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Abstract. The object of this work is to analyze the dynamical behavior of an SIQR epidemic model incorporating

the mean-reverting inhomogeneous geometric Brownian motion process (IGBM for short). As a first step, we

prove that a global-in-time solution exists, and we show equally that it is unique and positive. Then, we find out

an appropriate hypothetical framework leading to the existence of an ergodic stationary distribution. After that, we

provide certain sufficient conditions for the disease’s exponential extinction, and we show that they match those

of the deterministic version in this case. Finally, we outline some numerical simulation examples to back up our

theoretical outcomes.

Keywords: SIQR epidemic model; inhomogeneous geometric Brownian motion; extinction; stationary distribu-

tion.
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1. INTRODUCTION AND MODEL FORMULATION

Over the past twenty years, numerous infectious diseases have forcefully reappeared as a re-

sult of the rampant phenomenon of overcrowding and the astounding rise in human migration.
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This remarkable reemergence of these diseases has prompted various academic disciplines to

focus on understanding their dissemination dynamics. In this vein, mathematical epidemiology,

and more precisely via the so-called compartmental models, has constituted a very imminent

tool that may help us to take in a clear manner an overall view of any epidemic’s behavior. One

of the most famed compartmental models, is the SIR one, which was constructed by Kermack

and Mckendrick’s in 1927 [2]. In the latter, the population is divided into three classes of in-

dividuals: the susceptible ones (S), the infectious ones (I), and the permanently recovered ones

(R). The transmission principle associated with this model is relatively easy to grasp: a person,

presumed to be alive throughout the transition mechanism, moves from the susceptible com-

partment to the infectious one after contacting a sick individual and then enters the recovered

compartment after gaining permanent immunity against the disease. However, quarantining the

diseased individuals is a very efficient intervention strategy to lower the danger of infection. For

instance, during the worldwide outbreak of COVID-19, the World Health Organization (WHO)

issued many recommendations encouraging the governments and local authoroties to isolate all

sick people in order to reduce the virus’s spread. So, the analysis of an extended version of the

SIR model, and that takes into consideration the effect of isolation or quarantine, becomes a

necessary step to explore and learn more about this strategy’s effect on the spread of infectious

illnesses. For this reason, a lot of scholars and academics have proposed and studied many

variants of the so-named SIQR model over the last half-century. Nevertheless, treatment and

analysis of the SIQR model did not cease at all, and as of this writing, the foremost later litera-

ture is still full of multiple publications that are addressing this issue, but in different contexts

and ways. One of the most intriguing recent works in this connection is Zhou and Jiang’s paper

[3]. In this latter, the authors have introduced the following SIQR model:

(1)



dS
dt = Λ−µS− βSI

N ,

dI
dt =

βSI
N − (µ + rI +ν +µI)I,

dQ
dt = νI− (µ + rq +µq)Q,

dR
dt = rII + rqQ−µR.
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As we can see, the overall population size N := S+ I +Q+R in the previous model was split

into four compartments: the first is (S), and it contains susceptible individuals; the second is (I)

and it contains infected ones; the third is (Q) and it contains quarantined ones; and finally (R)

which contains recovered ones. Regarding the parameters appearing in this model, we have:

� Λ is the susceptible recruitment rate.

� β stands for the rate of contact between S and I.

� µ denotes the natural mortality rate.

� µI and µq are the disease-induced death rates associated respectively to the classes I and

Q.

� rI and rq are the recovery or healing rates associated respectively to the classes I and Q.

� ν is the quarantine rate.

All the above-listed parameters are presumed to be in the positive real line R+ := (0,+∞). On

the basis of the mathematical findings depicted in [3], the SIQR model (1) is well-posed, and its

propagation comportment is governed by the basic reproductive ratio R0 given in this case by

(2) R0 :=
β

(µ +µI +ν + rI)
.

More explicitly, if R0 < 1, the model (1) possesses one illness-free equilibrium E◦ =(
Λ

µ
,0,0,0

)
, and it is globally asymptotically stable in the invariant set Σ given by

Σ :=
{
(S, I,Q,R) ∈ R4

+ | S+ I +Q+R6
Λ

µ

}
.

The disease-free equilibrium E◦ is present even if R0 > 1, but it is unstable this time, and

another equilibrium E• = (S•, I•,Q•,R•), called the endemic equilibrium, appears and becomes

globally asymptotically stable in the set Σ. In virtue of the well-famed limit region approach

[3], the dimensionality of system (1) can be reduced. More detailedly, for any real constants α1

and α2, we have

d(N +α1Q+α2R)
dt

(3)

= Λ−µ(N +α1Q+α2R)+(α1ν−µI +α2rI)︸ ︷︷ ︸
(i)

I +
(
α2rq−µq−α1(µq + rq)

)︸ ︷︷ ︸
(ii)

Q.
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By selecting α1 and α2 in a such way as to cancel the coefficients (i) and (ii) in (3), we get

(4)



α1 =
rqµI− rIµq

νrq + rI(rq +µq)
,

α2 =
νµq +µI(rq +µq)

νrq + rI(rq +µq)
,

d
(
N +α1Q+α2R

)
=
(
Λ−µ(N +α1Q+α2R)

)
dt.

From the third equation of (4), one can derive that for any t > 0

N(t)+α1Q(t)+α2R(t) =
Λ

µ
+

(
N(0)+α1Q(0)+α2R(0)− Λ

µ

)
× exp(−µt).

So

lim
t→∞

(
N(t)+α1Q(t)+α2R(t)

)
= lim

t→∞

(
I(t)+S(t)+(α1 +1)Q(t)+(α2 +1)R(t)

)
= lim

t→∞

(
Λ

µ
+

(
N(0)+α1Q(0)+α2R(0)− Λ

µ

)
× exp(−µt)

)
=

Λ

µ
.

Hence, the limit region associated with the SIQR system (1) is

S1 =

{
(S, I,Q,R) ∈ R4

+ | S+ I +(α1 +1)Q+(α2 +1)R =
Λ

µ

}
.

Consequently, one may use the following system to examine the dynamic features of model (4):

(5)



dI
dt =

β I×
(

Λ

µ
−I−(α1+1)Q−(α2+1)R

)
Λ

µ
−α1Q−α2R

− (µ + rI +ν +µI)I,

dQ
dt = ν× I− (µ + rq +µq)×Q,

dR
dt = rI× I + rq×Q−µR.

In the most recent works, it has been emphasized that many principal parameters in the epi-

demic models oscillate around some average value due to the continuous effect of environmen-

tal noises. Thus, if this effect is taken into account while modeling contagious illnesses, the

understanding of their spread behavior will be better. As a result, the decision-makers will have
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the ability to reduce the severity of these diseases’ dissemination by making sound choices re-

garding the control measures. Along this line, a large number of academics and scholars have

taken an interest in investigating the stochastic epidemic models [15, 16, 17], and specially,

those where the disease transmission parameter β is randomized by the Ornstein-Uhlenbeck

process [3, 4, 11, 12, 13, 14]. The inclusion of the aleatory effects by means of the Orstein-

Uhlembeck process is defended by the boundedness of its variance for any short time period

[0, t], which seems to be more rational and consistent with the stochastic noise’s constant distur-

bance property (see [3] for more details). Usually, the Ornstein-Uhlenbeck process is defined

and expressed via the stochastic differential equation below:

(6) dβ (t) = θ ×
(

β̃ −β (t)
)

dt +σdB(t).

Here, β̃ > 0 and θ > 0 designate respectively the long-term mean of the process, and the re-

version speed to it, while σ > 0 denotes the instantaneous volatility of the random fluctuations

that are modeled by a standard Brownian motion process
(
B(t)

)
t≥0. The latter, and all the ran-

dom variables that will be encountered in this article, are presumed to be defined on a complete

probability space (Ω,F ,P) endowed with a filtration (Ft)t>0 satisfying the usual conditions (it

is increasing, right continuous and F0 contains all the P−null sets). Indeed, the transmission

rate β must be positive. Therefore when randomizing β , this property should be kept in mind

by adopting a positive process. Unfortunately, it is not at all the case for the Ornstein-Uhlebeck

one. For this reason, we will provide an alternate perturbation approach resembling that of the

Ornstein-Uhlebeck process, but taking into account the β ’s positivity. More explicitly, we will

think about perturbing the parameter β using another process named mean-reverting inhomo-

geneous geometric brownian motion (IGBM for short) [8, 9, 10]. The latter, and which takes

also the name of Brennan-schowartz process, is usually defined through the following stochastic

differential equation:

(7) dβ (t) = θ ×
(

β̃ −β (t)
)

dt +σβ (t)dB(t).

As mentioned in [5, 6, 7], the stochastic process (β (t))t>0 admits an ergodic stationary distri-

bution π which is distributed following the inverse-gamma density with shape σ2+2θ

σ2 and scale
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2θβ̃

σ2 . So, and for any π−integrable function f we have

lim
t→+∞

1
t

∫ t

0
f (β (s))ds =

∫ +∞

0
f (x)π(dx).

In the light of what precedes, the system (5) can be rewriting as follow:

(8)



dβ (t) = θ × (β̃ −β (t))dt +σβ (t)dB(t),

dI
dt =

β I
(

Λ

µ
−I−(α1+1)Q−(α2+1)R

)
Λ

µ
−α1Q−α2R

− (µ + rI +ν +µI)I,

dQ
dt = νI− (µ + rq +µq)Q,

dR
dt = rII + rqQ−µR,

and the latter is well defined on the domain:

S2 =

{
(β , I,Q,R) ∈ R4

+ | I +(α1 +1)Q+(α2 +1)R6
Λ

µ

}
.

The next sections of this article are organized as follows: in Section 2, we establish the well-

posedness of the model (8) in the sens that it has one and only one solution which is global-in-

time and positive. In sections 3 and 4, we offer respectively some suitable conditions for the

existence of a stationary distribution and for the exponential extinction. Then, we illustrate in

Section 5 our theoretical findings by some simulations and numerical examples before arriving

at the paper’s key conclusions in Section 6.

2. EXISTENCE AND UNIQUENESS OF THE GLOBAL SOLUTION

Theorem 2.1. For any initial state
(
β (0), I(0),Q(0),R(0)

)
∈S2, it corresponds a unique so-

lution
(
β (t), I(t),Q(t),R(t)

)
to the system (8) on t ∈ [0,+∞). Moreover, the latter will still in

S2 for any t > 0.

Proof. Let us consider the C2-real valued function ϕ : R4
+→ R+ defined by

ϕ(β , I,Q,R)

= [I−1− ln I]+ (α1 +1)× [Q−1− lnQ]+ (α2 +1)× [R−1− lnR]+θ
−1 [β −1− lnβ ]

+

[(
Λ

µ
− I− (α1 +1)Q− (α2 +1)R

)
−1− ln

(
Λ

µ
− I− (α1 +1)Q− (α2 +1)R

)]
.
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By using the renowned Itô’s formula, one obtains that

L ϕ = β ×

(
Λ

µ
− I− (α1 +1)Q− (α2 +1)R

)
Λ

µ
−α1Q−α2R

+(rI +ν +µ +µI)

− (α1 +1)× νI
Q

+(α1 +1)(rq +µ +µq)− (α2 +1)× rII
R
− (α2 +1)×

rqQ
R

+(α2 +1)µ +
β I

Λ

µ
−α1Q−α2R

−µ
I +(α1 +1)Q+(α2 +1)R

Λ

µ
− I− (α1 +1)Q− (α2 +1)R

+(β̃ −β )− β̃

β
+1+

σ2

2θ
+
(
− (rI +ν +µI)+(α1 +1)ν +(α2 +1)rI

)︸ ︷︷ ︸
=0 (see the first equation of (4))

I

+
(
− (α1 +1)(rq +µq)+(α2 +1)rq

)︸ ︷︷ ︸
=0 (see the second equation of (4))

Q.

Therefore, we get

L ϕ 6 (rI +ν +µ +µq)+(α1 +1)(rq +µ +µq)+(α2 +1)µ + β̃ +
σ2

2θ
+1︸ ︷︷ ︸

:=A

,

where A is a positive constant that is not depending on the initial values β (0), I(0),Q(0) and

R(0). The rest of the demonstration follows the same lines as the proof of Theorem 3.1 in [18],

so we skip it here for the sake of brevity. �

3. EXISTENCE OF A STATIONARY DISTRIBUTION

When dealing with infectious illnesses models, we are principally interested in two situa-

tions: the first is when the disease dominates and persists, and the second is when it vanishes

and disappears. In this section, we aim to offer some sufficient conditions that guarantee the

existence and ergodicity of a stationary distribution to system. We mention here, that this last

property permits to deduce the disease persistence in the long run (see Remark 2). Until further

notice, we designates from now on by R�0 the following quantity:

R�0 = β̃ ×
(

µ + rI +ν +µI +
1
2

∫ +∞

0
|β̃ − x|π(x)dx

)−1

.

Theorem 3.1. Let (β (0), I(0),Q(0),R(0)) ∈S2 be a given departure point. If the quantity R�0

outnumbers one (i.e. R�0 > 1), then the system (8) will admit at least one ergodic stationary

distribution ζ on S2.
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Proof. For the reader’s convenience, we start our proof by defining the following C2-real valued

functions:

• V1 =− ln(I)+

:= e︷ ︸︸ ︷(
β̃
[
µ(α1 +1)+ rq(α2 +1)

]
Λ(rq +µ +µq)

)
×Q+

:= f︷ ︸︸ ︷(
β̃ (α2 +1)

Λ

)
×R,

• V2 =− ln(Q)− ln(R)− ln
(

Λ

µ
− I− (α1 +1)Q− (α2 +1)R

)
,

• V3 = β − lnβ ,

• V =C1V1 +V2 +C2V3,

where C1 and C2 are two positive constants to be chosen suitably later. According to the well

known Itô’s formula, applied to the function V1, we obtain

LV1 =−β ×
Λ

µ
− I− (α1 +1)Q− (α2 +1)R

Λ

µ
−α1Q−α2R

+(rI +ν +µ +µI)

+ e(νI− (rq +µ +µq)Q)+ f × (rII + rqQ−µR)

6−β̃

Λ

µ
− I− (α1 +1)Q− (α2 +1)R

Λ

µ

+(β̃ −β )++(rI +ν +µ +µI)

+ e(νI− (rq +µ +µq)Q)+ f × (rII + rqQ−µR)(9)

So

LV1 6−β̃ +(β̃ −β )++(rI +ν +µ +µI)+

(
β̃ µ

Λ
+ eν + f × rI

)
I

+

(
β̃ µ

Λ
(α1 +1)+ f rq− e(rq +µ +µq)

)
︸ ︷︷ ︸

=0

Q+

(
β̃ µ

Λ
(α2 +1)−µ f

)
︸ ︷︷ ︸

=0

R

.6−(R�0 −1)
[
(rI +ν +µ +µI)+

1
2

∫ +∞

0
|β̃ − x|π(x)dx

]
+

(
β̃ µ

Λ
+ eν + f × rI

)
I +(β̃ −β )+− 1

2

∫ +∞

0
|β̃ − x|π(x)dx.(10)
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On the other hand, we have

LV2 = rq +2µ +µq−ν
I
Q
− rI

I
R
− rq

Q
R
+

1
Λ

µ
− I− (α1 +1)Q− (α2 +1)R

×

[
β I
(

Λ

µ
− I− (α1 +1)Q− (α2 +1)R

)
Λ

µ
−α1Q−α2R

+

(
(α1 +1)ν +(α2 +1)rI− (rI +ν +µI)︸ ︷︷ ︸

=0 (see (4))

−µ

)
I

+

(
(α2 +1)rq− (α1 +1)(rq +µq)︸ ︷︷ ︸

=0 (see (4))

−µ(α1 +1)
)

Q−µ(α2 +1)R

]

= rq +2µ +µq−ν× I
Q
− rI×

I
R
− rq×

Q
R
+

β I
Λ

µ
−α1Q−α2R

+
−µI−µ(α1 +1)Q−µ(α2 +1)R

Λ

µ
− I− (α1 +1)Q− (α2 +1)R

6−µ× I +(α1 +1)Q+(α2 +1)R
Λ

µ
− I− (α1 +1)Q− (α2 +1)R

−ν× I
Q
− rI×

I
R
+(rq +2µ +µq)+ β̃ +(β − β̃ ).

(11)

Combining (10) and (11) with the fact that LV3 = θ(β̃ −β )−θ
β̃

β
+θ + σ2

2 leads us to

LV 6−C1(R
�
0 −1)

[
(rI +ν +µ +µI)+

1
2

∫ +∞

0
|β̃ − x|π(x)dx

]
−ν× I

Q
− rI×

I
R

+C1

(
µ

β̃

Λ
+ eµ + f × rI

)
I−µ× I +(α1 +1)Q+(α2 +1)R

Λ

µ
− I− (α1 +1)Q− (α2 +1)R

+(β − β̃ )(1−C2θ)

+C2

(
θ +

σ2

2
−θ

β̃

β

)
+(rq +2µ +µq)+C1

[
(β̃ −β )+− 1

2

∫ +∞

0
|β̃ − x|π(x)dx

]
+ β̃ .

So

LV 6

:= ϒ(β , I,Q,R)︷ ︸︸ ︷(
−λC1 +C+C1

(
µ

β̃

Λ
+ eµ + f × rI

)
I− νI

Q
− rII

R
+(1−C2θ)β −θC2

β̃

β
− µI

Λ

µ
− I− (α1 +1)Q− (α2 +1)R

)

+C1

[
(β̃ −β )+− 1

2

∫ +∞

0
|β̃ − x|π(x)dx

]
,(12)

where 
λ = (R�0 −1)

[
(rI +ν +µ +µI)+

1
2

∫ +∞

0
|β̃ − x|π(x)dx

]
,

C = β̃C2θ +C2(θ +
σ2

2
)+(rq +2µ +µq).

Let ε be positive number, and denote by K the following set:

K =

{
(β , I,Q,R) ∈S2 | I ≥ ε,Q≥ ε

2,R≥ ε
2,

Λ

µ
− I− (α1 +1)Q− (α2 +1)R≥ ε

2,ε 6 β 6
1
ε

}
.
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Needless to say, S2 \K =
6⋃

i=1
Ki where

• K1 = {(β , I,Q,R) ∈S2 | I ∈ (0,ε)}.

• K2 =
{
(β , I,Q,R) ∈S2 | Q ∈ (0,ε2), I ∈ [ε,+∞)

}
.

• K3 =
{
(β , I,Q,R) ∈S2 | R ∈ (0,ε2), I ∈ [ε,+∞)

}
.

• K4 =
{
(β , I,Q,R) ∈S2 |

(
Λ

µ
− I− (α1 +1)Q− (α2 +1)R

)
∈ (0,ε2), I ∈ [ε,+∞)

}
.

• K5 = {(β , I,Q,R) ∈S2 | β ∈ (0,ε)}.

• K6 =
{
(β , I,Q,R) ∈S2 | β ∈

(1
ε
,+∞

)}
.

By denoting A =
(

C1Λ

µ
× (µ β̃

Λ
+ eµ + f × rI)−2

)
and choosing ε = 1

C2
1

with C2 =C4
1 and C1 is

large enough to make the following inequalities true:

−λC1 6−2,

−2+C1(µ
β̃

Λ
+ eµ + f × rI)ε 6−1,

− min(ν ,rI,θC2β̃ ,µ)

ε
+A6−1,

(1−C2θ)ε +A6−1,

we find that for any x of S2 \K =
6⋃

i=1
Ki, we will perforce have one of the following cases:

1st case : Whenever (β , I,Q,R) ∈K1, we have

ϒ(β , I,Q,R)6−2+C1

(
µ

β̃

Λ
+ eµ + f × rI

)
ε 6−1.

2nd case : Whenever (β , I,Q,R) ∈K2, we have

ϒ(β , I,Q,R)6−2+C1

(
µ

β̃

Λ
+ eµ + f × rI

)
Λ

µ
− ν

ε
−2

6−min(ν ,rI,θC2β̃ ,µ)

ε
+A6−1.

3rd case : Whenever (β , I,Q,R) ∈K3, we have

ϒ(β , I,Q,R)6−2+C1

(
µ

β̃

Λ
+ eµ + f × rI

)
Λ

µ
− rI

ε
−2

6−min(ν ,rI,θC2β̃ ,µ)

ε
+A6−1.
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4th case : Whenever (β , I,Q,R) ∈K4, we have

ϒ(β , I,Q,R)6−2+C1

(
µ

β̃

Λ
+ eµ + f × rI

)
Λ

µ
− µ

ε
−2

6−min(ν ,rI,θC2β̃ ,µ)

ε
+A6−1.

5th case : Whenever (β , I,Q,R) ∈K5, we have

ϒ(β , I,Q,R)6−2+C1

(
µ

β̃

Λ
+ eµ + f × rI

)
Λ

µ
−C2θβ̃

ε
−2

6−min(ν ,rI,θC2β̃ ,µ)

ε
+A6−1.

6th case : Whenever (β , I,Q,R) ∈K6, we have

ϒ(β , I,Q,R)6−2+C1

(
µ

β̃

Λ
+ eµ + f × rI

)
Λ

µ
+(1−C2θ)ε

6 (1−C2θ)ε +A6−1.

Summarizing the six cases depicted above, one can deduce that ϒ(β , I,Q,R) 6 −1 for all

(β , I,Q,R) ∈ S2 \K . In addition, ϒ is a continuous function on the compact set K , so it

is bounded on this set and

k0 = sup
(β ,I,Q,R)∈K

ϒ(β , I,Q,R)<+∞. Therefore, and for all (β , I,Q,R) ∈S2, we have

(13) ϒ(β , I,Q,R)6 k :=
(
max

{
k0,−1

}
+1
)︸ ︷︷ ︸

∈R+

<+∞.

Since ϒ(β , I,Q,R) goes to +∞ as ||(β , I,Q,R)|| tends to +∞ or approaches the frontier of

S2 , we can guarantee that there exists an interior point (β 0, I0,Q0,R0) of S2 such that

ϒ(β 0, I0,Q0,R0) = inf
(β ,I,Q,R)∈K

ϒ(β , I,Q,R). So, one can introduce the non-negative C2−function

Vf (β , I,Q,R) constructed as:

Vf (β , I,Q,R) = ϒ(β , I,Q,R)−ϒ(β 0, I0,Q0,R0).

According to (12), we get

LVf 6 ϒ(β , I,Q,R)+C1

[
(β̃ −β )+− 1

2

∫ +∞

0
|β̃ − x|π(x)dx

]
.
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By taking the expectation, then integrating from 0 to t and dividing by t on both sides of the last

inequality, we get

06
E
(
Vf (β (t), I(t),Q(t),R(t)

)
t

=
E
(
Vf (β (0), I(0),Q(0),R(0)

)
t

+
1
t

∫ t

0
E
(
Vf (β (s), I(s),Q(s),R(s)

)
ds

6
E
(
Vf (β (0), I(0),Q(0),R(0)))

t
+

1
t

∫ t

0
E(ϒ(β (s), I(s),Q(s),R(s)

)
ds

+C1E
[

1
t

∫ t

0
(β̃ −β (s))+ds

]
−C1

2

∫ +∞

0
|β̃ − x|π(x)dx.(14)

By introducing the inferior limit on both sides of (14), and using the fact that

(15) lim
t→∞

E
[

1
t

∫ t

0
(β̃ −β (s))+ds

]
− 1

2

∫ +∞

0
|β̃ − x|π(x)dx = 0 a.s.

we get

06 liminf
t→+∞

1
t

∫ t

0
E(ϒ(β (s), I(s),Q(s),R(s)))ds a.s.

Hence

liminf
t→+∞

1
t

∫ t

0
E(ϒ(β (τ), I(τ),Q(τ),R(τ)))dτ

= liminf
t→+∞

1
t

∫ t

0
E(ϒ(β (τ), I(τ),Q(τ),R(τ)))IK cdτ

+ liminf
t→+∞

1
t

∫ t

0
E(ϒ(β (τ), I(τ),Q(τ),R(τ)))IK dτ

6 k liminf
t→+∞

1
t

∫ t

0
IK dτ− liminf

t→+∞

1
t

∫ t

0
IK cdτ

6−1+(k+1) liminf
t→+∞

1
t

∫ t

0
IK dτ.

Which implies that

(16) liminf
t→+∞

1
t

∫ t

0
IK dτ >

1
k+1

> 0 a.s.

Using Fatou’s lemma and the definition of probability event, we get

(17) liminf
t→+∞

1
t

∫ t

0
P(ϒ(β (τ), I(τ),Q(τ),R(τ)),K )dτ >

1
k+1

a.s.
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where P(β (τ), I(τ),Q(τ),R(τ),S2) stands for the transition probability of

(β (τ), I(τ),Q(τ),R(τ)) into the set S2. Thus, we conclude that system (8) admits at

least one stationary distribution π on S2, and it has the Feller and ergodic property. �

Remark 3.1. As stated by the aforementioned theorem, once R�0 > 1, the system (8) will have

a stationary distribution, and this implies that the illness will persist over the long run.

4. EXPONENTIAL EXTINCTION

After having demonstrated the well-posedness of our system and found the conditions for

the existence of a stationary distribution, our objective in this section is to find the conditions

leading to the exponential extinction of system (8).

Theorem 4.1. Let
(
β (t), I(t),Q(t),R(t)

)
be the solution of system (8) that begins from a certain

initial data
(
β (0), I(0),Q(0),R(0)

)
∈S2. Then,

(18) limsup
t→+∞

ln I(t)
t
6 (R0−1)(rI +ν +µ +µI) a.s.

Particularly, when R0 < 1, the disease will vanish exponentially almost surely.

Proof. On the basis of Itô’s formula we have

L (ln I(t)) = β

Λ

µ
−I−(α1+1)Q−(α2+1)R

Λ

µ
−α1Q−α2R

− (rI +ν +µ +µI)

6 β − (rI +ν +µ +µI).

Integrating on [0, t] and dividing by t both sides of the last inequality, leads to

ln(t)− ln(0)
t

6
1
t

∫ t

0
β (s)ds− (rI +ν +µ +µI).

By letting t tends to +∞, we find that

limsup
t→+∞

ln(t)
t
6 β̃ − (rI +ν +µ +µI)

6 (R0−1)(rI +ν +µ +µI),

which is precisely what the theorem asserts. Furthermore, it is evident that once R0 < 1, the

sickness would vanish exponentially. Consequently, the proof is finished. �
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Remark 4.1. As we can clearly observe in this case and unlike usual, the extinction threshold

of the stochastic model corresponds exactly to that of the deterministic one.

5. MODEL SIMULATION AND RESULTS

Our aim in this section is to provide some numerical simulation examples in order to

back up our theoretical results. By adopting the initial datum (β (0), I(0),Q(0),R(0)) =

(0.9,0.9,0.9,0.9) ∈S2 and the parameters’ values as presented respectively in the second and

the third column of the table bellow (for the parameters description we refer the reader to the

page 2)

Parameters persistence case Extinction case

Λ 0.6 0.6

β̃ 0.85 0.78

rI 0.2 0.4

rq 0.2 0.2

µ 0.1 0.1

µI 0.3 0.1

µq 0.1 0.1

ν 0.2 0.2

σ 0.1 0.7

θ 0.7 0.6

TABLE 1. list of parameter values to simulate system 8.

we find that:

� In the first case when we take the numerical values as depicted in the second column

of table 5, the condition R�0 > 1 holds (R�0 = 1.0257 > 1). So, and by the virtue of

Theorem 3.1 and remark 3.1 the illness will persist almost surely, and this goes well

with the curves presented in Figure 1.

� In the second case when we pick the numerical values as listed in the third column of

table 5, the condition R0 < 1 becomes true (R0 = 0.7895 < 1). So, and by the virtue
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of Theorem 4.1, the disease vanishes exponentially almost surely, which is precisely

depicted in Figure 2.

Remark 5.1. The integral
∫+∞

0 |β̃ − x|π(x)dx appearing in the expression of R�0 , in the per-

sistence case, is approximated using the well known Monte-Carlo Method. More precisely, we

have generated 100000 values of X distributed following the inverse gamma law of shape 1+ 2θ

σ2

and scale 2θβ̃

σ2 , and then we approximate the said integral by the expectation of |β̃ −X |.
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FIGURE 1. The paths and frequency histograms of system 8 initialized by

(β (0), I(0),Q(0),R(0)) = (0.9,0.9,0.9,0.9), and with numerical values chosen

as the second column of Table 5. The red curves show the behavior under IGBM

process in the persistence case, while the corresponding deterministic system

trajectories are illustrated in blue. We set, on the right, the corresponding his-

tograms of I,Q and R associated with the stochastic system (R�0 = 1.0257 > 1).
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FIGURE 2. The extinction of system 8 initialized by (β (0), I(0),Q(0),R(0)) =

(0.9,0.9,0.9,0.9) with the parameters values as in the third column of Table 5.

The red curves, show the behavior under IGBM effect while the extinction of the

corresponding deterministic system is illustrated in blue lines. (R0 = 0.7859 <

1).

6. CONCLUSION

In this work, a stochastic SIQR epidemic model with dimensional reduction is investigated

in order to find out its spread behavior. In contrast to considerations of Zhou and Jiang in

[3], we have taken into account the positivity of the transmission parameter β in our model

by perturbing it using the Mean-reverting inhomogeneous geometric Brownian motion process

instead of the Ornstein-Uhlembeck one. In light of this consideration, we have found that there

is a unique and global positive solution of our system. Also, we employed a suitable C2-function

to prove that the model admits, at least, one stationary distribution under the assumption of

R�0 =
β̃

(µ + rI +ν +µI)+
1
2
∫+∞

0 |β̃ − x|π(x)dx
> 1.
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Moreover, we have demonstrated that the sill to get the extinction is the same in the deterministic

case as in the stochastic one. The remaining posed question in light of our mathematical analysis

is to reveal how is it the dynamical comportment of the SIQR system (8) in the case when

R0 6 16R�0 ?.
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