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Abstract. Hepatitis B virus (HBV) continues to pose a significant global health burden, necessitating the develop-

ment of accurate and effective mathematical models to understand its transmission dynamics and devise optimal

control strategies. In this research paper, we present a fractional order model for Hepatitis B virus transmission,

incorporating the complexities of memory effects and non-local interactions in disease spread. The proposed frac-

tional order model is formulated as a system of differential equations, with distinct compartments. We employ

fractional order derivatives to capture the long-term memory and non-local interactions inherent in HBV trans-

mission, offering a more realistic representation of the epidemic dynamics. To assess the stability and control

potential of the model, we conduct rigorous mathematical analysis. The basic reproduction number is computed

using the next generation matrix approach to determine the disease’s potential for spreading in the population.

Critical points of the model are identified, and disease-free equilibrium points are obtained to assess their stability

conditions. Furthermore, we derive endemic equilibrium points for the model, and their stability is analyzed using

Jacobian transformation.To optimize control measures, sensitivity analysis of the model parameters is performed

to identify influential factors affecting disease transmission. Numerical simulations of the fractional order model

are implemented using the Adams-type Predictor-Corrector method, and the results demonstrate the effectiveness

of the proposed control strategies in curbing the spread of HBV.
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1. INTRODUCTION

The hepatitis B virus causes hepatitis B, a potentially fatal liver infection. It is a significant

issue for world health. It can result in chronic liver disease, chronic infection, and high mortality

rates from liver cancer and cirrhosis [1]. Hepatitis B infections can only happen if the virus can

get into the bloodstream and reach the liver. Once inside the liver, the virus multiplies and sends

out a lot of fresh viruses into the bloodstream [2].

It has two stages of infection namely: Acute and chronic, According to the World Health

Organization, the Hepatitis B virus is actively infecting more than one-third of the world’s pop-

ulation. Additionally, more than 350 million of them have ongoing infections, and regrettably,

25 to 40 percent of them pass away from primary hepatocellular carcinoma (a form of liver

cancer characterized by abnormal, dangerous growth(s) in the liver) or liver cirrhosis (scarring

of the liver).[3]. Hepatitis B is the tenth leading cause of death worldwide . Hepatocellular

cancer (HCC) is the third most common cause of cancer death worldwide since it accounts for

more than five hundred per year [4].

To improve knowledge of the pathophysiology (creation and progression) of hepatitis B infec-

tion, Long and Qi, in 2008 [5] suggested mathematical models. Based on Nowak’s population

dynamics model of immune response to persistent viruses, their work uses mathematical equa-

tions to describe the interaction between HBV and the immunological response to the virus.

Uninfected hepatocytes, infected hepatocytes, total host hepatocytes, free virus, and a CTL

(Cytotoxic T lymphocyte utilized to kill virally infected or malignant cells) reaction are the

five variables that make up the suggested model. Tahir khan et al in 2021 [6] looked into and

evaluated the dynamics of hepatitis B, which has a number of different infection phases and

transmission channels. The Caputo-Fabrizio operator and the idea of fractional calculus were

used to fractionalize the model. The fixed point theory was used to discuss an extensive in-

vestigation of existence and uniqueness. To assist the analytical work with the aid of graphical

representations, several numerical findings were made. Peijiang Liu et al in 2022 [7] formulated
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a five compartmental model of hepatitis B model using the fractional Calculus in the Caputo

sense and detailed analysis of the model was carried out. The result obtained also showed that

the fractional model is best suited to model the viral infection than the classical model. Elif

Demirci in 2022 [7] presented a fractional order mathematical model to explain the spread of

Hepatitis B Virus (HBV) in a non-constant population. The model included both vertical and

horizontal transmission of the infection and also vaccination at birth and vaccination of the sus-

ceptible class. A frequency dependent transmission rate was used. Numerical simulations of

the model are presented. The approach presented in this paper differ from those presented and

references therein. We present a fractional order SV EI1RI2T (Susceptible-Exposed-Infected-

Removed-Treated) model to discuss the dynamics of Hepatitis B and also show the impact of

vaccination/Treatment on the population.

This paper is organized as follows: A brief review of the fractional calculus is presented in

section 2 with definitions. Section 3 discusses fractional order models while section 4 presents

model analysis involving equilibrium points and stability. Section 5 is devoted to numerical

simulations and discussion of results. Section 6 gives the concluding remarks.

2. FRACTIONAL ORDER CALCULUS

The concept of fractional order calculus is as old as the concept of integer order calculus. The

complexity and lack of application delayed its advancement until a few decades ago. Although

there has been a considerable amount of work done in simulating the dynamics of epidemic dis-

eases, it has been limited to integer-order differential equations. Most dynamical systems based

on integer order calculus have recently been changed into fractional order due to the flexibility

that can be used to precisely fit the experimental data much better than integer order model-

ing. [8].Because the fractional derivative is a generalization of the integer-order derivative,

fractional modeling is an effective approach that has been used to investigate the behavior of

diseases. Most vaccination models are based on ordinary differential equations (ODEs), how-

ever we characterize the behavior of these systems using fractional order differential equations

in this work. The fractional derivative is defined in various ways. Gruwald-Letnikov, Riemann-

Liouville, and Caputo’s fractional derivatives have been employed more frequently than others,

but they are not always equal. [9]. Comparing these three fractional derivatives, it is a fact that
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Caputo’s derivative of a constant is equal to zero, which is not true for the Riemann-Liouville

derivative. The main advantage of Caputo’s approach is that the initial conditions for fractional

differential equations with Caputo derivatives take on the same form as for integer-order differ-

ential equations. Having this in mind, we restrict our attention to the Caputo derivative of order

α > 0, which is rather applicable to real world. For the purpose of this research work, we now

gather some well-known definitions.

2.1. Definition of terms [9].

Definition 1. The Caputo Fractional derivative of order α of a function f : ℜ+→ ℜ is given

by

(2.1) Dα
t f (t) =

1
Γ(α−n)

∫ t

α

f (n)(τ)dτ

(t− τ)α+1−n (n−1 < α ≤ n)

Definition 2. The formula for the Laplace transform of the Caputo derivative is given by

(2.2)
∫

∞

0
e−pt{Dα

t f (t)}dt = pαF(p)−
n−1

∑
k=0

pα−k−1 f (k)(0), (n−1 < α ≤ n)

Definition 3. The Fractional integral of order α of a function f : ℜ+→ℜ is given by

(2.3) Jα( f (x)) =
1

Γ(α)

∫ x

0
(x− t)α−1 f (t)dt, α > 0,x > 0

Definition 4. The fractional integral of the Caputo Fractional derivative of order α of a function

f : ℜ+→ℜ is given by

(2.4) Jα{Dα f (t)}= f (t)−
n−1

∑
k=0

f (k)(0)
tk

k!
, t > 0

Definition 5. A two-parameter funvtion of the Mittag-Leffler type is defined by the series ex-

pansion

(2.5) Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )
, (α,β > 0)

3. MODEL ASSUMPTIONS AND FORMULATION

The SV EI1RI2T model is based on the following assumptions:

(1) The only way of entry into the population is through birth and the only way of exit is

through death from natural causes or death from Hepatitis B-related causes.
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(2) The the population mixes homogeneously. That is all individuals are equally likely

to be infected by the infectious individuals in a case of contact except those who are

Vaccinated or Removed.

(3) Any individual who recovers completely from the disease or who has been vaccinated

receives a lifelong immunity from the disease.

(4) The proportion of people that moves from the susceptible to the removed class directly

is assumed to have received the required three doses of Hepatitis B vaccine.

(5) That first dose of vaccine does not confer lifelong immunity.

(6) The treated class consists of people who are undergoing treatment to remain stable

(7) The rate at which people die of the disease in the treated class is lesser than the rate at

which people die of the disease in the chronically infectious class (that is δ1 < δ2).

(8) The population in the treatment compartment will not recover from the illness.

(9) The acutely infectious individuals do not undergo any form of treatment but recover

naturally from the ailment.

(10) The population undergoing treatment can still die as a result of the disease.

The flow diagram of the model is as follows:

FIGURE 1. Flow chart
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Taking into account the above descriptions and assumptions, the Fractional SV EI1RI2T

model is described by 

DαS(t) = Λ−β1SI1−β2SI2−σS−µS

DαV (t) = σS−µV

DαE(t) = β1SI1 +β2SI2− γE−µE

Dα I1(t) = γE− ερI1− ε(1−ρ)I1−µI1

DαR(t) = ερI1−µR

Dα I2(t) = ε(1−ρ)I1−ηI2−δ1I2−µI2

DαT (t) = ηI2−δ2T −µT

(3.6)

By setting α = 1, the system of equation 3.6 can be reduced to integer order system.

With the non-negative initial condition:

S(0) = S0,V (0) =V0,E(0) = E0, I1(0) = I10, I2(0) = I20,R(0) = R0,T (0) = T0

3.1. Invariant region and the positivity of the model solutions.

Lemma 3.1. (Generalized Mean Value Theorem[10])

Suppose that g(t) ε C[a,b] and Dαg(t) ε C(a,b] for 0 < α ≤ 1, then

(3.7) g(t) = g(a)+
1

Γ(α)
Dαg(ξ )(t−a)α ,

where a≤ ξ ≤ t, ∀ t ε (a,b].

Remark 3.1. Assume that g(t) ε C[a,b] and Dαg(t) ε C(a,b] for 0 < α ≤ 1. It follows from

the lemma 3.1 that if Dαg(t) ≥ 0, ∀ t ε (a,b), then g(t) is non-decreasing ∀ t ε (a,b], and if

Dαg(t)≥ 0, ∀ t ε (a,b], then g(t) is non-increasing ∀ t ε [a,b].

Theorem 3.1. The closed set Ω = {(S,V,E, I1, I2,R,T )∈ R7
+ : S+V +E + I1+ I2+R+T ≤ Λ

µ
}

is positively invariant with respect to model (3.6).

Proof. The fractional derivative of the total human population, obtained by adding all the human

equations of model 3.6, is given by

(3.8) DαN(t) = Λ−µN(t)
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TABLE 1. Description of parameters and variables for model (3.6)

Variables Description Unit

S Susceptible human population people

V Vaccinated human population people

E Exposed human population people

I1 Acutely infected human population people

R Recovered human poulation people

I2 Chronically infected human population people

T Human population under treatment people

Parameters Description Unit

Λ Recruitment rate day−1

σ Vaccination rate day−1

β1 Interaction rate between the Susceptible and the Acutely Infected population day−1

β2 Interaction rate between the Susceptible and the Chronically Infected population day−1

γ Progression rate from exposed class to Acutely infected class day−1

ερ Proportion of Acutely infected population day−1

ε(1−ρ) Proportion moving from the Acutely infected to the Chronically Infected day−1

δ1 Death rate as a result of the Infection in the Chronically infected class day−1

η Progression rate from the chronically Infected to the Treatment Class day−1

δ2 Death rate as a result of the Infection in the treatment infected class day−1

µ Natural death rate day−1

Taking the Laplace transform of (3.8) gives:

SαN(s)−Sα−1N(0) =
Λ

S
−µN(s)

⇒ N(s) =
Λ

S(Sα +µ)
+

Sα−1

sα +µ
N(0)(3.9)

Taking the inverse Laplace transform of (3.9), we have:

N(t) = N(0)Eα,1(−µtα)+ΛtαEα,α+1(−µtα)(3.10)
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where Eα,β is the Mittag-Leffler function. But the fact that the Mittag-Leffler functions has an

asymptotic behavior [9, 11], it follows that:

Eα,1N(t) =
∞

∑
k=0

NK(t)
Γ(αk+1)

,α > 0(3.11)

Eα,α+1N(t) =
∞

∑
k=0

NK(t)
Γ(αk+α +1)

,α > 0(3.12)

Expanding (1.6), we have

Eα,1N(t) =
1

Γ1
+

N(t)
Γ(α +1)

+
N2(t)

Γ(2α +1)
+ ...

Expanding (1.7), we have

Eα,α+1N(t) =
1

Γ(α +1)
+

N(t)
Γ(2α +1)

+
N2(t)

Γ(3α +1)
+ ...

Since Mittag-Leffler function has an asymptotic property, we have

N(t) = 1+O(N)

Taking limit as k−→ ∞, we have

N(t)≈ 1

Then, it is clear that Ω is a positive invariant set.Therefore, all solutions of the model with initial

conditions in Ω remain in Ω for all t > 0. Then , Ω = N(t) > 0 implies that it is feasible with

respect to model (3.6).

4. MODEL ANALYSIS

4.0.1. The basic reproduction number R0. The basic reproduction number RO is used in the

study of disease transmission and control (epidemiology) to describe the average number of sec-

ondary infections caused by the introduction of one infectious person into a totally susceptible

population. It has the following implications:

• If R0 < 1, the the Disease free equilibrium is LAS (Locally asymptotically stable) and

the disease cannot invade the population.

• If R(0)> 1, implies that the DFE (Diseases free equilibrium) is unstable and invasion is

possible.
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Diekmann et all and Van Driessche et al [12, 13] provided a method for calculating R0, which

is the formation of the next-generation matrix. It is comprised of two parts: F and V−1, where

F =
∣∣∣∂ fix(0)

∂x j

∣∣∣ , V =
∣∣∣∂vix(0)

∂x j

∣∣∣
The Fi are the new infections, while the Vi are transfer of infection from one compartment to

another. x0 is the disease free equilibrium point. R0 is the spectral radius of the next generation

matrix, which is the dominant Eigenvalue of the same matrix. To calculate this, we consider the

infected compartments E(t), I1(t), I2(t), and T (t).

DαE(t) = β1SI1 +β2SI2− γE−µE

Dα I1(t) = γE− ερI1− ε(1−ρ)I1−µI1

Dα I2(t) = ε(1−ρ)I1−ηI2−δ1I2−µI2

DαT (t) = ηI2−δ2T −µT

Define:

Fi =


β1SI1 +β2SI2

0

0

0



Vi =


−(γ +µ)E

−γE− (ερ + ε(1−ρ)+µ)I1

ε(1−ρ)I1− (η +δ1 +µ)I2

ηI2− (δ2 +µ)T


The Jacobian Matrices of F and V at DFE are given as

F =


0 β1SI1 +β2SI2 0 0

0 0 0 0

0 0 0 0

00 0 0 0


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−V =


−(γ +µ) 0 0 0

−γ −(ερ + ε(1−ρ)+µ) 0 0

0 ε(1−ρ) −(η +δ1 +µ) 0

0 0 η −(δ2 +µ)T


Therefore, the dominant Eigenvalue of FV−1 is given as:

(4.13) R0 =
Λγ

(σ +µ)(γ +µ)(ερ + ε(1−ρ)+µ)

(
β1 +

β2ε(1−ρ)

(η +δ1 +µ)

)
4.1. Equilibrium points and their stabilities.

4.1.1. Disease-free equlibrium point. The coordinates of an equilibrium (S,V,E,I1,I2,R,T) of

system (3.6) satisfy the following equations:

0 = Λ−β1SI1−β2SI2−σS−µS

0 = σS−µV

0 = β1SI1 +β2SI2− γE−µE

0 = γE− ερI1− ε(1−ρ)I1−µI1

0 = ερI1−µR

0 = ε(1−ρ)I1−ηI2−δ1I2−µI2

0 = ηI2−δ2T −µT

(4.14)

The disease-free equilibrium P0 = ( Λ

σ+µ
, σΛ

µ(σ+µ) ,0,0,0,0,0) alyways exists.

4.1.2. Local Stability of the Disease-free equilibrium point P0. In the previous section, we

have seen that the basic reproduction number serves as a threshold parameter in determining

the number of equilibria in system (3.6). We will show in this section that R0 also determines

the local stability of the equilibria.

Theorem 4.1. The disease-free equilibrium P0 = ( Λ

σ+µ
, σΛ

µ(σ+µ) ,0,0,0,0,0) is locally asymp-

totically stable if R0 < 1.
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Proof. We shall apply the method of linearization. The Jacobian matrix of system 3.6 at P0 =

( Λ

σ+µ
, σΛ

µ(σ+µ) ,0,0,0,0,0) is given as:

J0 =



−σ −µ 0 0 −β1
Λ

(σ+µ) 0 −β2
Λ

(σ+µ) 0

−σ −µ 0 0 0 0 0

0 0 −γ−µ β1
Λ

(σ+µ) 0 β2
Λ

(σ+µ) 0

0 0 γ −ερ− ε(1−ρ)−µ 0 0 0

0 0 0 ερ −µ 0 0

0 0 0 ε(1−ρ) 0 −η−δ1−µ 0

0 0 0 0 0 η −µ−δ2


Next we find the characteristic equation which is given by|J0−λ I|= 0, where λ is the eigen-

value.

|J0−λ I|=∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(σ +µ)−λ 0 0 −β1
Λ

(σ+µ)
0 −β2

Λ

(σ+µ)
0

−σ −µ−λ 0 0 0 0 0

0 0 −(γ +µ)−λ β1
Λ

(σ+µ)
0 β2

Λ

(σ+µ)
0

0 0 γ −(ερ + ε(1−ρ)+µ)−λ 0 0 0

0 0 0 ερ −µ−λ 0 0

0 0 0 ε(1−ρ) 0 −(η +δ1 +µ)−λ 0

0 0 0 0 0 η −(µ +δ2)−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Hence,

λ1 =−(µ +δ2),λ2 =−µ,λ3 =−µ,λ4 =−(σ +µ)

and matrix reduces to:∣∣∣∣∣∣∣∣∣
−(γ +µ)−λ β1

Λ

(σ+µ) β2
Λ

(σ+µ)

γ −(ερ + ε(1−ρ)+µ)−λ 0

0 ε(1−ρ) −(η +δ1 +µ)−λ

∣∣∣∣∣∣∣∣∣
The characteristics cubic equation is given as:

λ
3 +a1λ

2 +a2λ +a0 = 0

where

a1 = γ +µ + ερ + ε(1−ρ)+µ +η +δ1 +µ
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a2 = (γ +µ)(ερ + ε(1−ρ))+(γ +µ)(η +δ1 +µ)+(ερ

+ ε(1−ρ))(η +δ1 +µ)+(
β1Λγ

σ µ
)

a3 =
−1

(γ +µ)(ερ + ε(1−ρ)(η +δ1 +µ)
(R0−1)

Hence, a3 is positive when R0 < 1. By Routh-Hourwitz criterion [1], the Eigenvalues have

negative real parts. Therefore, the disease-free equilibrium is locally asymptotically stable if

R0 < 1.

4.1.3. The Global Stability of the Disease-Free Equilibrium. The model equation is given as:

cDα
0+S(t) = Λ−β1SI1−β2SI2−σS−µS

cDα
0+V (t) = σS−µV

cDα
0+E(t) = β1SI1 +β2SI2− γE−µE

cDα
0+I1(t) = γE− ερI1− ε(1−ρ)I1−µI1

vDα
0+R(t) = ερI1−µR

cDα
0+I2(t) = ε(1−ρ)I1−ηI2−δ1I2−µI2

cDα
0+T (t) = ηI2−δ2T −µT

The disease-free equilibrium of the model is

P0 = (S0,V 0,E0, I0
1 ,R

0, I0
2 ,T

0) = (
Λ

σ +µ
,

σΛ

µ(σ +µ)
,0,0,0,0,0)

Following the notation from theorem 2 [14], we have

A =


−(σ +µ) −β1

Λ

(σ+µ) −β2
Λ

(σ+µ) 0

γ −(ερ + ε(1−ρ)+µ) 0 0

0 ε(1−ρ) −(η +δ1 +µ) 0

0 0 η −(µ +δ2)


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The matrix A can be written as A = M−D with

M =


0 −β1

Λ

(σ+µ) −β2
Λ

(σ+µ) 0

γ 0 0 0

0 ε(1−ρ) 0 0

0 0 η 0


and

D =


−(σ +µ) 0 0 0

0 −(ερ + ε(1−ρ)+µ) 0 0

0 0 −(η +δ1 +µ) 0

0 0 0 −(µ +δ2)


The point P0 = ( Λ

σ+µ
, σΛ

µ(σ+µ) ,0) is globally asymptotically stable for the system of uninfected

individuals: 
cDα

0+S(t) = Λ−σS−µS

cDα
0+V (t) = σS−µV

vDα
0+R(t) =−µR

It is easy to show that

R(t) = R0Eα(−µtα)

satisfies the third equation. Also,

V (t) =V0Eα(−µtα)+
Λσ

µ(σ +µ)
(1−Eα(−µtα))

satisfies the second equation. The solution of equation one is given as

S(t) = S0Eα(−(σ +µ)tα)−ΛEα(−(σ +µ)tα)+
Λ

(σ +µ)

Hence,

(S(t),V (t),R(t))→ (
Λ

σ +µ
,

σΛ

µ(σ +µ)
,0)ast→ ∞

In addition, by Lemma 4[14], Eαα is nonnegative and so, by Theorem 2 [14], the disease-free

equilibrium of the model (3.6) is globally asymptotically stable.
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4.1.4. Endemic Equilibrium Point. The endemic equilibrium point

P∗ = (S∗,V ∗,E∗, I∗1 ,R
∗, I∗2 ,T

∗) with S∗,V ∗,E∗, I∗1 ,R
∗, I∗2 ,T

∗ > 0 satisfies

S∗ = (ερ+ε(1−ρ)+µ)(γ+µ)(η+δ1+µ)
γβ2ε(1−ρ)+γβ1(η+δ1+µ)

V ∗ = σ

µ

(
(ερ+ε(1−ρ)+µ)(γ+µ)(η+δ1+µ)

γβ2ε(1−ρ)+γβ1(η+δ1+µ)

)
E∗ = ερ+ε(1−ρ)+µ

γ

(
Λγ

ερ+ε(1−ρ)+µ)(γ+µ)(η+δ1+µ) −
(σ+µ)(η+δ1+µ)

β1(η+δ1+µ)+β2ε(1−ρ)

)
I∗1 = Λγ

ερ+ε(1−ρ)+µ)(γ+µ)(η+δ1+µ) −
(σ+µ)(η+δ1+µ)

β1(η+δ1+µ)+β2ε(1−ρ)

I∗2 = ε(1−ρ)
(η+δ1+µ)

(
Λγ

ερ+ε(1−ρ)+µ)(γ+µ)(η+δ1+µ) −
(σ+µ)(η+δ1+µ)

β1(η+δ1+µ)+β2ε(1−ρ)

)
R∗ = ερ

µ

(
Λγ

ερ+ε(1−ρ)+µ)(γ+µ)(η+δ1+µ) −
(σ+µ)(η+δ1+µ)

β1(η+δ1+µ)+β2ε(1−ρ)

)
T ∗ = η

(δ2+µ)

(
ε(1−ρ)

(η+δ1+µ)

(
Λγ

ερ+ε(1−ρ)+µ)(γ+µ)(η+δ1+µ) −
(σ+µ)(η+δ1+µ)

β1(η+δ1+µ)+β2ε(1−ρ)

))
4.1.5. Local Stability of the Endemic Equilibrium when R0 > 1. The Jacobian Matrix of the

model 3.6 is given as

J =



−σ −β1I1−β2I2µ 0 0 −β1S 0 −β2S 0

−σ −µ 0 0 0 0 0

β1I1 +β2I2 0 −γ−µ β1S 0 β2S 0

0 0 γ −ερ− ε(1−ρ)−µ 0 0 0

0 0 0 ερ −µ 0 0

0 0 0 ε(1−ρ) 0 −η−δ1−µ 0

0 0 0 0 0 η −µ−δ2


The Jocobian Matrix of the Endemic Equilibrium point is

J(P∗) =



−σ −β1I∗1 −β2I∗2 −µ 0 0 −β1S 0 −β2S∗ 0

−σ −µ 0 0 0 0 0

β1I∗1 +β2I∗2 0 −γ−µ β1S∗ 0 β2S∗ 0

0 0 γ −ερ− ε(1−ρ)−µ 0 0 0

0 0 0 ερ −µ 0 0

0 0 0 ε(1−ρ) 0 −η−δ1−µ 0

0 0 0 0 0 η −µ−δ2


Hence, λ1,2 =−µ,λ3 =−(δ2 +µ) and the matrix reduces to

|J(P∗)−λ I|=

∣∣∣∣∣∣∣∣∣∣
−σ −β1I∗1 −β2I∗2 −µ−λ 0 −β1S −β2S∗

β1I∗1 +β2I∗2 −γ−µ−λ β1S∗ β2S∗

0 γ −ερ− ε(1−ρ)−µ−λ 0

0 0 ε(1−ρ) −η−δ1−µ−λ

∣∣∣∣∣∣∣∣∣∣
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For simplicity, let a = σ + β1I∗1 + β2I∗2 + µ , b = β1S, c = β2S, d = β1I∗1 + β2I∗2 , e = γ + µ ,

f = ερ + ε(1−ρ)+µ ,g = ε(1−ρ),h = η +δ1 +µ.

Therefore, we have

|J(P∗)−λ I|=


−a−λ 0 −b −c

d −e−λ b c

0 γ − f −λ 0

0 0 g −h−λ


The characteristics equation becomes

−(a+λ )[−(e+λ )( f +λ )(h+λ )+bγ(h+λ )+ γcg]+ γb(h+λ )d + γcgd = 0

Further simplification yields

λ
4 +(e+ f +h+a)λ 3 +(e f + eh+ f h+ae+a f +ac−bγ)λ 2

+(aeh+a f h+ e f h+ae f +bγd−bγh− cγg−bγa)λ

+ae f h+bdhγ + cdgγ−bhgγ−acgγ = 0

If the coefficients are given as

a3 = (e+ f +h+a)

a2 = (e f + eh+ f h+ae+a f +ac−bγ)

a1 = (aeh+a f h+ e f h+ae f +bγd−bγh− cγg−bγa)

a0 = ae f h+bdhγ + cdgγ−bhgγ−acgγ

According to Routh Hurwitz’s criterion [1], all the roots of the equation will be less than zero

if the following conditions are met:

• If all the coefficients and the constant term are greater than zero

• If a3a2 > a1 and a1 >
a2

3a0
a3a2−a1

Then it follows that all the eigenvalues satisfy the condition |arg(λ )|> απ

2 [1].
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4.1.6. Global Stability of the Endemic Equilibrium Point when R0 > 1.

Theorem 4.2. Suppose that R0 > 1. Then the endemic equilibrium point P∗ is globally asymp-

totically stable in the interior of Ω.

Proof. To prove the global stability of P∗, we use the Volterra type Lyapunov function approach

[15].

Let P∗ = (S∗,V ∗,E∗, I∗1 ,R
∗, I∗2 ,T

∗) be the endemic equilibrium.

Consider the function

V (S,V,E, I1,R, I2,T ) = (S−S∗)−S∗log S
S∗ +(V −V ∗)−V ∗log V

V ∗ +(E−E∗)−E∗log E
E∗ +(I1−

I∗1 )− I∗1 log I1
I∗1
+(R−R∗)−R∗log R

R∗ +(I2− I∗2 )− I∗2 log I2
I∗2
+(T −T ∗)−T ∗log T

T ∗

We first show that V (S,V,E, I1,R, I2,T ) > 0 in the interior of Ω and V (S,V,E,I1,R,I2,T )=0 only at

P∗. For y∗ > 0, let f (y) = y− y∗− y∗log y
y∗ . Then f (y∗) = 0 and f ′(y) = 1− y∗

y . Therefore,

f ′(y)< 0 if y < y∗ and f ′(y)> 0 if y > y∗. This means that f (y) has an absolute minimum 0 at

y = y∗ in the interval (0,∞). This property tells us that V (S,V,E, I1,R, I2,T ) is positive definite

with respect to point P∗.

The Lyapunov derivative of V along solutions of (3.6) is

V̇ = S′− S∗
S S′+V ′− V ∗

V V ′+E ′− E∗
E E ′+ I′1−

I∗1
I1

I′1 +R′− R∗
R R′+ I′2−

I∗2
I2

I′2 +T ′− T ∗
T T ′.

Now, set V̇1 = S′− S∗
S S′, V̇1 = V ′− V ∗

V V ′,V̇3 = E ′− E∗
E E ′,V̇4 = I′1−

I∗1
I1

I′1,V̇5 = R′− R∗
R R′,V̇6 =

I′2−
I∗2
I2

I′2,V̇7 = T ′− T ∗
T T ′.

Therefore,

V̇1 =
S−S∗

S
S′

=
S−S∗

S
(β1S∗I∗+β2S∗I∗2 +(σ +µ)S∗− (β1SI1 +β2SI2 +(σ +µ)S)

=−(σ +µ)
(S−S∗)2

S
+β1S∗I∗1 (1−

S∗

S
− SI1

S∗I∗1
+

I1

I∗1
)

+β2S∗I∗2 (1−
S∗

S
− SI2

S∗I∗2
+

I2

I∗2
)

≤ β1S∗I∗1 (1−
S∗

S
− SI1

S∗I∗1
+

I1

I∗1
)+β2S∗I∗2 (1−

S∗

S
− SI2

S∗I∗2
+

I2

I∗2
)

Similarly, V̇2 ≤ µV ∗(2− V
V ∗ −

V ∗
V )

V̇3 ≤ β1S∗I∗1 (1+
SI1

S∗I∗ −
E
E∗ −

E∗SI1
ES∗I∗1

)+β2S∗I∗2 (1+
SI2

S∗I∗2
− E

E∗ −
E∗SI2
ES∗I∗2

)
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V̇4 ≤ γE∗(1+ E
E∗ −

I∗1 E
I1E∗ −

I1
I∗1
)

V̇5 ≤ µR∗(1+ I1
I∗1
− I1R∗

I∗1 R −
R
R∗ )

V̇6 ≤ ε(1−ρ)I∗1 (1+
I1
I∗!
− I2

I∗2
− I1I∗2

I∗1 I2
)

V̇7 ≤ ηI∗2 (1+
I2
I∗2
− T

T ∗ −
T ∗I2
T I∗2

)

Hence, V̇ = V̇1 +V̇2 +V̇3 +V̇4 +V̇5 +V̇6 +V̇7 ≤ 0 for all (S∗,V ∗,E∗, I∗1 ,R
∗, I∗2 ,T

∗) in the interior

of Ω. The inequality implies that we must have S= S∗,V/V ∗=E/E∗= I1/I∗1 =R/R∗= I2/I∗2 =

T/T ∗ if V̇ = 0. Letting S = S∗ in the equation of system 3.6, we obtain V = V ∗,E = E∗, I =

I∗1 ,R = R∗, I2 = I∗2 and thus T = T ∗. This implies that V is negative definite with respect to P∗.

According to the LaSalle’s invariance principle[15], if R0 > 0, the endemic equilibrium P∗ is

globally asymptotically stable.

4.1.7. Sensitivity Analysis. The effect of changing parameter values on the perceived useful-

ness of the reproduction number,R0, is demonstrated in this section. It is necessary to identify

the important parameter, which may be a vital threshold to manage the illness.

The following are the mathematical representations of R0
′s sensitivity index towards the

parameters β1,β2,Λ,γ ,σ ,ε ,ρ ,µ ,η ,δ1:

∂R0
∂β1

= Λγ

(σ+µ)(γ+µ)(ερ+ε(1−ρ)+µ) ,
∂R0
∂β2

= Λγε(1−ρ)
(σ+µ)(γ+µ)(ερ+ε(1−ρ)+µ)(η+δ1+µ) ,

∂R0
∂Λ

= β1γ

(σ+µ)(γ+µ)(ερ+ε(1−ρ)+µ) +
β2γε(1−ρ)

(σ+µ)(γ+µ)(ερ+ε(1−ρ)+µ)(η+δ1+µ) ,
∂R0
∂σ

=−
(

β1γΛ

(σ+µ)2(γ+µ)(ερ+ε(1−ρ)+µ)
+ β2γε(1−ρ)Λ

(σ+µ)2(γ+µ)(ερ+ε(1−ρ)+µ)(η+δ1+µ)

)
,

∂R0
∂γ

= β1µΛ

(σ+µ)(γ+µ)2(ερ+ε(1−ρ)+µ)
+ β2µε(1−ρ)Λ

(σ+µ)(γ+µ)2(ερ+ε(1−ρ)+µ)(η+δ1+µ)

∂R0
∂η

=− β2Λε(1−ρ)
(σ+µ)(γ+µ)(ερ+ε(1−ρ)+µ)(η+δ1+µ)2 ,

∂R0
∂δ1

=− β2Λε(1−ρ)
(σ+µ)(γ+µ)(ερ+ε(1−ρ)+µ)(η+δ1+µ)2 ,

∂R0
∂ε

=− β1µΛ

(σ+µ)(γ+µ)(ε+µ)2 +
β2µ(1−ρ)Λ

(σ+µ)(γ+µ)(ε+µ)2(η+δ1+µ)
,

∂R0
∂ρ

=− β2Λγε

(σ+µ)(γ+µ)(ε+µ)(η+δ1+µ) ,
∂R0
∂ µ

=−(A+Z)

where

A =
β1Λγ[3µ2 +2µ(µ +σ + ε)+(σγ + γε +σε)]

[(σ +µ)(γ +µ)(ε +µ)]2
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Z = β2Λγε(1−ρ)[4µ
3 +3µ

2(1+ ε +(η +δ1)+2µ(σγ +σε +ση +σδ1

+σ + εγ + γη + γδ1 +1+ ε(η +δ1))+ εσγ +(η +δ1)(σγ + εσ + γε+)]

/[(σ +µ)(γ +µ)(ε +µ)(η +δ1 +µ)]2

It may be deduced that some derivatives appear positive and that as any of the positive

value parameters β1,β2,Λ,γ , described above is increased, the basic reproductive number,R0,

increases. The proportionate reaction to the proportion stimulation is used to calculate the elas-

ticity.

We have

Eβ1 =
∂R0
∂β1
× β1

R0
= 1

1+ β2ε(1−ρ)
β1(η+δ1+µ)

, Eβ2 =
∂R0
∂β2
× β2

R0
= 1

1+ β1(η+δ1+µ)
β2ε(1−ρ)

,

EΛ = ∂R0
∂Λ
× Λ

R0
= 1, Eγ =

∂R0
∂γ
× γ

R0
= µ

(γ+µ)

Consequently, we see that Eβ1 ,Eβ2 ,EΛ, and Eγ are positive. This implies that raising the values

of these parameters,β1,β2,Λ,γ , will increase the value of the basic reproduction number.R0.

4.1.8. Adam-Bashforth-Moulton Predictor–Corrector Scheme for the SV EI1RI2T Model.

The most frequently employed numerical method for solving fractional order initial value issues

is the Adams-Bashforth-Moulton strategy.

Consider the fractional differential equation below:

(4.15) cDν
t Gi(t) = f j(t,G j(t)), Gr

j(0) = Gr
j0

r = 0,1,2, ...,v, j ∈ N

where Gr
j0 is the arbitrary real number, ν > 0 and the fractional differential operator Dν

t is

similar to the well-known Volterra integral equation in the Caputo sense.

(4.16) G j(t) =
ν−1

∑
n=0

Gr
j0

tn

n!
+

1
Γ(ν)

∫ t

0
(t−u)ν−1 f j(u,G j(u))du, j ∈ N

In this study, we investigate the numerical solution of a fractional order SV EI1RI2T model with

vaccination using the Adam’s-Bashforth-Moulton predictor-corrector scheme. The algorithm is

described below:
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Let h = T
m̂ , tn = nh, n = 0,1,2, ..., m̂.

Corrector formulae:

Sn+1 = S0 +
hν

Γ(ν +2)
(Λ−β1Sp

n+1I1
p
n+1−β2Sp

n+1I2
p
n+1−σSp

n+1−µSp
n+1)

+
hν

Γ(ν +2)

n

∑
j=0

α j,n+1((Λ−β1S jI1 j−β2S jI2 j−σS j−µS j)

Vn+1 =V0 +
hν

Γ(ν +2)
(σSp

n+1−µV p
n+1)+

hν

Γ(ν +2)

n

∑
j=0

α j,n+1(σS j−µVj)

En+1 = E0 +
hν

Γ(ν +2)
(β1Sp

n+1I1
p
n+1 +β2Sp

n+1I2
p
n+1− γE p

n+1−µE p
n+1)

+
hν

Γ(ν +2)

n

∑
j=0

α j,n+1((β1S jI1 j +β2S jI2 j−σE j−µE j)

I1n+1 = I10 +
hν

Γ(ν +2)
(γE p

n+1 + ερI1
p
n+1− ε(1−ρ)I1

p
n+1−µI1

p
n+1)

+
hν

Γ(ν +2)

n

∑
j=0

α j,n+1((γE j + ερI1 j− ε(1−ρ)I1 j−µI1 j)

Rn+1 = R0 +
hν

Γ(ν +2)
(ερI1

p
n+1−µRp

n+1)+
hν

Γ(ν +2)

n

∑
j=0

α j,n+1(ερI1 j−µR j)

I2n+1 = I20 +
hν

Γ(ν +2)
(ε(1−ρ)I1

p
n+1− (η +δ1 +µ)I2

p
n+1)

+
hν

Γ(ν +2)

n

∑
j=0

α j,n+1((ε(1−ρ)I1 j + ερI1 j− (η +δ1 +µ)I2 j)

Tn+1 = T0 +
hν

Γ(ν +2)
(ηI2

p
n+1−µT p

n+1−δ2T p
n+1)

+
hν

Γ(ν +2)

n

∑
j=0

α j,n+1(ηI2 j−µTj−δ1Tj)

Predictor formulae:

Sp
n+1 = S0 +

1
Γ(ν)

n

∑
j=0

ζ j,n+1((Λ−β1S jI1 j−β2S jI2 j−σS j−µS j)

V p
n+1 =V0 +

1
Γ(ν)

n

∑
j=0

ζ j,n+1(σS j−µVj)

E p
n+1 = E0 +

1
Γ(ν)

n

∑
j=0

ζ j,n+1((β1S jI1 j +β2S jI2 j−σE j−µE j)

I1
p
n+1 = I10 +

1
Γ(ν)

n

∑
j=0

ζ j,n+1((γE j + ερI1 j− ε(1−ρ)I1 j−µI1 j)

Rp
n+1 = R0 +

1
Γ(ν)

n

∑
j=0

ζ j,n+1(ερI1 j−µR j)

I2
p
n+1 = I20 +

1
Γ(ν)

n

∑
j=0

ζ j,n+1((ε(1−ρ)I1 j + ερI1 j− (η +δ1 +µ)I2 j)
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T p
n+1 = T0 +

1
Γ(ν)

n

∑
j=0

ζ j,n+1(ηI2 j−µTj−δ1Tj)

where

ν j,n+1 =


nν+1− (n−ν)(n+1)ν , i f j = 0

(n− j+2)ν+1 +(n− j)ν+1−2(n− j+1)ν +1 0≤ j ≤ n,

1, i f j = 1

and

ζ =
hν

ν
[(n+1− j)ν − (n− j)ν ], 0≤ j ≤ n.

5. NUMERICAL SIMULATION AND DISCUSSION

In this section, we run rigorous numerical simulations to evaluate and validate our model

system’s analytical results 3.6. To achieve a numerical solution to the system 3.6, we used the

mathematical software MATLAB (2018a version) and Adam’s-Bashforth-Moulton predictor-

corrector scheme.

We investigate numerical simulations of the model system 3.6 in the Caputo sense, using the

parameters listed in Table 1. In the scenario, Table 1 is utilized for simulation. The following

figures were produced to examine the behavior of the model 3.6 under various initial conditions.

TABLE 2. Estimated values of parameters and Varibles

Variables Value Source

S 100 Assumed

V 15 Assumed

E 5 Assumed

I1 6 Assumed

R 10 Assumed

I2 3 Assumed

T 4 Assumed
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Parameters Value Source

Λ 0.0260 [1]

σ 0.8 Estimated

β1 0.095 Estimated

β2 0.25 [2]

γ 0.03 [1]

ερ 3.6 Estimated

ε(1−ρ) 0.4 Estimated

δ1 0.0063 Assummed

η 0.025 Assumed

δ2 0.051 Assumed

µ 0.01890 Estimated

FIGURE 2. Comparison of dynamical behaviour of all individuals with respect

to time for fractional order α = 0.82, σ = 0 and σ = 0.8

Figure 2 shows the dynamical behavior of all individuals for fractional orderα = 0.82. The

comparison of the number of susceptible, infected, exposed, recovered and treated individuals



22 AGUEGBOH, PHINEAS, FELIX, DIALLO

in case of the vaccination parameter σ = 0 and σ = 0.8 is quite obvious.The number of sus-

ceptible individuals is less for σ = 0.8 compared to σ = 0. Similar is the case with exposed

individuals and infected individuals. However, in the case of recovered individuals and indi-

viduals under treatment, the situation is exactly the opposite, for obvious reasons. Now, the

recovered individuals will be more in case of σ = 0.8 than in case of σ = 0.

Vaccination is an important component in protecting people from Hepatitis B, and several con-

cepts have been offered in which vaccination rates are seen as extremely advantageous. As a

result, the addition of the vaccine parameter σ reduces the basic reproduction number R0.

FIGURE 3. Comparison of dynamical behaviour between individuals who are

chronically infected and individuals under treatment with respect to time for

fractional order α = 0.82, η = 0.025 and σ = 1.0

Figure 3 shows the dynamical behavior of between the chronically infected individuals and

individuals under treatment for fractional orderα = 0.82. The number of chronically infected

indidvuals is more for η = 0.025 than η = 1. It is exactly the opposite for the population under

treatment because treatment is also a control in this study with δ2 < δ1. Although there is no

cure for chronically infected people, receiving therapy reduces the number of deaths caused by

the virus and lessens the risk of contracting other infections.
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6. CONCLUSION

In this paper we have discussed the fractional order SV EI1RI2T model with vaccination and

treatment as control strtegies. Based on the data collected, we estimated the basic reproduc-

tion number. The fractional-order derivatives are typically more suitable in modeling because

the option of derivative order allows one more degree of freedom, resulting in a better fit to

real-time data with less inaccuracy than the integer-order model. The model shows that the

Hepatitis B virus propagation is mostly determined by the population’s contact rates with af-

fected people. It has been observed that when the proportion of the population that is vaccinated

increases, the spread of the virus is drastically reduced. Thus, if this is accomplished through

widespread vaccination or making vaccine mandatory, the virus can be avoided.Treatment was

also shown to be a control strategy for the spread of Hepaptitis B virus. Sensitivity analysis

reveals that R0 is directly proportional to the recruitment rate of susceptible individualsΛ, the

rate of infection of susceptible individuals β1,β2 and the rate of progression from exposed to

infected individuals γ , all of which can be controlled through the effective implementation of

vaccination drives. To obtain numerical solutions to the system, the Adam-Bashforth-Moulton

predictor-corrector technique was applied. To validate the efficacy and influence of the control

parameters, numerical simulations using MATLAB are given.
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