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Abstract. This study delves into a continuous-time mathematical framework that delineates the transmission dy-

namics of the monkeypox virus across distinct regions, involving both human and animal hosts. We introduce

an optimal approach that encompasses awareness campaigns, security protocols, and health interventions in ar-

eas endemic to the virus, aiming to curtail the transmission among individuals and animals, thereby minimizing

infections in humans and eradicating the virus in animals. Leveraging the discrete-time Pontryagin principle of

maximum, we ascertain optimal controls, employing an iterative methodology to solve the optimal system. Em-

ploying Matlab, we conduct numerical simulations and compute a cost-effectiveness ratio. Through a comprehen-

sive cost-effectiveness analysis, we underscore the efficacy of strategies centered around safeguarding vulnerable

individuals, preventing contact with infected counterparts—both human and animal—and fostering the utilization

of quarantine facilities as the most potent means to govern the spread of the monkeypox virus.
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1. INTRODUCTION

In 1970, the monkeypox virus was initially identified in the Democratic Republic of the

Congo. This virus, an animal DNA variant akin to the smallpox virus [1], has triggered sporadic

outbreaks primarily attributed to contact with animal reservoirs [2]. At the outset, human-to-

human transmission was deemed ineffective [3]. Recorded cases of monkeypox emerged in

West African nations: Ivory Coast, Sierra Leone, and Liberia [4]. Between 1981 and 1986,

the Democratic Republic of the Congo reported 338 instances of monkeypox, with 245 cases

stemming from direct contact with animals and 93 cases as a result of successive human-to-

human transmission, encompassing second, third, and even fourth generational spread.

The cases originating from animals predominantly affected males, with 58 belonging to the

”5-14 years” age bracket [5]. In 2003, the virus found its way to the United States, marking

the initial instance of monkeypox disseminating beyond its natural African epicenters. This

outbreak emerged through Prairie dogs contaminated by Gambian rats carrying the monkeypox

virus from Ghana [6]. Clinical manifestations commonly entail the onset of fever, escalating to

encompass conspicuous lymphadenopathy, widespread ulcerative lesions, and vesiculopustular

eruptions across the face and body [7].

Transmission of the monkeypox virus typically occurs when an individual encounters the

virus via contact with an infected animal, virus-laden material permeating the body through

imperceptible skin wounds, the respiratory tract, mucous membranes (nose or mouth), or direct

contact with infected humans [8]. As of May 2022, several non-endemic countries have doc-

umented human cases of monkeypox. This expansion beyond native regions underscores the

escalating threat this virus poses to human health, necessitating scientific intervention.

The utility of mathematical modeling in devising effective interventions and enhancing our

grasp of disease dynamics and management is well-established. Such models frequently inte-

grate differential operators-partial [9], [10], [11], [12], random [13], [14], or fractional deriva-

tives [15], [16], [17], [18], [19]. This study introduces a mathematical model elucidating the

dynamics of infected individuals displaying symptomatic manifestations and those remaining

unaffected. Additionally, we present strategies to restrict virus dissemination between humans

and animals.
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The article’s structure is as follows: Section 2 introduces a mathematical model for the trans-

mission of Monkeypox involving humans and animals (monkeys). Section 3 outlines an optimal

control predicament within our model, elucidating the presence and delineation of optimal con-

trols for the Monkeypox virus through Pontryagin’s principle of maximum. Section 4 encom-

passes numerical simulations via MATLAB. Lastly, Section 5 culminates the article’s discourse.

2. MODEL FORMULATION

We consider a mathematical model SEAISaIaHR that describe the dynamic of transmission

the spread of moneybox flu among people.

this model is divided into two categories: humain categories Nh = S+E +A+ I +H +R and

animal categories Na = Sa + Ia.

Figure 1. Model description

Compartment (S): The count of susceptible individuals (S) experiences an increase denoted

by Λ (representing the incidence of susceptibility). This count is concurrently diminished by

the natural mortality rate, µ1, as well as by the term β1
S(t)A(t)

Nh
, which signifies the number of
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individuals who become infected with the virus due to contact with infected yet asymptomatic

individuals. Moreover, the count is reduced by β2
S(t)I(t)

Nh
, which represents the individuals

infected through contact with symptomatic cases. Furthermore, the term β3
S(t)Ia(t)

Nh
accounts for

the decrease in susceptible individuals caused by contact with infected monkeypox cases.

Compartment (E): This compartment represents the count of exposed individuals. It

increases due to the terms β1
S(t)A(t)

Nh
and β2

S(t)I(t)
Nh

, which denote the number of individuals

becoming exposed through contact with infected asymptomatic and symptomatic individuals,

respectively. The count decreases due to the natural mortality rate, µ2, and the terms α1E(t)

(representing the count of exposed individuals becoming asymptomatic and infectious) and

α1E(t) (representing the count of exposed individuals becoming symptomatic and infectious).

Compartment (I): This compartment represents the count of infected and symptomatic indi-

viduals. It increases due to α2E(t) and γA(t) (representing the count of infected asymptomatic

individuals becoming infected and symptomatic), as well as β3
S(t)Ia(t)

Nh
. The count decreases

due to the natural mortality rate, µ3, the mortality rate due to complications, θ I(t), and the

count of individuals under lockdown, n1I(t).

Compartment (A): This compartment represents the count of individuals infected with

asymptomatic cases. It increases due to α1E(t). The count decreases due to the natural

mortality rate, µ4, the count of individuals under lockdown, n2A(t), and the term γA(t).

Compartment (H): This compartment represents the count of individuals placed under

lockdown in hospitals with follow-up and health monitoring. It increases due to the count of

individuals under lockdown from compartments I and A, i.e., n1I(t) and n2A(t). The count

decreases due to the natural mortality rate, µ7, and the rate of individuals recovering from the

virus, σH(t).
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Compartment (Sa): This compartment represents the count of susceptible individuals to mon-

keypox. It increases due to Λ1 (denoting the incidence of susceptibility from monkeypox). The

count decreases due to the term β4
Sa(t)Ia(t)

Na
, representing the count of monkeypox-susceptible

individuals becoming infected through contact with infected monkeypox cases, and the natural

mortality rate, µ10.

Compartment(R): This compartment represents the count of people who have recovered. It

increases due to the rate of individuals recovering from hospitals, σH(t). The count decreases

due to the natural mortality rate, µ6.

Compartment (Ia): is representing the number of susceptible from monkeypox. Ia(t) is in-

creasing by β4
Sa(t)Ia(t)

Na
. Ia(t) is decreasing by µ11 (natural mortality) and Ia is decreasing by

β3
S(t)Ia(t)

Nh
.

(1)



dS(t)
dt

= Λ−β1
S(t)A(t)

Nh
−β2

S(t)I(t)
Nh

−β3
S(t)Ia(t)

Nh
−µ1S(t)

dE(t)
dt

= β1
S(t)A(t)

Nh
+β2

S(t)I(t)
Nh

−α1E(t)−α2E(t)−µ2E(t)

dA(t)
dt

= α1E(t)−n1A(t)− γA(t)−µ3A(t)
dI(t)

dt
= α2E(t)−µ4I(t)−θ I(t)+ γA(t)−n2I(t)+β3

S(t)Ia(t)
Nh

dH(t)
dt

=−σH(t)−µ5H(t)+n1A(t)+n2I(t)
dR(t)

dt
= σH(t)−µ6R(t)

dSa(t)
dt

= Λ1−µ7Sa(t)−β4
Sa(t)Ia(t)

Na
dIa(t)

dt
= β4

Sa(t)Ia(t)
Na

−µ8Ia(t)−β3
S(t)Ia(t)

Nh

hence, we present the spread of monkeypox flu mathematical model in the country of Demo-

cratic Republic of the Congo is governed by the following system of differential equation.

where S(0)≥ 0 , E(0)≥ 0 , A(0)≥ 0 , I(0)≥ 0 , H(0)≥ 0 , R(0)≥ 0 , Sa(0)≥ 0 , Ia(0)≥ 0

are the initial rate.
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2.1. MODEL BASIC PROPERTIES

2.1.1. POSITIVITY OF SOLUTIONS.

Theorem 1. if S(0) ≥ 0 , E(0) ≥ 0 , A(0) ≥ 0 , I(0) ≥ 0 , H(0) ≥ 0 , R(0) ≥ 0 , Sa(0) ≥

0 , Ia(0)≥ 0 are the initial rate t ≥ 0 the solution of system are positive for all t ≥ 0

Proof It follows from the first equation of system (1) that

dS(t)
dt

= Λ+

(
−β1

A(t)
Nh
−β2

I(t)
Nh
−β3

Ia(t)
Nh
−µ1

)
S(t)

≥ −
(

β1
A(t)
Nh

+β2
I(t)
Nh

+β3
Ia(t)
Nh

+µ1

)
S(t)

dS(t)
dt

+

(
β1

A(t)
Nh

+β2
I(t)
Nh

+β3
Ia(t)
Nh

+µ1

)
S(t) ≥ 0

where

F(t) = β1
A(t)
Nh

+β2
I(t)
Nh

+β3
Ia(t)
Nh

+µ1

dS(t)
dt

+F(t)S(t) ≥ 0

The last inequality’s two sides are multiplied by exp
(∫ t

0 F(s)ds
)

We obtain

exp
(∫ t

0
F(s)ds

)
dS(t)

dt
+F(t)exp

(∫ t

0
F(s)ds

)
S(t) ≥ 0

d
dt

(
S(t)exp

(∫ t

0
F(s)ds

))
≥ 0

Integrating this inequality from 0 to t gives:

∫ t

0

(
d
ds

(
S(t)exp

(∫ t

0
F(s)ds

)))
ds≥ 0

then S(t)≥ S(0)exp
(∫ t

0 F(s)ds
)

⇒ S(t)≥ 0

Likewise, we demonstrate E(t)≥ 0 , A(t)≥ 0 , I(t)≥ 0 , H(t)≥ 0 , Ia(t)≥ 0,Sa(t)≥ 0 and

R(t)≥ 0
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2.1.2. BOUDEDNESS OF THE SOLUTIONS.

Theorem 2. The set Ωh =
{
(S,E, I,A,H,R) ∈ℜ6

+/0≤ S+E + I +A+H +R≤ Λ

µh

}
Ωa =

{
(Sa, Ia) ∈ℜ2

+/0≤ Sa + Ia ≤ Λ1
µa

}
Positively invariant under system (1) with initial conditions

S(0)≥ 0 , E(0)≥ 0 , A(0)≥ 0 , I(0)≥ 0 , H(0)≥ 0 , Ia(0)≥ 0 , Sa(0)≥ 0 and R(0)≥ 0

Proof: by définition Nh = S+E +A+ I +H +R:

hence dNh
dt = Λ−θ I(t)−µhNh

dNh
dt = Λ−θ I(t)−µhNh ≤ Λ−µhNh

dNh
dt ≤ Λ−µhNh

⇒ Nh(t)≤ Λ

µh
+Nh(0)e−µht

If we wake limit t→ ∞ then Nh(t)≤ Λ

µh

It implies that the region Ωh is a positively invariant set for the system (1).

⇒ Nh(t)≤ Λ

µh

subsequently, it can be proven that Na(t)≤ Λ1
µa

2.2. EXISTENCE OF SOLUTIONS.

So the system (1) can be rewritten in the following form:ψ(X) = AX +B(X)

then

X =



S(t)

E(t)

A(t)

I(t)

H(t)

R(t)

Sa(t)

Ia(t)



B(X) =



dS(t)
dt

dE(t)
dt

dA(t)
dt

dI(t)
dt

dH(t)
dt

dR(t)
dt

dSa(t)
dt

dIa(t)
dt


where
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A =



−µ1 0 0 0 0 0 0 0

0 A1 0 0 0 0 0 0

0 α1 A2 0 0 0 0 0

0 α2 γ A3 0 0 0 0

0 0 n1 n2 −(µ5 +σ) 0 0 0

0 0 0 0 σ −µ6 0 0

0 0 0 0 0 0 −µ7 0

0 0 0 0 0 0 0 −µ8


A1 =−(α1 +α2 +µ2) , A2 =−(µ3 + γ +n1) and A3 =−(µ4 +n2 +θ)

and

B(X) =



Λ−β1
S(t)A(t)

Nh
−β2

S(t)I(t)
Nh
−β3

S(t)Ia(t)
Nh

β1
S(t)A(t)

Nh
+β2

S(t)I(t)
Nh

0

β3
S(t)Ia(t)

Nh

0

0

Λ1−β4
Sa(t)Ia(t)

Na

β4
Sa(t)Ia(t)

Na
−β3

S(t)Ia(t)
Nh


3. THE CONTROLLED MATHEMATICAL MODEL

3.1. AIM

The objective of this article is to diminish the count of individuals afflicted with Monkeypox.

This is achieved through a series of preventive measures, including abstaining from contact

with infected monkeys and humans, as well as administering vaccines to infected individuals.

Two control variables, denoted as u(t) and v(t), play a pivotal role. These controls encompass

an awareness program that involves disseminating information and education. The aim is to

elevate awareness and understanding regarding the severity of the pandemic, its ramifications
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on human health, and strategies to mitigate infection rates.

(2)



dS(t)
dt = Λ−β1

S(t)A(t)
Nh

(1−u(t))−β2
S(t)I(t)

Nh
(1−u(t))−β3

S(t)Ia(t)
Nh

(1− v(t))−µ1S(t)
dE(t)

dt = β1
S(t)A(t)

Nh
(1−u(t))+β2

S(t)I(t)
Nh

(1−u(t))−α1E(t)−α2E(t)−µ2E(t)
dA(t)

dt = α1E(t)−n1A(t)− γA(t)−µ3A(t)
dI(t)

dt = α2E(t)−µ4I(t)−θ I(t)+ γA(t)−n2I(t)+β3
S(t)Ia(t)

Nh
(1− v(t))

dH(t)
dt =−σH(t)−µ5H(t)+n1A(t)+n2I(t)

dR(t)
dt = σH(t)−µ6R(t)

dSa(t)
dt = Λ1−µ7Sa(t)−β4

Sa(t)Ia(t)
Na

dIa(t)
dt = β4

Sa(t)Ia(t)
Na

−µ8Ia(t)−β3
S(t)Ia(t)

Nh
(1− v(t))

3.2. THE OPTIMAL CONTROL PROBLEM

The issue is reducing the objective functional

J(u,v) = I(T )+ Ia(T )+
T∫

0

[
I(t)+ Ia(t)+

A
2

u2(t)+
B
2

v2(t)
]

dt

Where A ≥ 0 and B ≥ 0 are the cost coefficients. They are selected to weigh the relative

importance of u(t) and v(t) at time t; T is the final time. In other words, we seek the optimal

controls u∗and v∗ such that

J(u∗,v∗)=u,v∈U min(J(u,v))

where U is the set of admissible control defined by:

U = {(u,v)/0≤ umin ≤ u(t)≤ umax ≤ 1 and 0≤ vmin ≤ v(t)≤ vmax ≤ 1 /t ∈
[
0,Tf

]
}

3.3. THE OPTIMAL CONTROL: EXISTENCE AND CHARACTERIZATION

Proof:

We commence by demonstrating the existence of solutions for the system (1), following which

we will establish the presence of an optimal control. Let us consider the control problem within

the framework of system (2).

There exists an optimal pair of controls, denoted as J(u∗,v∗) ∈ U2, such that

J(u∗,v∗)=u,v∈U min(J(u,v)).
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Proof: The existence of the optimal control can be derived utilizing a result attributed to Flem-

ing and Rishel [20]. This involves scrutinizing the subsequent steps:

We infer that the set comprising controls and their corresponding state variables is not devoid

of elements. To accomplish this, we will invoke a simplified version of an existence theorem

[21]. The convexity of the objective function J(u,v) in the control space U.

The control space U = {(u,v)/(u,v) is measurable... (the continuation of the sentence is not

provided; kindly supply the missing information).

0≤ umin ≤ u(t)≤ umax ≤ 1,0≤ vmin ≤ v(t)≤ vmax ≤ 1 and /t ∈
[
0,Tf

]
}

is convex and closed by definition.

all the right hand sides of equation of system are continuous, bounded above by a sum of

bounded control and state, and can be written as a linear function of u,v and w with coefficients

depending on time and state. the integrate in the objective functional is Creally convexe on U

I(T )+ Ia(T )+
A
2

u2(t)+
B
2

v2(t)

It remains to demonstrate the existence of constants and that they satisfy certain conditions. By

referencing the work of Fleming and Rishel [20], we can then infer the existence of an optimal

control..

Proof: The Hamiltonian is defined as follows

H = I(T )+ Ia(T )+
A
2

u2(t)+
B
2

v2(t)+
11

∑
i=1

λi(t). fi(S,E,A, I,H,R,Sa, Ia)

where fi is the right optimal controls (u∗,v∗) and the solutions S∗,E∗, I∗,H∗,V ∗,R∗,Sa
∗ and

Ia
∗ of the corresponding state (2).

There exists adjoint variables λ1
′, ........ and λ8

′ satisfying

Then from Fleming and Rishel [20] we conclude that there exists an optimal control.

f1(S,E,A, I,H,R,Sa, Ia)

= Λ−β1
S(t)A(t)

Nh
(1−u(t))−β2

S(t)I(t)
Nh

(1−u(t))−β3
S(t)Ia(t)

Nh
(1− v(t))−µ1S(t)

f2(S,E,A, I,H,R,Sa, Ia)

= β1
S(t)A(t)

Nh
(1−u(t))+β2

S(t)I(t)
Nh

(1−u(t))−α1E(t)−α2E(t)−µ2E(t)

f3(S,E,A, I,H,R,Sa, Ia) = α1E(t)−n1A(t)− γA(t)−µ3A(t)

f4(S,E,A, I,H,R,Sa, Ia) = α2E(t)−µ4I(t)−θ I(t)+ γA(t)−n2I(t)+β3
S(t)Ia(t)

Nh
(1− v(t))
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f5(S,E,A, I,H,R,Sa, Ia) =−σH(t)−µ5H(t)+n1A(t)+n2I(t)

f6(S,E,A, I,H,R,Sa, Ia) = σH(t)−µ6R(t)

f7(S,E,A, I,H,R,Sa, Ia) = Λ1−µ7Sa(t)−β4
Sa(t)Ia(t)

Na

f8(S,E,A, I,H,R,Sa, Ia) = β4
Sa(t)Ia(t)

Na
−µ8Ia(t)−β3

S(t)Ia(t)
Nh

(1− v(t))

We have according to the theorem of Pontryagine [25, 26, 27, 28, 29].

λ1
′ =−∂H

∂S =
(

β1
A
Nh

+β2
I

Nh

)
(1−u(t))(λ1−λ2)+β3

Ia
Nh

(1− v(t))(λ1−λ4 +λ8)+λ1µ1

λ2
′ =−∂H

∂E = α1(λ1−λ3)+α2(λ1−λ4)+λ1µ2

λ3
′ =−∂H

∂A = β1
S

Nh
(1− v(t))(λ1−λ2)+ γ(λ3−λ4)+λ3n2 +λ3µ3−λ5n1

λ4
′ =−∂H

∂ I =−1+β2
S

Nh
(1−u(t))(λ1−λ2)+n2(λ4−λ5)+λ3(µ4 +θ)

λ5
′ =−∂H

∂H = σ(λ5−λ6)+λ5µ5

λ6
′ =−∂H

∂R = λ6µ6

λ7
′ =− ∂H

∂Sa
= β4

Ia
Na
(λ7−λ8)+λ7µ7

λ8
′ =−∂H

∂ Ia
=−1+β3

S
N (1− v(t))(λ1−λ4 +λ8)+β4

Sa
Nh
(λ7−λ8)+λ8µ8

for t ∈
[
0,Tf

]
the optimal control u∗and v∗ can be solved from the optimality condition [22].

that are

−∂H
∂u = Au+λ1

(
β1

S(t)A(t)
Nh

+β2
S(t)I(t)

Nh

)
+λ2

(
−β1

S(t)A(t)
Nh
−β2

S(t)I(t)
Nh

)
= 0

−∂H
∂v = Bv+λ1

(
β3

S(t)Ia(t)
Nh

)
+λ4

(
−β3

S(t)Ia(t)
Nh

)
+λ8

(
β3

S(t)Ia(t)
Nh

)
we have

u = (λ2−λ1)
A

(
β1

S(t)A(t)
Nh

+β2
S(t)I(t)

Nh

)
v = (λ4−λ1−λ8)

B

(
β3

S(t)Ia(t)
Nh

)

4. SIMULATION

Within this section, we engage in a numerical analysis of the optimal control model (6), delv-

ing into the ramifications brought about by variations in controls u and v. Initially, we employ

the parameter values outlined in Table 1. Our control problem incorporates initial conditions

for state variables and terminal conditions for adjuncts. Thus, the optimality system manifests
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as a two-point boundary value predicament with distinctive boundary conditions at time steps

i=0 and i=T. We address this optimization system iteratively, proceeding with the forward

solution of the state system, followed by the backward resolution of the auxiliary system. The

iterative process commences with an initial estimate of the controls during the first iteration.

Subsequently, prior to each successive iteration, we refine the controls based on characteriza-

tion. This iterative cycle is sustained until the convergence of consecutive iterations is achieved.
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Parameter Value Source

Λ 30 Assumed

β1 0.60 Assumed

β2 0.60 Assumed

β3 0.63 assumed

β4 0.23 Assumed

σ 0.28 Assumed

µ 0.02 23

n1 0.008 Assumed

n2 0.08 Assumed

γ 0.005 Assumed

Λ1 20 Assumed

α1 0.10 Assumed

α2 0.20 Assumed

θ 0.08 24

TABLE 1. List of all parameters of system (1)

4.1. DISCUSSION

Within this segment, we undertake a numerical examination of the control effects. This en-

compasses interventions such as isolating individuals afflicted with monkeypox, directing them

towards quarantine within designated healthcare facilities, promoting thorough hand hygiene

with soap and water, ensuring cleanliness, advocating against sexual encounters between males,

and discouraging direct contact with monkeys. Varied simulations can be conducted, utilizing

diverse parameter values. In this endeavor, we employ the optimal control strategies along with

their frequencies, substantiating their efficacy numerically via reference to Table (1).

4.2. STRATEGY 1: PROTECTING AND PREVENTING SUSCEPTIBLE INDIVIDUALS FROM

CONTACTING THE INFECTED INDIVIDUALS

In pursuit of this strategy, we exclusively employ the prescribed controls on susceptible indi-

viduals. This is executed through the implementation of awareness campaigns geared towards
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shielding individuals from viral infection. Health measures and security campaigns are also en-

acted to curtail individual movement and provide guidance. As demonstrated in Figure (2), the

implementation of the proposed strategy yields a decrease in the count of exposed individuals,

reducing from 62 to 9 cases by the strategy’s culmination. This substantial decline underscores

the strategy’s efficacy.

4.3. STRATEGY 2: PROTECT SUSCEPTIBLE INDIVIDUALS FROM CONTACT WITH ANI-

MALS (MONKEYS) THAT CARRY THE VIRUS

Our approach to curbing infection rates involves safeguarding susceptible individuals from

contact with animals, specifically monkeys, that harbor the virus. To effectively diminish the

count of infected individuals, we employ a meticulous strategy. This strategy entails the de-

ployment of preventive measures, encompassing health protocol initiatives and awareness cam-

paigns. These efforts are focused on endemic regions to shield vulnerable individuals from

encounters with infected individuals and animals, particularly in regions where the ailment pre-

vails. The impact of this strategy is evident in Figure (3), which illustrates a reduction in the

number of infected individuals from 170 to 122 following the implementation of the proposed

approach.

4.4. THE THIRD STRATEGY: PROTECTING VULNERABLE INDIVIDUALS, PREVENTING

THEM FROM CONTACTING INFECTED PEOPLE WHO DID NOT SHOW SYMPTOMS, AND

DIRECTING THEM TO JOIN QUARANTINE CENTERS.

In pursuit of this strategy, we exclusively implement the prescribed controls. This involves

launching awareness campaigns designed to shield individuals from viral infection. Moreover,

we enact health measures and security campaigns to impede the transfer of individuals from po-

tentially hazardous regions to other areas. Additionally, we encourage asymptomatic carriers of

the virus to opt for quarantine centers. Figure (4) offers a clear depiction of the strategy’s effec-

tiveness. The count of asymptomatic virus carriers decreases from 380 to 70 by the strategy’s

culmination, corroborating the efficacy of the aforementioned approach.
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5. CONCLUSION

This study delved into the realm of monkeypox disease through the lens of a mathemati-

cal model. The primary objective was to scrutinize the impact of a suite of optimal control

strategies. These strategies encompassed urging individuals to practice regular hand hygiene,

avoiding contact with infected individuals and monkeys, and mandating the utilization of masks.

Treatment of Monkeypox patients and their subsequent referral to hospitals and designated quar-

antine facilities also formed integral aspects of these strategies. Commencing with a compre-

hensive introduction and an overview of pertinent literature, we established a dedicated mathe-

matical model delineating the dynamics of the monkeypox-infected population, spanning both

asymptomatic and symptomatic cases. The overarching goal remained the reduction of infected

cases throughout various stages of monkeypox. By leveraging principles from control theory,

we derived optimal control descriptions. This endeavor culminated in the numerical solution

of the mathematical model, utilizing the discrete-time Pontryagin’s principle of maximum. The

optimal system’s resolution followed an iterative trajectory. Additionally, we conducted an

inquiry into the cost-effectiveness associated with these implemented controls.
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