then 86% of individuals and animals should receive vaccination.

4.2. Sensitivity Analysis of Basic Reproduction Number R0. Understanding how each pa-

rameter affects the model output and its impact on the spread of disease throughout the pop-

ulation is made possible by the sensitivity analysis of R0 [32]. Using the normalized forward

sensitivity analysis index employed by Silva [33] and Torres [32], we undertake sensitivity

analysis of R0.

Ψ
R0
β

=

(
∂R0

∂β

)(
β

R0

)
,

is the formula for the normalized forward sensitivity index of variable β with respect to the

fundamental reproduction number R0.

Table 2 lists the sensitivity index of each parameter to the fundamental reproduction number R0

using estimated parameters and information from related literature.

According to sensitivity analysis, the evolution of bTB are driven by animal infection rates as-

sociated with the consumption of dairy products η6 and contact rates with infectious animals

η5 as well as animal infection rates associated with the contact of infectious humains η4, the

animal and human incubation period, σA and σH respectively. The rate of making dairy prod-

ucts ρ is typically the most sensitive characteristic. The fundamental reproduction number R0

increases by 0.018% for every 10% increase in dairy products. The fundamental reproduction

number R0 decreases as a result of an increase in the animal mortality rate owing to disease

αA, the animal natural mortality rate µA, the human disease-induced death rate αH , the human

natural mortality rate µH , the decay rate of dairy products ω , and the human vaccination rate.
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We also note that, the human infection rates η2 and η3 from infectious animals and contami-

nated environment have no effect on the fundamental reproduction number R0.

4.3. Numerical simulation. By taking into account the variables that influence the dynamics

of bTB transmission, we address the evolution of bTB in the human and animal populations in

this section. We use both estimated parameters and ones from the pertinent literature, as shown

in Table 3 to illustrate the behavior of the model for different fractional order 1 < α ≤ 1 and

differents values for those parameters.

(A) (B)

FIGURE 2. Dynamics of bTB in human population (a) and animal population

(b) for α = 65.

As seen in Figure 2, the number of susceptible people and animals decreases after contracting

bTB from infected people and animals as well as after ingesting infected dairy products. But

the people in the susceptible class decrease more than the case of animals, this is because of the

vaccination for the human population. They both migrate into the exposed class and eventually

into the infectious class.

Figures 3a, (3b), and (3c) show the effect of varying α on susceptible humans, susceptible

animals and vaccinated humans respectively. The animal population is more infected than the

human population as shown in figure 4, this can be explain by the fact that only humans receive

vaccination.
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(A) (B)

(C)

FIGURE 3. Variation of α for susceptible humans (a), animals (b), and vacci-

nated humans (c) population.
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(A) (B)

FIGURE 4. Variation of α for infected humans (a) and infected animal(b) pop-

ulation.

4.3.1. Impact of vaccination rate on infected humans and animals.

(A) (B)

FIGURE 5. Variation of κ for infected humans (a) and infected animal(b) popu-

lation.
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Figure 5 illustrates the outcomes of a numerical simulation carried out by varying the vac-

cination rate κ for human population while maintaining the other parameters constant. The

simulation results clearly demonstrate that the plotted graphs show a downward trend as the

vaccination rate κ increases for human population, but no significant effect for the animal pop-

ulation. This suggests that when the vaccination rate κ rises, the number of infected people

decreases.

Consequently, it is crucial for the government and livestock farming experts to advise breed-

ers to promptly vaccinate people and animals and put infected animals under quarantine as soon

as they exhibit symptoms. By taking this measure, the spread of infection can be mitigated,

leading to better human health and improved animal breeding outcomes.

4.3.2. Investigating the influence of the decay rate on the contaminated environment. Figure 6

illustrates the outcomes of a numerical simulation carried out by varying the rate of decaying ω

for contaminated environment (dairy products and meat) while maintaining the other parameters

fixed. The findings demonstrate a clear correlation between the reduction of the decay rate and

an increase of infectious humans and animals. Consequently, it can be inferred that elevating the

decay rate significantly aids in eradicating the disease from both human and animal population.

(A) (B)

FIGURE 6. Variation of ω for infected humans (a) and infected animal (b) pop-

ulation.
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4.3.3. Impact of the animal infection rate from infected animals.

(A) (B)

FIGURE 7. Variation of η5 for infected humans (a) and infected animal(b) pop-

ulation .

The numerical result achieved by altering the animal infecion rate η5 from infected animals

while maintaining other parameters constant is shown in Figure 7. The quantity of infected

animals and humans is increased after the value of η5 is raised from 0.5 to 0.8. The proportion

of diseased animals and humans are larger at η5 = 0.8 than at other times. Overall, the numer-

ical outcomes demonstrate that raising the animal infecion rate value causes an increase in the

number of infected animals and humans. To stop the disease from spreading, all interested par-

ties and policy makers must consider ways to reduce the animal infecion rate η5 from infected

animals by puting the infectious animals under quarantine.
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5. SUMMERY AND CONCLUSION

We developed a fractional-order mathematical model in this study to simulate the progres-

sion of bovine tuberculosis in the presence of vaccination and a contaminated environment. The

model was developed and described in Section (2). In Section (3), we looked at the qualitative

behaviors of the model by finding the feasible region, the positivity of the solution, equilibrium

points, and examining their local and global stability. We also looked at the fundamental repro-

duction number of the model. Through sensitivity analysis of the basic reproduction number,

the traits that have a substantial impact on the management of bovine TB have been found. In

Section (4), the results of the numerical simulation are examined. In this numerical simulation,

we investigated the influence of the parameters κ , ω , and η5 on the fractional order model. As a

result of this analysis, we can draw the conclusion that increasing the vaccination rate κ of both

the human and animal populations will greatly slow the spread of the bovine TB illness in both

those populations. Accordingly, bovine TB management tries to reduce the disease’s infection

in both human and animal populations based on the study’s findings. In this case, lowering

the animal infection rate from infected animals, while increasing the decay rate of the polluted

environment, and increasing the human population’s vaccination rate, ought to aid in disease

control.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.

REFERENCES

[1] World Health Organization, Qu’est-ce qui entrave la lutte contre la tuberculose en Afrique? (2022). https:

//www.afro.who.int/fr/news/quest-ce-qui-entrave-la-lutte-contre-la-tuberculose-en-afrique.

[2] D. Otoo, S. Osman, S.A. Poku, et al. Dynamics of tuberculosis (TB) with drug resistance to first-line treatment

and leaky vaccination: a deterministic modelling perspective, Comput. Math. Methods Med. 2021 (2021),

5593864. https://doi.org/10.1155/2021/5593864.

[3] World Health Organization, WHO and The Union organize landmark consultation to galvanize action against

Zoonotic TB, (2016), https://www.who.int/news/item/16-04-2016-who-and-the-union-organize-landmark

-consultation-to-galvanize-action-against-zoonotic-tb.

https://www.afro.who.int/fr/news/quest-ce-qui-entrave-la-lutte-contre-la-tuberculose-en-afrique
https://www.afro.who.int/fr/news/quest-ce-qui-entrave-la-lutte-contre-la-tuberculose-en-afrique
https://doi.org/10.1155/2021/5593864
https://www.who.int/news/item/16-04-2016-who-and-the-union-organize-landmark-consultation-to-galvanize-action-against-zoonotic-tb
https://www.who.int/news/item/16-04-2016-who-and-the-union-organize-landmark-consultation-to-galvanize-action-against-zoonotic-tb


FRACTIONAL BOVINE TUBERCULOSIS MODEL 37

[4] S. Liu, A. Li, X. Feng, et al. A dynamic model of human and livestock tuberculosis spread and control in

Urumqi, Xinjiang, China, Comput. Math. Methods Med. 2016 (2016), 3410320. https://doi.org/10.1155/20

16/3410320.

[5] T. Shirima Sabini, J. Ismail Irunde, D. Kuznetsov, Modeling the transmission dynamics of bovine tuberculo-

sis, Int. J. Math. Math. Sci. 2020 (2020), 7424075. https://doi.org/10.1155/2020/7424075.

[6] D. Otoo, G.T. Tilahun, S. Osman, et al. Modeling the dynamics of tuberculosis with drug resistance in North

Shoa Zone, Oromiya Regional State, Ethiopia, Commun. Math. Biol. Neurosci. 2021 (2021), 12. https:

//doi.org/10.28919/cmbn/5163.

[7] M. de Garine-Wichatitsky, A. Caron, R. Kock, et al. A review of bovine tuberculosis at the

wildlife–livestock–human interface in sub-Saharan Africa, Epidemiol. Infect. 141 (2013), 1342–1356. https:

//doi.org/10.1017/s0950268813000708.

[8] S.W. Dejene, I.M.A. Heitkönig, H.H.T. Prins, et al. Correction: Risk factors for bovine tuberculosis (bTB) in

cattle in Ethiopia, PLoS ONE. 12 (2017), e0176654. https://doi.org/10.1371/journal.pone.0176654.

[9] F.C. Blanco, C.J. Queval, F.R. Araujo, et al. Editorial: Recent advances in bovine tuberculosis, Front. Vet.

Sci. 9 (2022), 907353. https://doi.org/10.3389/fvets.2022.907353.

[10] M. Good, D. Bakker, A. Duignan, et al. The history of in vivo tuberculin testing in bovines: tuberculosis, a

”one health” issue, Front. Vet. Sci. 5 (2018), 59. https://doi.org/10.3389/fvets.2018.00059.

[11] S. Srinivasan, A.J. Conlan, L.A. Easterling, et al. A meta-analysis of the effect of bacillus calmette-guérin
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