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Abstract: Fear, harvesting, hunting cooperation, and antipredator behavior are all important subjects in ecology. As a 

result, a modified Leslie-Gower prey-predator model containing these biological aspects is mathematically 

constructed, when the predation processes are described using the Beddington-DeAngelis type of functional response. 

The solution's positivity and boundedness are studied. The qualitative characteristics of the model are explored, 

including stability, persistence, and bifurcation analysis. To verify the gained theoretical findings and comprehend the 

consequences of modifying the system's parameters on their dynamical behavior, a detailed numerical investigation is 

carried out using MATLAB and Mathematica. It is discovered that the presence of these components enriches the 

system's dynamic behavior, resulting in bi-stable behavior. 
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1. INTRODUCTION 

One of the prominent themes in Mathematical Ecology, and particularly in Population 

Dynamics, has been and remains to be the dynamic interplay between predators and their prey. 

This is due to its universality, as well as the fact that a more comprehensive understanding of this 

relationship allows for a better understanding of the movement of food chains or trophic webs. 

The first prey-predator model, defined by an autonomous nonlinear ODE system, was proposed 

by the Italian scientist Vito Volterra in 1926. This model corresponded to a two-dimensional model 

for biological interactions published previously by American scientist Alfred J. Lotka; for the 

aforementioned, the ODE system is known as the Lotka-Volterra model [1-2]. The primary 

dynamic feature of this first prey-predator model is that the single point of positive equilibrium is 

a center, implying that all pathways are concentric closed orbits around that point [3-4]. This 

indicates that given any beginning state, the density size of predators and their prey would 

continually swing about that point. This behavior of the system solutions was fiercely questioned 

when they were developed because no prey-predator interactions with these features were seen in 

nature. 

The model developed by British scientist Leslie in 1948 offers a new alternative that does not 

suit the Lotka-Volterra model scheme, which is based on a notion of mass or energy transfer, the 

Leslie model distinguishes itself because the predator growth equation, like the prey growth 

equation, is of the logistic type. Leslie assumed that the predators' traditional ecological carrying 

capacity relates to the abundance of prey 𝐾(𝑁) = 𝑎𝑁, where 𝑁 denotes prey density [5]. When 

a predator is a generalist and no preferred prey exists, the predator may shift to another food source. 

In this scenario, 𝐾(𝑁) = 𝑎𝑁 + 𝐾 , where 𝐾 > 0  denotes the quantity of other nourishment 

available to predators or predator carrying capacity in the absence of the prey. As a result, an 

improved Leslie-Gower system or a Leslie-Gower strategy is produced [6]. Subsequently, these 

systems' applications began to expand.  New population dynamics applications have been 

developed, and these systems had been used to simulate a range of other natural phenomena, see 

[7-10] and the references therein. 
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Many prey species adjust their behavior in the presence of predators due to predation risk and 

exhibit a variety of antipredator responses, which include foraging activity, habitat adaptations, 

vigilance, and some physiological changes, among other things [11-13]. Many researchers have 

discovered that fear of predation reduces the reproduction of fearful victims. Recently, fear has 

been studied extensively in basic ecology and environmental biology, see [14–22] and the 

references therein.  Harvesting, on the other hand, is a significant and frequent occurrence. 

Because ecosystems are primarily regenerative, fishermen commonly employ harvesting. 

Scientists are investigating the capture of either prey or predator species, or both prey and predator 

species, in a capitalized hunting system with two interacting species. Many alternative harvesting 

methods have been employed. Continuous threshold harvesting, proportional harvesting, and 

constant harvesting are used by some [23-25], whereas nonlinear harvesting is investigated by 

others [8-10, 26]. 

Lately, Alves and Hilker [27] investigated predator hunting cooperation, believing that 

predators gain from their cooperative behaviors so that the quantity of prey attacks rises with 

predator density, and demonstrated numerically how levels of their hunting cooperation impact 

predator density, predator existence, and ecosystem stability. They defined the Holling type-

I functional response as 𝑓(𝑁, 𝑃) = (𝑎 + ℎ𝑃)𝑁, where ℎ > 0 represents predator cooperation in 

hunting and 𝑎 > 0 represents the attack rate per predator and prey so that cooperation term was 

ℎ𝑃. When compared to the condition of no hunting cooperation, they discovered that hunting 

cooperation substantially mediates predator existence and causes oscillatory behaviors. Recently, 

many researchers have investigated the ecological systems in the existence of hunting cooperation 

to understand their effects on the system dynamic, see [28-31] and the references therein. 

In response to the above discussion, we created a modified Leslie-Gower prey-predator model 

that takes into account the effects of fear on prey reproduction and their environment-

carrying capacity. It also considers nonlinear harvesting, hunting cooperation, and predator 

behavior. The consumption process is described using the Beddington–DeAngelis kind of 

functional response. The following is how this work is organized. The mathematical model is 
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developed in the next section. Section 3 focuses on the system's stability. Section 4 investigates 

the system's uniform persistence. Section 5 determines the conditions for the occurrence of local 

bifurcation. We performed various numerical simulations to demonstrate our theoretical findings, 

which are described in Section 6. Finally, Section 7 discusses the study's findings. 

 

2. CONSTRUCTION OF THE MODEL 

In this section, a prey-predator model with a generalist predator is formulated, indicating it can 

live without the model's prey population. Hence, it has an alternate food source. This suggests that 

the per capita growth rate function will be zero at some positive density. The simplest situation is 

when we describe the dynamics of a predator population using logistic growth in the absence of 

prey. Taking the simplest version of the predator population's growth rate, the Leslie–Gower prey-

predator [5] with logistic growth in both prey and predator and general functional response is 

described as [32] 

 

𝑑𝑁

𝑑𝑇
= 𝑟𝑁 (1 −

𝑁

𝐾
) −

𝑞𝑁𝑃

𝑝+𝑁

𝑑𝑃

𝑑𝑇
= 𝑠𝑃 (1 −

𝑃

ℎ𝑁
)     

                               (1) 

In this case, 𝑁(𝑇) > 0 and 𝑃(𝑇) > 0 are utilized to represent the magnitude of the prey and 

predator populations at time 𝑇. With carrying capacity 𝐾 and intrinsic growth rate 𝑟, the prey 

population grows logistically. The predator's growth is also logistic, with an intrinsic growth rate 

𝑠. Nonetheless, carrying capacity is prey-dependent, with ℎ indicating the importance of the prey 

as food for the predator. The term 
𝑃

ℎ𝑁
 is called the Leslie-Gower term. 

On the other hand, predators can consume other populations when food is short, but their expansion 

will be limited because their preferred prey is rare. To address this issue, Aziz-Alaoui and Okiye 

[6] proposed a modified Leslie-Gower model in which a constant 𝑏  is introduced into the 

denominator of the Leslie-Gower term that assesses ecological safeguards for the predator in order 

to avoid singularities when 𝑁 = 0, so that system (1) becomes 

  

𝑑𝑁

𝑑𝑇
= 𝑟𝑁 (1 −

𝑁

𝐾
) −

𝑞𝑁𝑃

𝑝+𝑁

𝑑𝑃

𝑑𝑇
= 𝑠𝑃 (1 −

𝑃

𝑏+ℎ𝑁
)   

                                (2) 
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Many researchers have now investigated the modified Leslie-Gower models incorporating many 

different kinds of functional responses, harvesting, the Allee effect [8, 33-36], and so on. 

The modified Leslie–Gower prey-predator model (2) with the Sarkar and Khajanchi fear 

function [37] that influences the prey’s birth rate and the quadratic fixed effort harvesting with the 

Beddington–DeAngelis type of functional response is proposed and investigated by Jamil and Naji, 

[9] in the following form: 

𝑑𝑁

𝑑𝑇
= 𝑁 [𝑟1 (𝑚 +

𝑛(1−𝑚)

𝑛+𝑃
) − 𝑑 − 𝑏𝑁 −

𝑎𝑃

𝑐+𝑁+𝑒𝑃
− 𝑞1𝐸𝑁] ,

𝑑𝑃

𝑑𝑇
= 𝑃 [𝑟2 (1 −

𝑃

𝐾+𝑁
) − 𝑞2𝐸𝑃],                    

                       (3) 

Because of the significance of the prey's refuge, prey refugees are assumed to minimize predator-

prey fluctuations and prevent prey extinction [10]. A review of the real-world proof suggests that 

refuges can perform the former purpose. As a result, in the aforementioned dynamical model, the 

overall amount of prey refuge is dependent on both species. Assume that the amount of prey refuge 

is 𝛿𝑁𝑃 [38], where 𝛿 is the refuge coefficient. Therefore, the predators prey on the remaining 

(𝑁 − 𝛿𝑁𝑃) prey species, where 0 < 𝛿 < 1. Accordingly, the dynamics of the above-described 

model can be written as [27]. 

𝑑𝑁

𝑑𝑇
= 𝑁 [𝑟1 (𝑚 +

𝑛(1−𝑚)

𝑛+𝑃
) − 𝑑 − 𝑏𝑁 −

𝑎(1−𝛿𝑃)𝑃

𝑐+𝑁(1−𝛿𝑃)+𝑒𝑃
− 𝑞1𝐸𝑁] ,

𝑑𝑃

𝑑𝑇
= 𝑃 [𝑟2 (1 −

𝑃

𝐾+(1−𝛿𝑃)𝑁
) − 𝑞2𝐸𝑃],                    

                   (4) 

Keeping the above in view, this paper considers the influence of hunting cooperation on the model 

(3) instead of predator-dependent refuge with antipredator behavior, which can be seen in real-

world life between wild buffalo and lions. Consequently, the modified Leslie–Gower prey-

predator system that has hunting cooperation and antipredator behavior can be represented using 

the following set of differential equations. 

  

𝑑𝑁

𝑑𝑇
= 𝑁 [𝑟1 (𝑚 +

𝑛(1−𝑚)

𝑛+𝑃
) − 𝑑1 − 𝑏𝑁 −

(𝑎+ℎ𝑃)𝑃

𝑐1+(𝑎+ℎ𝑃)𝑁+𝑐2𝑃
− 𝑞1𝐸𝑁] = 𝑁𝑓(𝑁, 𝑃),

𝑑𝑃

𝑑𝑇
= 𝑃 [𝑟2 (1 −

𝑃

𝐾+(𝑎+ℎ𝑃)𝑁
) − 𝑑2N − 𝑞2𝐸𝑃] = 𝑃𝑔(𝑁, 𝑃),                

     (5) 

where all the parameters are nonnegative and described in Table 1. 
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Table 1. Parameters’ description. 

Parameter Description 

𝑟1, 𝑟2 The birth rate of the prey population and predator population, respectively. 

𝑚 The minimum cost of fear with 𝑚 ∈ [0,1]. 

𝑛 The level of fear. 

𝑑1 The natural death rate of the prey. 

𝑑2 The antipredator rate. 

𝑏 Decay rate due to intraspecific competition. 

𝑎 The attack rate. 

ℎ The Hunting cooperation rate. 

𝑐1 Half saturation constant. 

𝑐2 A level of interference between the individuals of a predator. 

𝑞1, 𝑞2 The catchability coefficients of the prey and predator, respectively. 

𝐸 The effort level for harvesting the prey and predator. 

𝐾 The carrying capacity of the predator in the absence of its prey. 

According to the interaction functions 𝑓(𝑁, 𝑃) and 𝑔(𝑁, 𝑃), the right-hand side functions of the 

system (5) are continuous and have continuous partial derivatives, therefore these functions are 

Lipschitzain. Consequently, depending on the fundamental theorem of existence and uniqueness 

for the solution of the initial value problems, system (5) with the initial condition 𝑁(0) ≥ 0, and 

𝑃(0) ≥ 0 have a unique solution.      

Theorem 1. System (5) is a positively invariant system. 

Proof. The form of System (5) indicates that the system is a Kolmogorov system, with 𝑓(𝑁, 𝑃) 

and 𝑔(𝑁, 𝑃)  being continuously differentiable functions reflecting the prey and predator growth 

rates, respectively. Therefore, we can solve (5) using the positive conditions (𝑁(0), 𝑃(0)) to 

obtain:  

 𝑁(𝑇) = 𝑁(0) 𝑒
∫ [𝑟1(𝑚+

𝑛(1−𝑚)

𝑛+𝑃(𝑠)
)−𝑑1−𝑏𝑁(𝑠)−

(𝑎+ℎ𝑃(𝑠))𝑃(𝑠)

𝑐1+(𝑎+ℎ𝑃(𝑠))𝑁(𝑠)+𝑐2𝑃(𝑠)
−𝑞1𝐸𝑁(𝑠)]𝑑𝑠

𝑡
0  

𝑃(𝑇) = 𝑃(0)𝑒
∫ [𝑟2(1−

𝑃(𝑠)

𝐾+(𝑎+ℎ𝑃(𝑠))𝑁(𝑠)
)−𝑑2𝑁(𝑠)−𝑞2𝐸𝑃(𝑠)]𝑑𝑠

𝑡
0

 

As a result, of the exponential function's definition, any solution in the 𝑖𝑛𝑡. ℝ+
2 =

{(𝑁, 𝑃) ∈ ℝ2: 𝑁(𝑇) > 0, 𝑃(𝑇) > 0} that begins with positive starting conditions (𝑁(0), 𝑃(0)) 

remains there eternally, due to the previous two equations. 
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Theorem 2. In the region,  

Υ = {(𝑁, 𝑃) ∈ ℝ+
2 : 0 ≤ 𝑁 <

𝑟1−𝑑1

𝑏+𝑞1𝐸
, 0 ≤ 𝑃 <

𝑟2

𝑞2𝐸
}. 

All of the solutions to system (5) are uniformly bounded, where 𝑟1, 𝑟2, 𝑑1, 𝑞1, 𝑞2, 𝐸, and 𝑏 are 

positive constants that satisfy 𝑟1 − 𝑑1 > 0, which reflects the prey species' survival condition in 

the absence of the predator. 

Proof. From the first equation of System (5), it is obtained that 

𝑑𝑁

𝑑𝑇
≤ (𝑟1 − 𝑑1)𝑁 − (𝑏 + 𝑞1𝐸)𝑁

2. 

By solving the above differential inequality it is obtained that: 

𝑁(𝑇) ≤
𝑟1 − 𝑑1

(𝑏 + 𝑞1𝐸)[1 − 𝑒−
(𝑟1−𝑑1)𝑇] + (𝑟1 − 𝑑1)𝑁(0)𝑒−

(𝑟1−𝑑1)𝑇
 

Thus, if 𝑇 → ∞ , it is obtained that 𝑁(𝑇) ≤
𝑟1−𝑑1

𝑏+𝑞1𝐸
= 𝜖 > 0 , because the survivor species' 

reproduction rate is naturally bigger than its mortality rate. Now from the subsequent equation of 

system (5), it is inferred that: 

  
𝑑𝑃

𝑑𝑇
≤ 𝑟2𝑃 − 𝑞2𝐸𝑃

2 

Similarly, solving the last differential inequality gives: 

  𝑃(𝑇) ≤
𝑟2

𝑞2𝐸[1−𝑒
−𝑟2𝑇]+𝑟2𝑁(0)𝑒

−𝑟2𝑇
. 

Therefore, when 𝑇 → ∞ , it is obtained that 𝑃(𝑇) ≤
𝑟2

𝑞2𝐸
. Consequently, the total solution of 

system (5) will be a uniformly bounded solution, hence the proof is complete. 

 

3. POINTS OF EQUILIBRIUM AND THEIR STABILITY 

The system (5) has four nonnegative equilibrium points. The entire extinction equilibrium 

point 𝑠0 = (0,0) always exists. The predator-free equilibrium point 𝑠1 = (�̅�, 0) = (
𝑟1−𝑑1

𝑏+𝑞1𝐸
, 0) 

that exists when 𝑟1 − 𝑑1 > 0 . However, the prey-free equilibrium point 𝑠2 = (0, �̿�) =

(0,
𝑟2𝐾

𝑟2+𝐾𝑞2𝐸
) that always exists. Finally, the co-existing equilibrium point 𝑒3 = (�̂�, �̂�) is the 

intersection of the non-trivial prey and predator nullclines 𝑓(𝑁, 𝑃) = 0 and 𝑔(𝑁, 𝑃) = 0, where 

𝑓(𝑁, 𝑃) and 𝑔(𝑁, 𝑃) are given in system (5). 
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Straightforward computation shows that these two nullclines intersect uniquely at 𝑒3 in the 

region Υ if and only if the following set of sufficient conditions is met, see Figure (1a) using a 

selected set of data. 

𝑟2

𝑑2
<

𝑟1−𝑑1

𝑏+𝑞1𝐸

𝑑𝑃

𝑑𝑁
= −

𝜕𝑓 𝜕𝑁⁄

𝜕𝑓 𝜕𝑃⁄
< 0

𝑑𝑃

𝑑𝑁
= −

𝜕𝑔 𝜕𝑁⁄

𝜕𝑔 𝜕𝑃⁄
> 0}

 
 

 
 

                               (6) 

Now the Jacobian matrix of system (5) at the point (𝑁, 𝑃) can be written as: 

  𝐽 = (𝑎𝑖𝑗)2×2,                                         (7) 

where 

 𝑎11 = −
2𝑏𝑁3(𝑎+ℎ𝑃)2+(𝑐1+𝑐2𝑃)(4𝑏𝑁

2+𝑃)(𝑎+ℎ𝑃)+2𝑏𝑁(𝑐1+𝑐2𝑃)

(𝑐1+𝑁(𝑎+ℎ𝑃)+𝑐2𝑃)2
− 𝑑1 − 2𝐸𝑞1𝑁 +

(𝑛+𝑚𝑃)𝑟1

𝑛+𝑃
, 

 𝑎12 = −
𝑁[𝑁(𝑎+ℎ𝑃)2+𝑐1(𝑎+2ℎ𝑃)+𝑐2ℎ𝑃

2]

(𝑐1+(𝑎+ℎ𝑃)𝑁+𝑐2𝑃)2
−
𝑟1(1−𝑚)𝑛𝑁

(𝑛+𝑃)2
, 

 𝑎21 = 𝑃 (−𝑑2 +
𝑟2(𝑎+ℎ𝑃)𝑃

(𝑘+𝑁(𝑎+ℎ𝑃))2
), 

 𝑎22 = −𝑑2𝑁 − 2𝐸𝑞2𝑃 + 𝑟2 (1 −
(2𝑘+2𝑎𝑁+ℎ𝑁𝑃)𝑃

(𝑘+𝑁(𝑎+ℎ𝑃))2
). 

Therefore, the Jacobian matrix at the entire extinction point 𝑠0 becomes: 

  𝐽(𝑠0) = (
−𝑑1 + 𝑟1 0

0 𝑟2
).                                      (8)   

Consequently, the eigenvalues are given by 

  𝜆01 = −𝑑1 + 𝑟1, 𝜆02 = 𝑟2.                           (9) 

Obviously, 𝑠0 is a saddle point if the following condition is satisfied: 

  𝑟1 < 𝑑1.                                  (10) 

While it is an  unstable node when  

  𝑟1 > 𝑑1.                                  (11) 

The Jacobian matrix (7) at predator-free equilibrium point 𝑠1 becomes 

  𝐽(𝑠1) = (𝛿𝑖𝑗)2×2,                             (12) 

where 

𝛿11 = (𝑟1 − 𝑑1) (1 −
2𝐸𝑞1

𝑏+𝐸𝑞1
−
2𝑎2𝑏(𝑟1−𝑑1)

2+2𝑏𝑐1(𝑏+𝐸𝑞1)[𝑐1(𝑏+𝐸𝑞1)+2𝑎(𝑟1−𝑑1)]

(𝑏+𝐸𝑞1)[𝑐1(𝑏+𝐸𝑞1)+𝑎(𝑟1−𝑑1)]2
). 

𝛿12 = −(𝑟1 − 𝑑1) (
(1−𝑚)𝑟1

𝑛(𝑏+𝑒𝑞1)
+

𝑎

𝑐1(𝑏+𝑒𝑞1)+a(𝑟1−𝑑1)
). 
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𝛿21 = 0. 

𝛿22 = −
𝑑2(𝑟1−𝑑1)

𝑏+𝐸𝑞1
+ 𝑟2. 

Hence the eigenvalues are given by: 

  𝜆11 = 𝛿11, 𝜆12 = 𝛿22.                                   (13) 

Therefore, the equilibrium point 𝑠1 is a stable node if and only if the following conditions hold. 

  1 <
2𝐸𝑞1

𝑏+𝐸𝑞1
+
2𝑎2𝑏(𝑟1−𝑑1)

2+2𝑏𝑐1(𝑏+𝐸𝑞1)[𝑐1(𝑏+𝐸𝑞1)+2𝑎(𝑟1−𝑑1)]

(𝑏+𝐸𝑞1)[𝑐1(𝑏+𝐸𝑞1)+𝑎(𝑟1−𝑑1)]2
.               (14) 

  𝑟2 <
𝑑2(𝑟1−𝑑1)

𝑏+𝐸𝑞1
.                                         (15) 

It is a saddle point if only one condition of the conditions (14)-(15) holds, while it is an unstable 

node when both conditions (14)-(15) are reflected. It is a non-hyperbolic point when one condition 

of (14)-(15) holds while equality occurs at the other condition. 

The Jacobian matrix (7) at prey-free equilibrium point 𝑠2 turns into: 

  𝐽(𝑠2) = (𝑏𝑖𝑗)2×2,                       (16) 

where 

   𝑏11 = −𝑑1 +
𝑟1[𝑛(𝐸𝑘𝑞2+𝑟2)+𝑘𝑚𝑟2]

𝑛(𝐸𝑘𝑞2+𝑟2)+𝑘𝑟2
−

𝑘𝑟2[𝑎(𝐸𝑘𝑞2+𝑟2)+ℎ𝑘𝑟2]

(𝐸𝑘𝑞2+𝑟2)[𝑐1(𝐸𝑘𝑞2+𝑟2)+𝑘𝑐2𝑟2]
, 

𝑏12 = 0, 

𝑏21 =
𝑟2(−𝑑2𝑘(𝐸𝑘𝑞2+𝑟2)

2+𝑟2
2[𝑎(𝐸𝑘𝑞2+𝑟2)+ℎ𝑘𝑟2])

(𝐸𝑘𝑞2+𝑟2)3
, 

𝑏22 − 𝑟2. 

Therefore, the eigenvalues can be written as: 

  
𝜆21 = −𝑑1 +

𝑟1[𝑛(𝐸𝑘𝑞2+𝑟2)+𝑘𝑚𝑟2]

𝑛(𝐸𝑘𝑞2+𝑟2)+𝑘𝑟2
−

𝑘𝑟2[𝑎(𝐸𝑘𝑞2+𝑟2)+ℎ𝑘𝑟2]

(𝐸𝑘𝑞2+𝑟2)[𝑐1(𝐸𝑘𝑞2+𝑟2)+𝑘𝑐2𝑟2]

𝜆22 = −𝑟2                                         
}.             (17) 

Direct computation shows that, the equilibrium point 𝑠2 is a stable node if the following condition 

is met. 

  
𝑟1[𝑛(𝐸𝑘𝑞2+𝑟2)+𝑘𝑚𝑟2]

𝑛(𝐸𝑘𝑞2+𝑟2)+𝑘𝑟2
< 𝑑1 +

𝑘𝑟2[𝑎(𝐸𝑘𝑞2+𝑟2)+ℎ𝑘𝑟2]

(𝐸𝑘𝑞2+𝑟2)[𝑐1(𝐸𝑘𝑞2+𝑟2)+𝑘𝑐2𝑟2]
               (18) 

It is a saddle point if condition (18) is reflected, while it becomes a non-hyperbolic point when 

equality occurs. 

Finally, the Jacobian matrix (7) at the co-existing point 𝑠3 turns into 

  𝐽 = (�̂�𝑖𝑗)2×2,                               (19) 
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where �̂�𝑖𝑗 = 𝑎𝑖𝑗(�̂�, �̂�) for all 𝑖. 𝑗 = 1,2. 

Theorem 3. The co-existing point 𝑠3 is a sink if and only if the following sufficient conditions 

are satisfied. 

  
(𝑛+𝑚�̂�)𝑟1

𝑛+�̂�
<

2𝑏�̂�3(𝑎+ℎ�̂�)2+(𝑐1+𝑐2�̂�)(4𝑏�̂�
2+�̂�)(𝑎+ℎ�̂�)+2𝑏�̂�(𝑐1+𝑐2�̂�)

(𝑐1+�̂�(𝑎+ℎ�̂�)+𝑐2�̂�)2
+ 𝑑1 + 2𝐸𝑞1�̂�,        (20) 

  𝑑2 <
𝑟2(𝑎+ℎ�̂�)�̂�

(𝑘+�̂�(𝑎+ℎ�̂�))2
,                       (21) 

  𝑟2 (1 −
(2𝑘+2𝑎�̂�+ℎ�̂��̂�)�̂�

(𝑘+�̂�(𝑎+ℎ�̂�))
2 ) < 𝑑2�̂� + 2𝐸𝑞2�̂�.                      (22)    

Proof. The characteristic polynomial of the Jacobian matrix (19) can be written in the form 

  𝜆2 − 𝑇𝑟𝜆 + 𝐷𝑒 = 0,                     (23) 

where 𝑇𝑟 = �̂�11 + �̂�22 and 𝐷𝑒 = �̂�11�̂�22 − �̂�12�̂�21. According to Routh-Hurwitz criterion, the 

equation (23) have two roots with negative real parts if and only if 𝑇𝑟 < 0, and 𝐷𝑒 > 0. Direct 

calculations indicate that the above conditions (20)-(22) satisfy the requirements of the Routh-

Hurwitz criterion. Therefore, the co-existing point is a sink. 

Theorem 4. System (5) has no periodic solutions provided that the following sufficient condition 

holds 

  
(𝑎+ℎ𝑃)2𝑃

(𝑐1+(𝑎+ℎ𝑃)𝑁+𝑐2𝑃)2
≤ 𝑏 + 𝑞1𝐸.                     (24) 

Proof. Consider the continuously differentiable function 𝐷(𝑁, 𝑃) =
1

𝑁𝑃
> 0 , for all (𝑁, 𝑃) 

belongs to the first quadrant 𝑖𝑛𝑡. ℝ+
2 .  

Therefore, direct computation gives the following expression 

  ∆=
𝜕

𝜕𝑁
(𝐷

𝑑𝑁

𝑑𝑇
) +

𝜕

𝜕𝑃
(𝐷

𝑑𝑃

𝑑𝑇
) = −

𝑏

𝑃
+

(𝑎+ℎ𝑃)2

(𝑐1+(𝑎+ℎ𝑃)𝑁+𝑐2𝑃)2
−
𝑞1𝐸

𝑃
−
𝑟2

𝑁

𝐾+𝑎𝑁

(𝐾+(𝑎+ℎ𝑃)𝑁)2
−
𝑞2𝐸

𝑁
  

Clearly, ∆< 0 provided that condition (24) holds. Therefore, according to the Bendixson–Dulac 

theorem [39], there are nonconstant periodic solutions in the first quadrant of the system (5) 

provided that condition (24) holds.  

As a result of theorem (4), using the Poincare-Bendixson theorem, the unique co-existing 

equilibrium point of the system (5) in the interior of the first quadrant is a globally asymptotically 

stable point. 
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4. UNIFORMLY PERSISTENCE 

Mathematically, uniform persistence refers to the presence of an area in the phase plane at a 

positive distance from the border where population species arrive and must eventually lie, 

guaranteeing the ongoing existence of species in a biological sense. Uniform persistence is defined 

analytically as follows. 

Definition [40]: The system (5) is uniformly persistent if every solution (𝑁(𝑇), 𝑃(𝑇)) of it given 

that the initial condition (𝑁(0), 𝑃(0)) ∈ 𝑖𝑛𝑡. ℝ+
2  fulfills the following requirements:  

(i) 𝑁(𝑇) > 0, 𝑃(𝑇) > 0 for all 𝑇 >0.  

(ii) There exists 𝜖 > 0 so that lim
𝑇→∞

inf 𝑁(𝑇) > 𝜖 and lim
𝑇→∞

inf 𝑃(𝑇) > 𝜖. 

Theorem 5. The system (5) is uniformly persistent provided that 

𝑑1(𝑛𝑞2𝐸 + 𝑟2) < 𝑚(𝑛𝑞2𝐸 + 𝑟2) + 𝑛(1 − 𝑚)𝑞2𝐸.                   (25) 

Proof. From the first equation of system (1), for 𝑇 > 𝑇1 it is obtained 

𝑑𝑁

𝑑𝑇
= 𝑁 [𝑟1 (𝑚 +

𝑛(1−𝑚)

𝑛+𝑃
) − 𝑑1 − 𝑏𝑁 −

(𝑎+ℎ𝑃)𝑃

𝑐1+(𝑎+ℎ𝑃)𝑁+𝑐2𝑃
− 𝑞1𝐸𝑁]                

≥ 𝑁 [𝑟1 (
𝑚(𝑛𝑞2𝐸+𝑟2)+𝑛(1−𝑚)𝑞2𝐸−𝑑1(𝑛𝑞2𝐸+𝑟2)

𝑛𝑞2𝐸+𝑟2
) − (𝑏 + 𝑞1𝐸)𝑁]

. 

Therefore, due to lemma (2.2) of [40], the following is obtained. 

 lim
𝑇→∞

inf 𝑁(𝑇) ≥
𝑚(𝑛𝑞2𝐸+𝑟2)+𝑛(1−𝑚)𝑞2𝐸−𝑑1(𝑛𝑞2𝐸+𝑟2)

(𝑛𝑞2𝐸+𝑟2)(𝑏+𝑞1𝐸)
≡ 𝜎1 

Similarly, from the second equation of system (5), it is observed that 

  
𝑑𝑃

𝑑𝑇
= 𝑃 [𝑟2 (1 −

𝑃

𝐾+(𝑎+ℎ𝑃)𝑁
) − 𝑑2N − 𝑞2𝐸𝑃] ≥ 𝑃 [𝑟2 −

(𝑟2+𝐾𝑞2𝐸)

𝐾
𝑃]. 

Again, using lemma (2.2) of [40], the following is obtained 

  lim
𝑇→∞

inf 𝑃(𝑇) ≥
𝑟2𝐾

(𝑟2+𝐾𝑞2𝐸)
≡ 𝜎2. 

Thus, for arbitrary 𝜖 > 0, so that 𝜖 = min{ 𝜎1, 𝜎2}, it is obtained that 

  lim
𝑇→∞

inf 𝑁(𝑇) > 𝜖 and lim
𝑇→∞

inf 𝑃(𝑇) > 𝜖 

The proof is done. 
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5. LOCAL BIFURCATION  

Changes in the qualitative structure of a collection of curves, such as the integral curves of a 

set of vector fields or the solutions of a set of differential equations, are investigated by bifurcation 

theory. A bifurcation happens when a slight smooth change in the parameter values of a system 

results in a major significant shift in its behavior. It is most frequently employed in the 

mathematical analysis of dynamical systems. Bifurcation might take place in two ways. Local 

bifurcations are visible when parameters pass through vital thresholds by observing alterations in 

the regional stability features of equilibria, periodic orbits, or other invariant sets; global 

bifurcations take place when the system's larger consistent sets clash with each other or with the 

system's equilibria. They cannot be discovered just by looking at the stability of the equilibria. The 

identification of the probability of local bifurcation is worked out in this part. Consider the system 

(5) in the form 

  
𝑑𝐘

𝑑𝑇
= 𝐅(𝐘), with 𝐘 = (

𝑁
𝑃
), and 𝐅 = (

𝑓1(𝑁, 𝑃, 𝜇)
𝑔1(𝑁, 𝑃, 𝜇)

) = (
𝑁𝑓(𝑁, 𝑃, 𝜇)
𝑃𝑔(𝑁, 𝑃, 𝜇)

).          (26) 

where 𝜇 ∈ ℝ be the parameter. 

Consequently, the second directional derivative of 𝐅, where 𝐕 = (𝑣1, 𝑣2)
𝑇 be any vector, can be 

written using direct computation as:  

𝐷2𝐅(𝐘, 𝜇). (𝐕, 𝐕) = (
𝑐11
𝑐21
),                      (27) 

where 

𝑐11 = 2(−𝑏 −
(𝑎+ℎ𝑃)3𝑁𝑃

(𝑐1+𝑁(𝑎+ℎ𝑃)+𝑐2𝑃)3
+

(𝑎+ℎ𝑃)2𝑃

(𝑐1+𝑁(𝑎+ℎ𝑃)+𝑐2𝑃)2
− 𝐸𝑞1) 𝑣1

2          

+2 [(
𝑐1[−𝑎𝑁(𝑎+ℎ𝑃)−𝑐1(𝑎+2ℎ𝑃)]−𝑐2𝑃[𝑁(𝑎+ℎ𝑃)(2𝑎+ℎ𝑃)+𝑐1(𝑎+3ℎ𝑃)]−𝑐2

2ℎ𝑃3

(𝑐1+𝑁(𝑎+ℎ𝑃)+𝑐2𝑃)
)

−
(1−𝑚)𝑛𝑟1

(𝑛+𝑃)2
] 𝑣1𝑣2 + 2𝑁 (

(𝑎𝑁+𝑐1)(−ℎ𝑐1+𝑎𝑐2)

(𝑐1+𝑁(𝑎+ℎ𝑃)+𝑐2𝑃)3
+
(1−𝑚)𝑛𝑟1

(𝑛+𝑃)3
) 𝑣2

2

. 

𝑐21 = −
2𝑟2𝑃

2(𝑎 + ℎ𝑃)2

(𝑘 + 𝑁(𝑎 + ℎ𝑃))
3 𝑣1

2 − 2 [𝐸𝑞2 +
𝑟2(𝑘 + 𝑎𝑁)

2

(𝑘 + 𝑁(𝑎 + ℎ𝑃))
3] 𝑣2

2

−2[𝑑2 −
𝑟2𝑃[2𝑎(𝑘 + 𝑎𝑁) + 3ℎ(𝑘 + 𝑎𝑁)𝑃 + ℎ

2𝑁𝑃2]

(𝑘 + 𝑁(𝑎 + ℎ𝑃))
3 ] 𝑣1𝑣2

 

Theorem 6. At 𝑟2 =
𝑑2(𝑟1−𝑑1)

𝑏+𝐸𝑞1
≡ 𝑟2

∗, the system (5) enters into transcritical bifurcation around the 

predator-free equilibrium point provided that condition (14) holds along with the following 

condition 
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  2𝑑2
�̅�12
∗

�̅�11
∗ ≠ 2 [ℎ𝑞2 +

𝑟2

(𝑘+𝑎�̅�)
].                    (28) 

Otherwise, the system (5) enters into pitchfork bifurcation provided that the following condition 

is met. 

  
6𝑟2ℎ�̅�

(𝑘+𝑎�̅�)2
≠

6𝑟2𝑎

(𝑘+𝑎�̅�)2
�̅�12
∗

�̅�11
∗ .                                  (29) 

Proof. From the Jacobian matrix (12) at 𝑟2 = 𝑟2
∗, it is obtained that 

  𝐽1 = 𝐽(𝑠1, 𝑟2
∗) = (𝛿�̅�𝑗

∗ )
2×2

,      

Where 𝛿�̅�𝑗
∗ = 𝛿𝑖𝑗(𝑠1, 𝑟2

∗), with 𝛿𝑖𝑗 given in equation (12) and 𝛿2̅2
∗ = 𝛿22(𝑠1, 𝑟2

∗) = 0. Therefore, 

The eigenvalues of 𝐽1 are given by 𝜆11
∗ = 𝛿1̅1

∗ < 0 due to condition (14), and 𝜆12
∗ = 0. Hence, 

𝑠1  is a non-hyperbolic point. Let 𝐕𝟏 = (
𝑣11
𝑣21

) , and 𝐔𝟏 = (
𝑢11
𝑢21

)  reperesent the eigenvectors 

corresponding to the 𝜆12
∗ = 0 of the 𝐽1 and their transpose respectively. Then, straightforward 

computation gives that:  

 𝐕𝟏 = (
−
�̅�12
∗

�̅�11
∗

1
) ≡ (

𝜋1
1
), and 𝐔𝟏 = (

0
1
). 

Obviously, 𝜋1 < 0  due to 𝛿1̅2
∗ < 0  and 𝛿1̅1

∗ < 0  from condition (14). Moreover, direct 

computation shows that:  

 𝐅𝑟2(𝐘, 𝑟2) = (
0

(1 −
𝑃

𝐾+(𝑎+ℎ𝑃)𝑁
)𝑃) ⇒ 𝐅𝑟2(𝑠1, 𝑟2

∗) = (
0
0
).  

Hence, it is obtained that ∆11= 𝐔𝟏
Τ𝐅𝑟2(𝑠1, 𝑟2

∗) = 0. Moreover, it is observed that 

 ∆21= 𝐔𝟏
Τ[𝐷𝐅𝑟2(𝑠1, 𝑟2

∗)𝐕𝟏] = 1 ≠ 0. 

Furthermore, according to the equation (27), it is obtained that 

  𝐷2𝐅𝑟2(𝑠1, 𝑟2
∗)(𝐕𝟏, 𝐕𝟏) = (

𝑐1̅1
𝑐2̅1
), 

where 

𝑐1̅1 = −2(𝑏 + 𝐸𝑞1)𝜋1
2 − 2 [𝑐1𝑎 +

(1−𝑚)𝑟1

𝑛
] 𝜋1 + 2�̅� (

(−ℎ𝑐1+𝑎𝑐2)

(𝑎�̅�+𝑐1)2
+
(1−𝑚)𝑟1

𝑛2
). 

  𝑐2̅1 = −2 [𝐸𝑞2 +
𝑟2

(𝑘+𝑎�̅�)
] − 2𝑑2𝜋1. 
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Hence,  

 

∆31= 𝐔𝟏
Τ[𝐷2𝐅𝑟2(𝑠1, 𝑟2

∗)(𝐕𝟏, 𝐕𝟏)] = −2 [𝐸𝑞2 +
𝑟2

(𝑘+𝑎�̅�)
] − 2𝑑2𝜋1 

= −2 [ℎ𝑞2 +
𝑟2

(𝑘+𝑎�̅�)
] + 2𝑑2

�̅�12
∗

�̅�11
∗

. 

Consequently, ∆31≠ 0  provided that condition (28) is satisfied. Hence from the values of 

∆11, ∆21, and ∆31, Sotomayor theorem of local bifurcation leads to the fact that system (5) enters 

into transcritical bifurcation around the predator-free equilibrium point.  

However, if the condition (28) is violated then direct computation to the third directional derivative 

of 𝐅 at (𝑠1, 𝑟2
∗)  gives that  

  𝐷3𝐅𝑟2(𝑠1, 𝑟2
∗)(𝐕𝟏, 𝐕𝟏, 𝐕𝟏) = (

𝑙1̅1
𝑙2̅1
) 

where 

 

𝑙1̅1 = −
6

𝑛4(𝑎�̅�+𝑐1)4
[(−𝑎ℎ2𝑛4�̅�3𝑐1 − ℎ

2𝑛4�̅�2𝑐1
2 + 𝑎2ℎ𝑛4�̅�3𝑐2 − ℎ𝑛

4�̅�𝑐1
2𝑐2

+𝑎2𝑛4�̅�2𝑐2
2 + 𝑎𝑛4�̅�𝑐1𝑐2

2 + 𝑎4𝑛�̅�5𝑟1 − 𝑎
4𝑚𝑛�̅�5𝑟1 + 4𝑎

3𝑛�̅�4𝑐1𝑟1
−4𝑎3𝑚𝑛�̅�4𝑐1𝑟1 + 6𝑎

2𝑛�̅�3𝑐1
2𝑟1 − 6𝑎

2𝑚𝑛�̅�3𝑐1
2𝑟1 + 4𝑎𝑛�̅�

2𝑐1
3𝑟1 − 4𝑎𝑚𝑛�̅�

2𝑐1
3𝑟1

+𝑛�̅�𝑐1
4𝑟1 −𝑚𝑛�̅�𝑐1

4𝑟1) + (−𝑎
2ℎ𝑛4�̅�2𝑐1 + ℎ𝑛

4𝑐1
3 + 𝑎3𝑛4�̅�2𝑐2 − 𝑎𝑛

4𝑐1
2𝑐2

−𝑎4𝑛2�̅�4𝑟1 + 𝑎
4𝑚𝑛2�̅�4𝑟1 − 4𝑎

3𝑛2�̅�3𝑐1𝑟1 + 4𝑎
3𝑚𝑛2�̅�3𝑐1𝑟1 − 6𝑎

2𝑛2�̅�2𝑐1
2𝑟1

+6𝑎2𝑚𝑛2�̅�2𝑐1
2𝑟1 − 4𝑎𝑛

2�̅�𝑐1
3𝑟1 + 4𝑎𝑚𝑛

2�̅�𝑐1
3𝑟1 − 𝑛

2𝑐1
4𝑟1 +𝑚𝑛

2𝑐1
4𝑟1)𝜋1

+(−𝑎3𝑛4�̅�𝑐1 − 𝑎
2𝑛4𝑐1

2)𝜋1
2]

. 

 𝑙2̅1 =
6𝑟2(ℎ�̅�+𝑎𝜋1)

(𝑘+𝑎�̅�)2
. 

Hence,  

 ∆41= 𝐔𝟏
Τ[𝐷3𝐅𝑟2(𝑠1, 𝑟2

∗)(𝐕𝟏, 𝐕𝟏, 𝐕𝟏)] =
6𝑟2(ℎ�̅�+𝑎𝜋1)

(𝑘+𝑎�̅�)2
=

6𝑟2ℎ�̅�

(𝑘+𝑎�̅�)2
−

6𝑟2𝑎

(𝑘+𝑎�̅�)2
�̅�12
∗

�̅�11
∗  

Therefore, ∆41≠ 0 provided that condition (29) is satisfied. Thus from the values of ∆11, ∆21, 

∆31, and ∆41, the Sotomayor theorem of local bifurcation leads to the fact that system (5) enters 

into pitchfork bifurcation around the predator-free equilibrium point and that completes the proof. 

Theorem 7. At 𝑑1 =
𝑟1[𝑛(𝐸𝑘𝑞2+𝑟2)+𝑘𝑚𝑟2]

𝑛(𝐸𝑘𝑞2+𝑟2)+𝑘𝑟2
−

𝑘𝑟2[𝑎(𝐸𝑘𝑞2+𝑟2)+ℎ𝑘𝑟2]

(𝐸𝑘𝑞2+𝑟2)[𝑐1(𝐸𝑘𝑞2+𝑟2)+𝑘𝑐2𝑟2]
≡ 𝑑1

∗,  then the system (5) 

enters into a transcritical bifurcation around the prey-free equilibrium point provided that 

  𝑐1̿1 ≠ 0.                        (30) 

Otherwise, the system (5) enters into pitchfork bifurcation provided that the following condition 
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is met. 

  𝑙1̿1 ≠ 0.                        (31) 

Where all the new symbols are given in the proof. 

Proof. From the Jacobian matrix (15) at 𝑑1 = 𝑑1
∗, it is obtained that 

 𝐽2 = 𝐽(𝑠2, 𝑑1
∗) = (𝑏𝑖𝑗

∗ )
2×2

.     

where 𝑏𝑖𝑗
∗ = 𝑏𝑖𝑗(𝑑1

∗) with 𝑏𝑖𝑗 are given in equation (15) and 𝑏11
∗ = 𝑏11(𝑑1

∗) = 0. 

 Therefore, the eigenvalues of 𝐽2 are given by 𝜆21
∗ = 0 under the condition (17), and 𝜆22

∗ =

−𝑟2 . Hence, 𝑠2  is a non-hyperbolic point. Let 𝐕𝟐 = (
𝑣12
𝑣22

), and 𝐔𝟐 = (
𝑢12
𝑢22

) denotes to the 

eigenvectors corresponding to the 𝜆11
∗ = 0 of the 𝐽2  and their transpose respectively. Then, 

straightforward computation gives that:  

 𝐕𝟐 = (
1

−
𝑏21
∗

𝑏22
∗
) = (

1
𝜋2
), and 𝐔𝟐 = (

1
0
). 

Moreover, direct computation shows that:  

 𝐅𝑑1(𝐘, 𝑑1) = (
−N
0
) ⇒ 𝐅𝑑1(𝑠2, 𝑑1

∗) = (
0
0
).  

Hence, it is obtained that ∆12= 𝐔𝟐
Τ𝐅𝑑1(𝑠2, 𝑑1

∗) = 0. Also, it is observed that 

 ∆22= 𝐔𝟐
Τ[𝐷𝐅𝑑1(𝑠2, 𝑑1

∗)𝐕𝟐] = −1 ≠ 0. 

Furthermore, according to the equation (27), it is obtained that 

 𝐷2𝐅𝑑1(𝑠2, 𝑑1
∗)(𝐕𝟐, 𝐕𝟐) = (

𝑐1̿1
𝑐2̿1
), 

where 

 𝑐1̿1 = 2(−𝑏 +
(𝑎+ℎ𝑃)2𝑃

(𝑐1+𝑐2𝑃)2
− 𝐸𝑞1) − 2 [

𝑐1
2(𝑎+2ℎ𝑃)+𝑐2𝑐1(𝑎+3ℎ𝑃)𝑃+𝑐2

2ℎ𝑃3

(𝑐1+𝑐2𝑃)
+
(1−𝑚)𝑛𝑟1

(𝑛+𝑃)2
] 𝜋2. 

 𝑐2̿1 = −
2𝑟2𝑃

2(𝑎+ℎ𝑃)2

𝑘3
− 2 [𝐸𝑞2 +

𝑟2

𝑘
] 𝜋2

2 − 2 [𝑑2 −
𝑟2𝑃[2𝑎+3ℎ𝑃]

𝑘2
] 𝜋2. 

Hence,  ∆32= 𝐔𝟐
Τ[𝐷2𝐅𝑑1(𝑠2, 𝑑1

∗)(𝐕𝟐, 𝐕𝟐)] = 𝑐1̿1 . 

Consequently, ∆32≠ 0  provided that condition (30) is satisfied. Hence from the values of 

∆12, ∆22, and ∆32, Sotomayor theorem of local bifurcation leads to the fact that system (5) enters 
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into transcritical bifurcation around the prey-free equilibrium point.  

On the other hand, if the condition (29) is violated then direct computation to the third directional 

derivative of 𝐅 at (𝑠2, 𝑑1
∗)  gives that  

  𝐷3𝐅𝑑1(𝑠2, 𝑑1
∗)(𝐕𝟐, 𝐕𝟐, 𝐕𝟐) = (

𝑙1̿1

𝑙2̿1
), 

where 

  𝑙1̿1 = −
6[𝐻1+𝐻2𝜋2+𝐻3𝜋2

2]

(𝑛+�̿�)4(𝑐1+𝑐2�̿�)4
, 

𝑙2̿1 =
6(𝑎3�̿�2 + 3𝑎2ℎ�̿�3 + 3𝑎ℎ2�̿�4 + ℎ3�̿�5)𝑟2

𝑘4
−
6(2𝑎2𝑘�̿� + 6𝑎ℎ𝑘�̿�2 + 4ℎ2𝑘�̿�3)𝑟2𝜋2

𝑘4

+
6(𝑎𝑘2 + 3ℎ𝑘2�̿�)𝑟2𝜋2

2

𝑘4
,

 

where 

𝐻1 = 𝑎
3𝑛4𝑐1�̿� + 4𝑎

3𝑛3�̿�2𝑐1 + 3𝑎
2ℎ𝑛4�̿�2𝑐1 + 6𝑎

3𝑛2�̿�3𝑐1 + 12𝑎
2ℎ𝑛3�̿�3𝑐1 + 3𝑎ℎ

2𝑛4�̿�3𝑐1

+4𝑎3𝑛�̿�4𝑐1 + 18𝑎
2ℎ𝑛2�̿�4𝑐1 + 12𝑎ℎ

2𝑛3�̿�4𝑐1 + ℎ
3𝑛4�̿�4𝑐1 + 𝑎

3�̿�5𝑐1 + 12𝑎
2ℎ𝑛�̿�5𝑐1

+18𝑎ℎ2𝑛2�̿�5𝑐1 + 4ℎ
3𝑛3�̿�5𝑐1 + 3𝑎

2ℎ�̿�6𝑐1 + 12𝑎ℎ
2𝑛�̿�6𝑐1 + 6ℎ

3𝑛2�̿�6𝑐1 + 3𝑎ℎ
2�̿�7𝑐1

+4ℎ3𝑛�̿�7𝑐1 + ℎ
3�̿�8𝑐1 + 𝑎

3𝑛4�̿�2𝑐2 + 4𝑎
3𝑛3�̿�3𝑐2 + 3𝑎

2ℎ𝑛4�̿�3𝑐2 + 6𝑎
3𝑛2�̿�4𝑐2

+12𝑎2ℎ𝑛3�̿�4𝑐2 + 3𝑎ℎ
2𝑛4�̿�4𝑐2 + 4𝑎

3𝑛�̿�5𝑐2 + 18𝑎
2ℎ𝑛2�̿�5𝑐2 + 12𝑎ℎ

2𝑛3�̿�5𝑐2

+ℎ3𝑛4�̿�5𝑐2 + 𝑎
3�̿�6𝑐2 + 12𝑎

2ℎ𝑛�̿�6𝑐2 + 18𝑎ℎ
2𝑛2�̿�6𝑐2 + 4ℎ

3𝑛3�̿�6𝑐2 + 3𝑎
2ℎ�̿�7𝑐2

+12𝑎ℎ2𝑛�̿�7𝑐2 + 6ℎ
3𝑛2�̿�7𝑐2 + 3𝑎ℎ

2�̿�8𝑐2 + 4ℎ
3𝑛�̿�8𝑐2 + ℎ

3�̿�9𝑐2

. 

𝐻2 = −𝑎
2𝑛4𝑐1

2 − 4𝑎2𝑛3�̿�𝑐1
2 − 4𝑎ℎ𝑛4�̿�𝑐1

2 − 6𝑎2𝑛2�̿�2𝑐1
2 − 16𝑎ℎ𝑛3�̿�2𝑐1

2 − 3ℎ2𝑛4�̿�2𝑐1
2

−4𝑎2𝑛�̿�3𝑐1
2 − 24𝑎ℎ𝑛2�̿�3𝑐1

2 − 12ℎ2𝑛3�̿�3𝑐1
2 − 𝑎2�̿�4𝑐1

2 − 16𝑎ℎ𝑛�̿�4𝑐1
2

−18ℎ2𝑛2�̿�4𝑐1
2 − 4𝑎ℎ�̿�5𝑐1

2 − 12ℎ2𝑛�̿�5𝑐1
2 − 3ℎ2�̿�6𝑐1

2 − 4𝑎ℎ𝑛4�̿�2𝑐1𝑐2

−16𝑎ℎ𝑛3�̿�3𝑐1𝑐2 − 4ℎ
2𝑛4�̿�3𝑐1𝑐2 − 24𝑎ℎ𝑛

2�̿�4𝑐1𝑐2 − 16ℎ
2𝑛3�̿�4𝑐1𝑐2

−16𝑎ℎ𝑛�̿�5𝑐1𝑐2 − 24ℎ
2𝑛2�̿�5𝑐1𝑐2 − 4𝑎ℎ�̿�

6𝑐1𝑐2 − 16ℎ
2𝑛�̿�6𝑐1𝑐2 − 4ℎ

2�̿�7𝑐1𝑐2

+𝑎2𝑛4�̿�2𝑐2
2 + 4𝑎2𝑛3�̿�3𝑐2

2 + 6𝑎2𝑛2�̿�4𝑐2
2 − ℎ2𝑛4�̿�4𝑐2

2 + 4𝑎2𝑛�̿�5𝑐2
2

−4ℎ2𝑛3�̿�5𝑐2
2 + 𝑎2�̿�6𝑐2

2 − 6ℎ2𝑛2�̿�6𝑐2
2 − 4ℎ2𝑛�̿�7𝑐2

2 − ℎ2�̿�8𝑐2
2

. 

𝐻3 = ℎ𝑛
4𝑐1
3 + 4ℎ𝑛3�̿�𝑐1

3 + 6ℎ𝑛2�̿�2𝑐1
3 + 4ℎ𝑛�̿�3𝑐1

3 + ℎ�̿�4𝑐1
3 − 𝑎𝑛4𝑐1

2𝑐2 − 4𝑎𝑛
3�̿�𝑐1

2𝑐2

+ℎ𝑛4�̿�𝑐1
2𝑐2 − 6𝑎𝑛

2�̿�2𝑐1
2𝑐2 + 4ℎ𝑛

3�̿�2𝑐1
2𝑐2 − 4𝑎𝑛�̿�

3𝑐1
2𝑐2 + 6ℎ𝑛

2�̿�3𝑐1
2𝑐2

−𝑎�̿�4𝑐1
2𝑐2 + 4ℎ𝑛�̿�

4𝑐1
2𝑐2 + ℎ�̿�

5𝑐1
2𝑐2 − 𝑎𝑛

4�̿�𝑐1𝑐2
2 − 4𝑎𝑛3�̿�2𝑐1𝑐2

2 − 6𝑎𝑛2�̿�3𝑐1𝑐2
2

−4𝑎𝑛�̿�4𝑐1𝑐2
2 − 𝑎�̿�5𝑐1𝑐2

2 − 𝑛2𝑐1
4𝑟1 +𝑚𝑛

2𝑐1
4𝑟1 − 𝑛�̿�𝑐1

4𝑟1 +𝑚𝑛�̿�𝑐1
4𝑟1

−4𝑛2�̿�𝑐1
3𝑐2𝑟1 + 4𝑚𝑛

2�̿�𝑐1
3𝑐2𝑟1 − 4𝑛�̿�

2𝑐1
3𝑐2𝑟1 + 4𝑚𝑛�̿�

2𝑐1
3𝑐2𝑟1 − 6𝑛

2�̿�2𝑐1
2𝑐2
2𝑟1

+6𝑚𝑛2�̿�2𝑐1
2𝑐2
2𝑟1 − 6𝑛�̿�

3𝑐1
2𝑐2
2𝑟1 + 6𝑚𝑛�̿�

3𝑐1
2𝑐2
2𝑟1 − 4𝑛

2�̿�3𝑐1𝑐2
3𝑟1

+4𝑚𝑛2�̿�3𝑐1𝑐2
3𝑟1 − 4𝑛�̿�

4𝑐1𝑐2
3𝑟1 + 4𝑚𝑛�̿�

4𝑐1𝑐2
3𝑟1 − 𝑛

2�̿�4𝑐2
4𝑟1

+𝑚𝑛2�̿�4𝑐2
4𝑟1 − 𝑛�̿�

5𝑐2
4𝑟1 +𝑚𝑛�̿�

5𝑐2
4𝑟1

. 
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Hence,  

  ∆42= 𝐔𝟐
Τ[𝐷3𝐅𝑑1(𝑠2, 𝑑1

∗)(𝐕𝟐, 𝐕𝟐, 𝐕𝟐)] = 𝑙1̿1  

Therefore, ∆42≠ 0 provided that condition (31) is satisfied. Thus from the values of ∆12, ∆22, 

∆32, and ∆42, Sotomayor theorem of local bifurcation leads to the fact that system (5) enters into 

pitchfork bifurcation around the prey-free equilibrium point and that completes the proof. 

Theorem 8. Assume that condition (20) holds with 𝑑2 = 𝑑2
∗, where 

  𝑑2
∗ =

2𝐸𝑞2�̂��̂�11
∗ −𝑟2(1−

(2𝑘+2𝑎�̂�+ℎ�̂��̂�)�̂�

(𝑘+�̂�(𝑎+ℎ�̂�))
2 )�̂�11

∗ +
𝑟2(𝑎+ℎ�̂�)�̂�

2�̂�12
∗

(𝑘+�̂�(𝑎+ℎ�̂�))
2

(�̂�12
∗ �̂�−�̂��̂�11

∗ )
. 

Then the system (5) enters into a saddle-node bifurcation around the co-existing equilibrium point 

provided that 

 �̂�11
∗ + �̂�22

∗ < 0.                           (32)  

 𝜋4�̂�11 + �̂�21 ≠ 0.                       (33) 

Where all the new symbols are given in the proof. 

Proof. From the Jacobian matrix (19) at 𝑑2 = 𝑑2
∗, it is obtained that 

  𝐽3 = 𝐽(𝑠3, 𝑑2
∗) = (�̂�𝑖𝑗

∗ ).     

where �̂�𝑖𝑗
∗ = �̂�𝑖𝑗(𝑑2

∗) and �̂�𝑖𝑗 are given in equation (19). 

Therefore, the determinant of 𝐽3 that is given by 𝐷𝑒(𝑑2
∗) in equation (23) equals zero, that is 

𝐷𝑒(𝑑2
∗) = 0. So the characteristic equation (23) at 𝑑2 = 𝑑2

∗  have eigenvalues 𝜆1
∗ = 0 and 𝜆2

∗ =

𝑇𝑟(𝑑2
∗) = �̂�11

∗ + �̂�22
∗ < 0 under condition (32). Hence, 𝑠3 is a non-hyperbolic point. Let 𝐕𝟑 =

(
𝑣13
𝑣23

), and 𝐔𝟑 = (
𝑢13
𝑢23

) denote to the eigenvectors corresponding to the 𝜆1
∗ = 0 of the 𝐽3 and 

their transpose respectively. Then, straightforward computation gives that:  

 𝐕𝟑 = (
−
�̂�12
∗

�̂�11
∗

1
) = (

𝜋3
1
), and 𝐔𝟑 = (

−
�̂�21
∗

�̂�11
∗

1
) = (

𝜋4
1
). 

Moreover, direct computation shows that:  

 𝐅𝑑2(𝐘, 𝑑2) = (
0

−𝑁𝑃
) ⇒ 𝐅𝑑2(𝑠3, 𝑑2

∗) = (
0

−�̂��̂�
).  

Hence, it is obtained that ∆13= 𝐔𝟑
Τ𝐅𝑑2(𝑠3, 𝑑2

∗) = −�̂��̂� ≠ 0. 
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Furthermore, according to the equation (27), it is obtained that 

 𝐷2𝐅𝑑2(𝑠3, 𝑑2
∗)(𝐕𝟑, 𝐕𝟑) = (

�̂�11
�̂�21
), 

where �̂�11 = 𝑐11(𝑠3, 𝑑2
∗) and �̂�22 = 𝑐22(𝑠3, 𝑑2

∗), with 𝑐11 and 𝑐22 are given in equation (27). 

Hence,  

 ∆23= 𝐔𝟑
Τ[𝐷2𝐅𝑑2(𝑠3, 𝑑2

∗)(𝐕𝟑, 𝐕𝟑)] = 𝜋4�̂�11 + �̂�21 . 

Consequently, ∆23≠ 0 due to condition (33), so from the values of ∆13, and ∆23, Sotomayor 

theorem of local bifurcation leads to the fact that system (5) enters into a saddle-node bifurcation 

around the co-existing equilibrium point and that completes the proof. 

 

6. SIMULATION ANALYSIS 

It is well known that, the natural environment's interaction between prey and predator is one 

of mutual constraint and control. To further understand the dynamic connection between prey and 

predator, numerical simulations of the model (5) will be run to demonstrate some complicated 

dynamic behaviors. For simplicity, we set the parameters values as follows:   

𝑟1 = 2, 𝑛 = 2,𝑚 = 0.5, 𝑏 = 0.1, 𝑑1 = 0.1, 𝑎 = 0.75, 𝑐1 = 0.5, 𝑐2 = 0.2
ℎ = 0.05, 𝑞1 = 0.1, 𝑞2 = 0.2, 𝐸 = 0.75, 𝑟2 = 1,𝐾 = 2, 𝑑2 = 0.25.

           (34) 

First, to demonstrate the existence of co-existing equilibrium point Figure (1) is given: 
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Fig. 1: Four conceivable cases for system’s (5) nullclines. (a) Unique co-existing equilibrium point 

𝑠3 = (6.2,2.41) with 𝑠2 = (0,1.53), 𝑠1 = (10.85,0), and 𝑠0 = (0,0) for the data set (34) with 

𝑐1 = 2 and 𝑑2 = 0.05. (b) Two co-existing equilibrium points 𝑠31 = (0.98,2.07) and 𝑠32 =

(3.97,2.88) with three boundary points 𝑠0, 𝑠1, and 𝑠2 for the data set (34). (c) Non existence of 

co-existing point for data set (34) with 𝑟1 = 1.5. (d) Non existence of co-existing point and 𝑠1 

for the data set (34) with 𝑟1 = 0.1. 

 

Now, to understand the role of 𝑟1 on the dynamics of the system (5), the numerical solution was 

obtained for different values of 𝑟1. It is observed that for 𝑟1 ≤ 0.1 there are only two boundary 

points 𝑠0 and 𝑠2 = (0,1.53), which are source and sink (stable node) respectively. For, 0.1 <

𝑟1 ≤ 1.88 the system has three boundary points 𝑠0, 𝑠1 , and 𝑠2 = (0,1.53), which are source, 

saddle, and sink respectively. However, for 1.88 < 𝑟1 ≤ 2.89, system (5) has three boundary 

points 𝑠0, 𝑠1  and 𝑠2 = (0,1.53)  with two co-existing points 𝑠31and 𝑠32  so that the system 

exhibits bistable case between 𝑠2 and  𝑠32 while the rest of points are unstable. For 2.89 <

𝑟1 ≤ 3.63, there is a unique co-existing point with three boundary points and the system exhibits 

bistable between 𝑠2 and 𝑠3 up to 𝑟1 = 3.13 after that 𝑠3 becomes a worldwide sink. Finally, 

for 𝑟1 > 3.63  the system (5) has three boundary equilibrium point only 𝑠0, 𝑠1 , and 𝑠2 =

(0,1.53) behave as source, worldwide sink, and saddle point. To explain the above-obtained 

results, Figure (2) is obtained using a numerical solution of the system (5) depending on parameters 

(34) with the selected values of 𝑟1. 
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Fig. 2: (a) Direction field when 𝑟1 = 1. (b) Phase portraits when 𝑟1 = 1 depict the worldwide 

sink at 𝑠2 = (0,1.53). (c) Direction field when 𝑟1 = 2. (d) Phase portraits when 𝑟1 = 2 depict 
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the bistable behavior between 𝑠2 and 𝑠32. (e) Direction field when 𝑟1 = 3.2. (f) Phase portraits 

when 𝑟1 = 3.2 depict worldwide sink at 𝑠3 = (12.7,1.74). (g) Direction field when 𝑟1 = 3.65. 

(h) Phase portraits when 𝑟1 = 3.65 depict worldwide sink at 𝑠1 = (20.28,0). 

An investigation of the role of 𝑛 on the dynamic of system (5) with parameters (34) was done 

numerically and the following results are obtained. For 𝑛 ≤ 1.43  system (5) has three boundary 

points 𝑠0, 𝑠1 = (10.85,0)  and 𝑠2 = (0,1.53)  which are source, saddle, and worldwide sink 

respectively. However, for 𝑛 > 1.43 two co-existing equilibrium points appear in addition the 

boundary points and the system undergoes a bistable between 𝑠2 and 𝑠32. It is observed that the 

first co-existing point 𝑠31 gradually approached to 𝑠2 as 𝑛 increases and the system eventually 

transfers to worldwide sink at a unique co-existing point, see Figures (2d) for 𝑛 = 2 and Figure 

(3d) for 𝑛 = 10. To explain the above-obtained results, Figure (3) is obtained using numerical 

solution of the system (5) for parameters (34) with the selected values of 𝑛. 

 

 

Fig. 3: (a) Direction field when 𝑛 = 1.4. (b) Phase portraits when 𝑛 = 1.4 depict the worldwide 

sink at 𝑠2 = (0,1.53). (c) Direction field when 𝑛 = 10. (d) Phase portraits when 𝑛 = 10 depict 

the bistable behavior between 𝑠2 = (0,1.53) and 𝑠32 = (7.85,2.68) with approaching of 𝑠31 =

(0.28,1.7) to 𝑠2 as 𝑛 increases. 
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An investigation of the role of 𝑚  on the dynamic of system (5) was done using numerical 

simulation. To is obtained that, for 𝑚 ≤ 0.42, system (5) has only boundary points with 𝑠2 is a 

worldwide sink. However, for 0.42 < 𝑚 ≤ 1, two co-existing point were born in addition to the 

three boundary points and the system undergoes a bistable behavior.   

 

Fig. 4: Direction fields of system (5): (a) When 𝑚 = 0.4. (b) When 𝑚 = 0.6. (c) When 𝑚 =

0.99. 

 

The influence of varying 𝑏  on the dynamic of system (5) is investigated numerically. The 

following results were obtained. For 𝑏 ≤ 0.01 the system (5) has the four equilibrium points 

𝑠0, 𝑠1, 𝑠2 and 𝑠3 and it has bistable between 𝑠1 and 𝑠2, while 𝑠0 is a source and 𝑠3 saddle point. 

For  0.01 < 𝑏 < 0.15 two co-existing point were born in system (5) in addition to the three 

boundary points and the system undergoes a bistable behavior between 𝑠2 and 𝑠32 as shown in 

Figure (2c)-(2d) when 𝑏 = 0.1. Finally, for 𝑏 ≥ 0.15, the co-existing points disappear and the 

solution of system (5) approaches 𝑠2. The above results are shown in Figure (5) using parameters 

(34) with selected values of  𝑏. 
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Fig. 5: (a) Direction field when 𝑏 = 0.01. (b) Phase portraits when 𝑏 = 0.01 depict bistable 

behavior between 𝑠1 = (22.35,0)  and 𝑠2 = (0,1.53) . (c) Direction field when 𝑏 = 0.2 . (d) 

Phase portraits when 𝑏 = 0.2 depict the worldwide sink at 𝑠2 = (0,1.53). 

The role of 𝑑1 on the dynamic of system (5) in studied numerically and the obtained results give 

the following. For 𝑑1 ≤ 0.18 system (5) has two co-existing points with three boundary points 

and undergoes a bistable dynamic between 𝑠2 and 𝑠32 while the other points are unstable, see 

Figure (2c)-(2(d) when 𝑑1 = 0.1. However, for 0.18 < 𝑑1 < 1, the co-existing points disappear 

from the system and only three boundary points are there, where 𝑠2 is a worldwide sink. Figure 

(6) shows these results at a specific value of 𝑑1. 

 

Fig. 6: (c) Direction field when 𝑑1 = 0.2 . (d) Phase portraits when 𝑑1 = 0.2  depict the 

worldwide sink at 𝑠2 = (0,1.53). 

It is observed that, the parameter 𝑞1 has similar influence of the dynamic of system (5) with 

different bifurcation positions as that obtained with 𝑑1, see Table (2) below. 

The impact of varying the parameter 𝑎 on the dynamics of the system (5) is studied numerically 

and the results show that, for 𝑎 ∈ (0,0.38], 𝑎 ∈ (0.38,0.92), and 𝑎 ≥ 0.92 the system (5) has a 

unique co-existing equilibrium point 𝑠3, two co-existing equilibrium points 𝑠31 with 𝑠32, and 
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not co-existing equilibrium points, respectively. Moreover, the systems have, respectively, a 

worldwide sink at 𝑠3, a bistable case between 𝑠2 and 𝑠32, and worldwide sink at 𝑠2. Some typical 

results are presented in Figure (7).   

 

 

 

Fig. 7: (a) Direction field when 𝑎 = 0.35. (b) Phase portraits when 𝑎 = 0.35 depict worldwide 

sink at 𝑠3 = (5.38,2.54). (c) Direction field when 𝑎 = 0.9. (d) Phase portraits when 𝑎 = 0.9 

depict the bistable behavior between 𝑠2 = (0,1.53) and 𝑠32 = (3.04,2.88). (e) Direction field 

when 𝑎 = 0.95. (f) Phase portraits when 𝑎 = 0.95 depict worldwide sink at 𝑠2 = (0,1.53).  

It is observed that, the parameter ℎ and 𝐾 have similar influence of the dynamic of system (5) 

with different bifurcation positions as that obtained with 𝑎, see Table (2) below. 
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Now, the role of 𝑐1 on the dynamic of system (5) is investigated numerically and the following 

results were obtained. For the ranges 𝑐1 ∈ (0,0.1], 𝑐1 ∈ (0.1,0.89], and 𝑐1 > 0.89 system (5) 

have three boundary equilibrium points 𝑠0, 𝑠1 , and 𝑠2  with 𝑠2  is worldwide sink, two co-

existing equilibrium points 𝑠31, 𝑠32 in addition to the boundary points with bistable behavior 

between  𝑠2 and 𝑠32 see Figures (2c)-(2d) for an explain, and a unique co-existing equilibrium 

point 𝑠3 in addition to the three boundary points with worldwide sink at 𝑠3 respectively. Figure 

(8) explains these results for selected values of 𝑐1. 

 

 

Fig. 8: (a) Direction field when 𝑐1 = 0.1. (b) Phase portraits when 𝑐1 = 0.1 depict worldwide 

sink at 𝑠2 = (0,1.53) . (e) Direction field when 𝑐1 = 0.9 . (f) Phase portraits when 𝑐1 = 0.9 

depict the worldwide at 𝑠3 = (4.36,2.91). 

Similar behaviors have been obtained, as those shown in the case of varying 𝑐1 in the system (5) 

when the parameters 𝑐2, 𝑞2, and 𝐸 are varying with different bifurcating positions, see Table 

(2).  

A study using numerical simulation for the influence of the parameter 𝑟2 on the dynamic of the 

system (5) has been carried out. It is obtained that, for the 𝑟2 ≤ 0.35 the system has only three 

boundary equilibrium points 𝑠0, 𝑠1, and 𝑠2 with 𝑠1 being the worldwide sink. For 0.35 < 𝑟2 ≤
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0.54 a unique co-existing equilibrium point 𝑠3 is born but the system (5) still has a worldwide 

sink at 𝑠1. However, for the range 0.54 < 𝑟2 ≤ 1.11 two co-existing equilibrium points 𝑠31, 

𝑠32 have appeared in addition to the three boundary points and the system (5) has a bistable case, 

see Figures (2c)-(2d) for explain. Finally, for 𝑟2 > 1.11 the system (5) has only three boundary 

equilibrium points with a worldwide sink at 𝑠2. To explain the obtained results, Figure (9) is drawn 

for some selected values of 𝑟2. 

 

 

 

Fig. 9: (a) Direction field when 𝑟2 = 0.3. (b) Phase portraits when 𝑟2 = 0.3 depict worldwide 

sink at 𝑠1 = (10.85,0). (c) Direction field when 𝑟2 = 0.54. (d) Phase portraits when 𝑟2 = 0.54 
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depict the bistable behavior between 𝑠1 = (10.85,0) and 𝑠2 = (0,1.28). (e) Direction field when 

𝑟2 = 1.15. (f) Phase portraits when 𝑟2 = 1.15 depict worldwide sink at 𝑠2 = (0,1.53).  

Finally, the role of varying 𝑑2 on the dynamic of system (5) is investigated numerically and the 

following results are obtained. For the range 𝑑2 ≤ 0.02  the system have three boundary 

equilibrium points 𝑠0, 𝑠1, and 𝑠2 with 𝑠2 being the worldwide sink. For the range 0.02 < 𝑑2 <

0.1 two co-existing equilibrium points 𝑠31, 𝑠32 have appeared in addition to the three boundary 

points and the system (5) has a bistable case, see Figures (2c)-(2d) for explain. However, for the 

range 0.1 ≤ 𝑑2 < 1 a unique co-existing equilibrium point 𝑠3 is born and the system (5) has a 

bistable behavior between 𝑠1 and 𝑠2. To explain these obtained results Figure (10) at selected 

values of 𝑑2 is given. 

 

 

Fig. 10: (a) Direction field when 𝑑2 = 0.02. (d) Phase portraits when 𝑑2 = 0.02 depict the 

worldwide sink at 𝑠2 = (0,1.53). (c) Direction field when 𝑑2 = 0.1. (d) Phase portraits when 

𝑑2 = 0.1 depict bistable behavior between 𝑠1 = (10.85,0) and 𝑠2 = (0,1.53). 
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Table 2: The dynamical behavior of system (5) as a function of parameters. 

The 

parameter 
Range 

The existence 

equilibrium points 
The system dynamical behavior 

𝑞1 
𝑞1 ∈ (0,0.15] 𝑠0, 𝑠1, 𝑠2, 𝑠31, 𝑠32 Bistable between 𝑠2 and 𝑠32 

𝑞1 > 0.15 𝑠0, 𝑠1, 𝑠2 Worldwide sink at 𝑠2 

ℎ 

ℎ ∈ (0,0.01] 𝑠0, 𝑠1, 𝑠2, 𝑠3 Worldwide sink at 𝑠3 

ℎ ∈ (0.01,0.31] 𝑠0, 𝑠1, 𝑠2, 𝑠31, 𝑠32 Bistable between 𝑠2 and 𝑠32 

ℎ > 0.31 𝑠0, 𝑠1, 𝑠2 Worldwide sink at 𝑠2 

𝐾 

𝐾 ∈ (0,1.29] 𝑠0, 𝑠1, 𝑠2, 𝑠3 Worldwide sink at 𝑠3 

𝐾 ∈ (1.29,2.67] 𝑠0, 𝑠1, 𝑠2, 𝑠31, 𝑠32 Bistable between 𝑠2 and 𝑠32 

𝐾 > 2.67 𝑠0, 𝑠1, 𝑠2 Worldwide sink at 𝑠2 

𝑐2 

𝑐2 ∈ (0,0.05] 𝑠0, 𝑠1, 𝑠2 Worldwide sink at 𝑠2 

𝑐2 ∈ (0.05,0.44] 𝑠0, 𝑠1, 𝑠2, 𝑠31, 𝑠32 Bistable between 𝑠2 and 𝑠32 

𝑐2 > 0.44 𝑠0, 𝑠1, 𝑠2, 𝑠3 Worldwide sink at 𝑠3 

𝑞2 

𝑞2 ∈ (0,0.17] 𝑠0, 𝑠1, 𝑠2 Worldwide sink at 𝑠2 

𝑞2 ∈ (0.17,0.57) 𝑠0, 𝑠1, 𝑠2, 𝑠31, 𝑠32 Bistable between 𝑠2 and 𝑠32 

𝑞2 ≥ 0.57 𝑠0, 𝑠1, 𝑠2, 𝑠3 Worldwide sink at 𝑠3 

𝐸 

𝐸 ∈ (0,0.62] 𝑠0, 𝑠1, 𝑠2 Worldwide sink at 𝑠2 

𝐸 ∈ (0.62,2.1] 𝑠0, 𝑠1, 𝑠2, 𝑠31, 𝑠32 Bistable between 𝑠2 and 𝑠32 

𝐸 > 2.1 𝑠0, 𝑠1, 𝑠2, 𝑠3 Worldwide sink at 𝑠3 

 

7. CONCLUSIONS 

A prey-predator model involving hunting cooperation and antipredator behavior is proposed 

and studied in this paper. The modified Leslie–Gower type of interaction is adopted in the growth 

of predators, and the fear impact on the dynamic of the system is included too. It is assumed there 

are harvesting process is imposed on the system too. All the characteristic properties of the solution, 

including positivity and boundedness are discussed. The system have at most three boundary 

equilibrium points and co-existing equilibrium point that is whenever exist it is unique under 

certain conditions. The stability analysis, uniform persistence, and local bifurcation analysis are 

performed to understand the system dynamics.  

A numerical example is given to further understand the influence of varying the parameters of the 

system and confirm the obtained analytical findings. It is observed through the numerical 

simulations the following. The system is rich in the dynamic behavior so that it includes many 
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ranges for all parameters with bistablility case behavior in which the system approach for the same 

set of parameters with different initial values to two different attractors. The system does not have 

periodic dynamics. The fear has a stabilizing influence on the dynamic of the system. The hunting 

cooperation coefficients 𝑎  and ℎ  have an extinction impact on the system and the solution 

approach to the prey-free point. The half saturation constant 𝑐1, the catchability coefficient of the 

predator 𝑞2, the harvesting effort 𝐸, and the level of interference between the individuals of a 

predator 𝑐2  have stabilizing effects on the system dynamic. All other parameters have an 

extinction effect on the system. 
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