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Abstract. This study aims to examine the optimal control strategy for a continuous-time mathematical model of

avian influenza. The model comprises eleven compartments, with our focus directed at five categories: potential

groups, vulnerable groups, symptomatic virus carriers, asymptomatic virus carriers, virus carriers with severe com-

plications, and virus carriers with complications of lesser severity. Our objective is to identify an effective strategy

for diminishing the number of critically ill patients with avian flu and for treating carriers of the avian flu virus.

We investigate three control approaches: awareness programs through education and information dissemination,

treatment, and psychological support with ongoing monitoring. The Pontryagin’s principle of continuous-time

maximum is employed to delineate the optimal controls. The study employs MATLAB software for numerical

simulations, and the results obtained validate the efficacy of the optimization strategy.
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1. INTRODUCTION

Avian influenza, caused by an RNA virus within the Orthomyxoviridae family [1], is a respi-

ratory infection affecting birds and mammals. It is categorized into three main types (A, B, and

C) based on variances in two crucial internal proteins [2]. Of these types, avian virus A is the

most perilous and epidemiologically significant. It holds ecological and evolutionary interest

due to its presence across diverse bird and mammal species, often undergoing notable changes

in immunological properties.

According to [3], avian influenza A comprises three subtypes transmissible to birds and hu-

mans: A H5, A H9, and A H7. Transmission to humans occurs through airborne exposure to the

virus or contact with contaminated surfaces. In humans, infection symptoms include coughing,

fever, chills, and headache. Although the virus naturally circulates in birds, human infections

stem from contact with infected poultry excrement. The transmission of avian flu to humans

leads to severe consequences.

In 1998, 16 confirmed human cases and three suspected cases were reported [4]. According

to [5], Indonesia saw 151 cases, resulting in 52 fatalities, while Vietnam recorded 119 cases,

with 59 fatalities. In 2004, the avian virus was identified in migratory birds in Hong Kong, with

no evidence of local poultry, pet birds, or leisure birds being infected [6]. On April 5, 2023, a

53-year-old man from northern Chile was reportedly infected, displaying no comorbidities or

recent travel history. WHO reported a poultry farm employee in England contracting highly

pathogenic avian influenza A(H5N1) viruses in mid-May. A second individual involved in

slaughter operations at the farm also tested positive for the virus. Global concerns about avian

flu’s rapid spread persist.

Inadequate treatment of this disease can result in severe health complications and significant

economic and societal burdens. Mathematical models have emerged as valuable tools for under-

standing avian virus dynamics. In a related study, Manach et al. [7] incorporated spatial factors

and phases into a model, while Iwami [8] proposed a differential equation model. Gumel ex-

tended Iwami’s model in [9], considering human-bird contact and isolating infected humans.

Jung et al. [10] presented another optimal avian influenza strategy, while Vaidya et al. [11]
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explored avian influenza dynamics in wild birds. Matcheve [12] introduced a model focusing

on human suffering due to the virus.

Most research on avian virus complications has concentrated on discrete-time models ex-

pressed by differential equations. The complexity of avian virus complications varies, with

some being treatable and others reaching an incurable critical stage. Our research stems from

the debate surrounding the virus’s origin and the availability of vaccines. Some attribute the

virus to imported infected poultry, while others point to migratory birds as carriers during spe-

cific seasons.

This study introduces an eleven-compartment continuous-time optimal control model. In

Section 2, elucidating avian virus dynamics and propagation. Section 3 formulates an optimal

control problem for the model, characterizing optimal controls using Pontryagin’s maximum

principle. Section 4 presents numerical simulations performed in MATLAB. Finally, Section 5

concludes the article.

2. MODEL FORMULATION

In this section, we introduce a mathematical model denoted as SEIACwV HRSaIa, designed to

depict the transmission dynamics of bird flu among individuals. The population is divided into

two categories: humain categories Nh = S+E + I +A+Cw +V +H +R and bird categories

Nh = Sa + Ia. The visualization of the proposed mathematical model is presented in Figure 1.

Figure 1. Model description
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Compartment (S): this compartment is representing the number of susceptible is increasing by

Λ (denote the incidence of susceptible. S is decreasing by µ1 (natural mortality) and decreasing

by β1
S(t)A(t)

Nh
(the number of people who were infected with the virus by contact with the infected

and asymptomatic people) and also decreasing by β2
S(t)I(t)

Nh
(the number of people who were

infected with the virus by contacting with the infected and symptomatic people) and decreasing

by β3
S(t)Ia(t)

Nh
(the number of people who were infected with the virus by contacting with the

infected birds to disease).

Compartment (E): this compartment is representing the number of exposed, E is increasing

by amounts β1
S(t)A(t)

Nh
and β2

S(t)I(t)
Nh

,this compartment is decreasing by µ2(natural mortality) and

α1E(t) (the number of exposed become asymptomatic and infectious ) and also by α2E(t) (the

number of exposed become symptomatic and infectious ).

Compartment (I): this compartment is representing the number of infected and symptomatic

individuals, this compartment is increasing by α2E(t),χ1A(t) and β3
S(t)Ia(t)

Nh
.this compartment is

decreasing by µ3 (natural mortality).I(t) is decreasing by γρI(t) (the number of people become

infected whit complication and without chronic disease ) and decreasing by γ(1−ρ)I(t) (the

number of people become infected whit complication and those whit chronic disease).

Compartment (A): This compartment signifies the count of individuals infected with asymp-

tomatic bird flu. The quantity A(t) experiences augmentation through α1E(t). The decrease of

this compartment is governed by several factors: µ4 (natural mortality), χ1A(t) (depicting the

transition of infected and asymptomatic individuals to infected and symptomatic), and χ2A(t)

(representing the subset of infected individuals undergoing treatment).

Compartment (C): This compartment represents the populace infected with complications or

chronic conditions due to bird flu. The variable C(t) undergoes augmentation via the term γ(1−

ρ)I(t), denoting the transition from the infected group I(t) to the complication-inflicted group

C(t). The diminishment of this compartment is influenced by various components: µ5 (natural

mortality), n2C(t) (indicating the count of individuals with severe complications who are under

medical observation), and u′C(t) (indicating the mortality rate attributable to complications).

Compartment (Cw): This compartment pertains to individuals afflicted with complications

but without underlying chronic diseases. The variable Cw(t) experiences augmentation through
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γρI(t), signifying the transition of infected individuals to this category. The decrease of this

compartment is governed by µ6 (natural mortality) and n1Cw(t) (representing the count of in-

dividuals with severe complications who are being closely monitored).

Compartment (H): This compartment signifies the count of individuals under hospital lock-

down with ongoing health monitoring. H(t) is augmented by the sum of n1Cw(t) and n2C(t),

representing individuals with complications being closely observed. The decrease in this com-

partment is influenced by µ7 (natural mortality) and σ2H(t), which represents the rate of indi-

viduals recovering from the virus.

Compartment (V): This compartment represents the number of individuals who have under-

gone vaccination and successfully recovered. V (t) increases due to χ2A(t), depicting individu-

als transitioning from the infected asymptomatic group to the vaccinated group. The decrease of

V (t) is determined by both µ8 (natural mortality) and σ1V (t), signifying the rate of individuals

recovering from the virus.

Compartment(R): This compartment pertains to the count of recovered individuals. R(t) ex-

periences augmentation through σ1V (t) and σ2H(t), representing those who have successfully

recovered from vaccination and hospital lockdown. The decrease in R(t) is governed by µ9

(natural mortality).

Compartment (Sa): This compartment signifies the susceptible population exposed to the virus

from birds. Sa(t) is increased by Λ1, indicating the incidence of susceptibility due to bird

exposure. The decrease in Sa(t) is driven by two factors: β4
Sa(t)Ia(t)

Na
, which represents the rate

of susceptible individuals becoming infected by contact with infected birds, and µ10 (natural

mortality).

Compartment (Ia): This compartment represents infected birds. Ia(t) experiences augmen-

tation through the term β4
Sa(t)Ia(t)

Na
, indicating the transition of susceptible individuals to the

infected bird category. The decrease of Ia(t) is influenced by µ11 (natural mortality) and

β3
S(t)Ia(t)

Nh
, signifying the rate of infected birds being treated and recovering.
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(1)



dS(t)
dt

= Λ−β1
S(t)A(t)

Nh
−β2

S(t)I(t)
Nh

−β3
S(t)Ia(t)

Nh
−µ1S(t)

dE(t)
dt

= β1
S(t)A(t)

Nh
+β2

S(t)I(t)
Nh

−µ2E(t)−α1E(t)−α2E(t)

dA(t)
dt

= α1E(t)−µ4A(t)−χ1A(t)−χ2A(t)
dI(t)

dt
= α2E(t)−µ3I(t)− γρI(t)+χ1A(t)− γ(1−ρ)I(t)+β3

S(t)Ia(t)
Nh

dV (t)
dt

= χ2A(t)−µ5V (t)−σ1V (t)
dC(t)

dt
= γ(1−ρ)I(t)− (θ +µ7)C(t)−n2C(t)

dCω(t)
dt

= γρI(t)−µ6Cω(t)−n1Cω(t)
dH(t)

dt
= n1Cω(t)+n2C(t)−µ8H(t)−σ2H(t)

dR(t)
dt

= σ1V (t)+σ2H(t)−µ9R(t)
dSa(t)

dt
= Λ1−µ10Sa(t)−β4

Sa(t)Ia(t)
Na

dIa(t)
dt

= β4
Sa(t)Ia(t)

Na
−µ11Ia(t)−β3

S(t)Ia(t)
Nh

Hence, we present the spread of bird flu mathematical model in the country of Chile is governed

by the following system of differential equation.

where S(0)≥ 0 , E(0)≥ 0 , A(0)≥ 0 , I(0)≥ 0 , V (0)≥ 0 , C(0)≥ 0 , Cω(0)≥ 0 , H(0)≥

0 , R(0)≥ 0 , Sa(0)≥ 0 , Ia(0)≥ 0 are the initial rate.

2.2. MODEL BASIC PROPERTIES

2.2.1. POSITIVITY OF SOLUTIONS.

Theorem 1. if S(0) ≥ 0 , E(0) ≥ 0 , A(0) ≥ 0 , I(0) ≥ 0 , V (0) ≥ 0 , C(0) ≥ 0 , Cω(0) ≥ 0 ,

H(0)≥ 0 , R(0)≥ 0 , Sa(0)≥ 0 , Ia(0)≥ 0 are the initial rate t ≥ 0. the solution of system are

positive for all t ≥ 0

Proof. It follows from the first equation of system (1) that

dS(t)
dt

= Λ+

(
−β1

A(t)
Nh
−β2

I(t)
Nh
−β3

Ia(t)
Nh
−µ1

)
S(t) ≥ −

(
β1

A(t)
Nh

+β2
I(t)
Nh

+β3
Ia(t)
Nh

+µ1

)
S(t)

dS(t)
dt

+

(
β1

A(t)
Nh

+β2
I(t)
Nh

+β3
Ia(t)
Nh

+µ1

)
S(t) ≥ 0
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where

F(t) = β1
A(t)
Nh

+β2
I(t)
Nh

+β3
Ia(t)
Nh

+µ1

dS(t)
dt

+F(t)S(t) ≥ 0

The both sides in last inequality are multiplied by exp
(∫ t

0 F(s)ds
)

We obtain

exp
(∫ t

0
F(s)ds

)
dS(t)

dt
+F(t)exp

(∫ t

0
F(s)ds

)
S(t) ≥ 0

d
dt

(
S(t)exp

(∫ t

0
F(s)ds

))
≥ 0

Integrating this inequality from 0 to t gives:∫ t

0

(
d
ds

(
S(t)exp

(∫ t

0
F(s)ds

)))
ds≥ 0

then S(t)≥ S(0)exp
(∫ t

0 F(s)ds
)

⇒ S(t)≥ 0 similarly, we prove that

S(t)≥ 0 , E(t)≥ 0 , A(t)≥ 0 , I(t)≥ 0 , V (t)≥ 0 , C(t)≥ 0 ,

CW (t)≥ 0 , H(t)≥ 0 , Ia(t)≥ 0,Sa(t)≥ 0 and S(t)≥ 0.

2.2.2. BOUDEDNESS OF THE SOLUTIONS.

Theorem 2. The set Ωh =
{
(S,E, I,A,H,CW ,C,V,R) ∈ℜ9

+/0≤ S+E + I +A+CW +C+V +H +R≤ Λ

µh

}
Ωa =

{
(Sa, Ia) ∈ℜ2

+/0≤ Sa + Ia ≤ Λ1
µa

}
Positively invariant under system (1) with initial conditions

S(0)≥ 0 , E(0)≥ 0 , A(0)≥ 0 , I(0)≥ 0 ,

V (0)≥ 0 , C(0)≥ 0 , CW (0)≥ 0 , H(0)≥ 0 , Ia(0)≥ 0 , Sa(0)≥ 0 and R(0)≥ 0.

Proof. Also, one assumes that:
dNh
dt = Λ−µhNh−θC

dNh
dt = Λ−µhNh−θC ≤ Λ−µhNh

dNh
dt ≤ Λ−µhNh

⇒ Nh(t)≤ Λ

µh
+Nh(0)e−µht

If we wake limit t→ ∞ then Nh(t)≤ Λ

µ
.
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It implies that the region Ωh is a positively invariant set for the system (1).

⇒ Nh(t)≤ Λ

µh

subsequently, it can be proven that Na(t)≤ Λ1
µa

.

EXISTENCE OF SOLUTIONS

So the system (1) can be rewritten in the following form:ψ(X) = AX +B(X)

then

X =



S(t)

E(t)

A(t)

I(t)

V (t)

C(t)

CW (t)

H(t)

R(t)

Sa(t)

Ia(t)



B(X) =



dS(t)
dt

dE(t)
dt

dA(t)
dt

dI(t)
dt

dV (t)
dt

dC(t)
dt

dCW (t)
dt

dH(t)
dt

dR(t)
dt

dSa(t)
dt

dIa(t)
dt


where

A =



−µ1 0 0 0 0 0 0 0 0 0 0

0 A1 0 0 0 0 0 0 0 0 0

0 α1 A2 0 0 0 0 0 0 0 0

0 α2 α1 −(µ3 + γ) 0 0 0 0 0 0 0

0 0 χ2 0 −(µ5 +σ1) 0 0 0 0 0 0

0 0 0 γ(1−ρ) 0 A3 0 0 0 0 0

0 0 0 γρ 0 0 −(µ7 +n1) 0 0 0 0

0 0 0 0 0 n2 n1 −(µ8 +σ2) 0 0 0

0 0 0 0 σ1 0 0 σ2 −µ9 0 0

0 0 0 0 0 0 0 0 0 −µ10 0

0 0 0 0 0 0 0 0 0 0 −µ11
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A1 =−(α1 +α2 +µ2) , A2 =−(µ4 +χ1 +χ2) and A3 =−(µ6 +n2 +θ)

and

B(X) =



Λ−β1
S(t)A(t)

Nh
−β2

S(t)I(t)
Nh
−β3

S(t)Ia(t)
Nh

β1
S(t)A(t)

Nh
+β2

S(t)I(t)
Nh

0

β3
S(t)Ia(t)

Nh

0

0

0

0

0

Λ1−β4
Sa(t)Ia(t)

Na

−β3
S(t)Ia(t)

Nh



3. THE CONTROLLED MATHEMATICAL MODEL

The primary goal of this study is to curtail the incidence of bird flu infections among the pop-

ulace. This objective is pursued through a collection of preventative measures, encompassing

strategies like avoiding contact with infected birds and poultry, refraining from interactions with

infected individuals, and administering vaccinations to those already infected. To accomplish

this, we implement three control mechanisms denoted as u(t), v(t), and w(t). These controls

correspond to the implementation of awareness programs involving information dissemination

and education. They aim to enhance public understanding of the severity of the infection, its

implications for human health, and methods to mitigate its spread.

Consequently, we present a controlled mathematical model depicting the propagation of bird

flu within the context of Chile. This model is governed by the following system of differential

equations:



10 HICHAM GOURRAM, MOHAMED BAROUDI, ABDERRAHIM LABZAI, MOHAMED BELAM

(2)



dS(t)
dt = Λ−β1(1−u(t))S(t)A(t)

Nh
−β2(1−u(t))S(t)I(t)

Nh
−β3(1− v(t))S(t)Ia(t)

Nh
−µ1S(t)

dE(t)
dt = β1(1−u(t))S(t)A(t)

Nh
+β2(1−u(t))S(t)I(t)

Nh
−µ2E(t)−α1E(t)−α2E(t)

dA(t)
dt = α1E(t)−µ4A(t)−χ1A(t)−χ2A(t)

dI(t)
dt = α2E(t)−µ3I(t)− γρI(t)+χ1A(t)− γ(1−ρ)I(t)+β3(1− v(t))S(t)Ia(t)

Nh
−w(t)I(t)

dV (t)
dt = χ2A(t)−µ5V (t)−σ1V (t)

dC(t)
dt = γ(1−ρ)I(t)− (θ +µ7)C(t)−n2C(t)−w(t)C(t)

dCω (t)
dt = γρI(t)−µ6Cω(t)−n1Cω(t)−w(t)Cω(t)

dH(t)
dt = n1Cω(t)+n2C(t)−µ8H(t)−σ2H(t)+w(t)I(t)+w(t)C(t)+w(t)Cω(t)

dR(t)
dt = σ1V (t)+σ2H(t)−µ9R(t)

dSa(t)
dt = Λ1−µ10Sa(t)−β4

Sa(t)Ia(t)
Na

dIa(t)
dt = β4

Sa(t)Ia(t)
Na

−µ11Ia(t)−β3(1− v(t))S(t)Ia(t)
Nh

3.1. THE OPTIMAL CONTROL PROBLEM

The problem is to minimize the objective functional

J(u,v) = I(T )+C(T )+Cω(T )+ Ia(T )+
T∫

0

[
I(t)+C(T )+Cω(T )+

A1

2
u2(t)+

A2

2
v2(t)+

A3

2
w2(t)

]
dt

Where A1 ≥ 0, A2 ≥ 0 and A3 ≥ 0 are the cost coefficients. They are selected to weigh the

relative importance of u(t), v(t) and w(t) at time t; T is the final time. In other words, we seek

the optimal controls u∗, v∗ and w∗ such that

J(u∗,v∗,w∗)=u,v,w∈U min(J(u,v,w))

where U is the set of admissible control defined by

U = {(u,v,w)/0 ≤ umin ≤ u(t) ≤ umax ≤ 1,0 ≤ vmin ≤ v(t) ≤ vmax ≤ 1and0 ≤ wmin ≤ w(t) ≤

wmax ≤ 1/t ∈
[
0,Tf

]
}

3.2 THE OPTIMAL CONTROL: EXISTENCE AND CHARACTERIZATION

Proof: We first show existence of solutions of the system (1) there after we will prove the

existence of optimal control. Consider the control problem with system (...), there exists an

optimal J(u∗,v∗,w∗) ∈U3, such that J(u∗,v∗,w∗)=u,v,w∈U min(J(u,v,w)).
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Proof: The existence of the optimal control can be obtained using a result by Fleming and

Rishel [13],checking the following steps.

- It follows that the set of controls and corresponding state variables is nonempty. We will use

a simplified version of an existence results [14] theorem 7.1.1.

- J(u,v,w) is convex in U.

- The control space U = {(u,v,w)/(u,v,w) is measurable.

0 ≤ umin ≤ u(t) ≤ umax ≤ 1,0 ≤ vmin ≤ v(t) ≤ vmax ≤ 1and0 ≤ wmin ≤ w(t) ≤ wmax ≤ 1/t ∈[
0,Tf

]
} is convex and closed by definition.

All the right hand sides of equation of system are continuous, bounded above by a sum of

bounded control and state, and can be written as a linear function of u,v and w with coefficients

depending on time and state.

The integrate in the objective functional is Creally convex on U.

I(T )+C(T )+Cω(T )+ Ia(T )+ A1
2 u2(t)+ A2

2 v2(t)+ A3
2 w2(t).

It rest to show that there exists constants and satisfies then from Fleming and Rishel [13], we

conclude that there exists an optimal control.

We have according to the theorem of Pontryagine [15, 16, 19, 20, 21].

Proof: The Hamiltonian is defined as follows

H = I(T )+C(T )+Cω(T )+ Ia(T )+
A1

2
u2(t)+

A2

2
v2(t)+

A3

2
w2(t)

+
11

∑
i=1

λi(t). fi(S,E,A, I,V,C,Cω ,H,R,Sa, Ia)

where fi is the right optimal controls (u∗,v∗,w∗) and the solutions

S∗,E∗, I∗,V ∗,C∗,Cω
∗,H∗,V ∗,R∗,Sa

∗ and Ia
∗ of the corresponding state (1).

There exists adjoint variables λ1
′, ........ and λ11

′ satisfying

Then from Fleming and Rishel [13] we conclude that there exists an optimal control.
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f1(S,E,A, I,V,C,Cω ,H,R,Sa, Ia) = Λ−β1(1−u(t))
S(t)A(t)

Nh
−β2(1−u(t))

S(t)I(t)
Nh

−β3(1− v(t))
S(t)Ia(t)

Nh
−µ1S(t)

f2(S,E,A, I,V,C,Cω ,H,R,Sa, Ia) = β1(1−u(t))
S(t)A(t)

Nh
+β2(1−u(t))

S(t)I(t)
Nh

−µ2E(t)

−α1E(t)−α2E(t)

f3(S,E,A, I,V,C,Cω ,H,R,Sa, Ia) = α1E(t)−µ4A(t)−χ1A(t)−χ2A(t)

f4(S,E,A, I,V,C,Cω ,H,R,Sa, Ia) = α2E(t)−µ3I(t)− γρI(t)+χ1A(t)− γ(1−ρ)I(t)

+β3(1− v(t))
S(t)Ia(t)

Nh
−w(t)I(t)

f5(S,E,A, I,V,C,Cω ,H,R,Sa, Ia) = χ2A(t)−µ5V (t)−σ1V (t)

f6(S,E,A, I,V,C,Cω ,H,R,Sa, Ia) = γ(1−ρ)I(t)− (θ +µ7)C(t)−n2C(t)−w(t)C(t)

f7(S,E,A, I,V,C,Cω ,H,R,Sa, Ia) = γρI(t)−µ6Cω(t)−n1Cω(t)−w(t)Cω(t)

f8(S,E,A, I,V,C,Cω ,H,R,Sa, Ia) = n1Cω(t)+n2C(t)−µ8H(t)−σ2H(t)+w(t)I(t)

+w(t)C(t)+w(t)Cω(t)

f9(S,E,A, I,V,C,Cω ,H,R,Sa, Ia) = σ1V (t)+σ2H(t)−µ9R(t)

f10(S,E,A, I,V,C,Cω ,H,R,Sa, Ia) = Λ1−µ10Sa(t)−β4
Sa(t)Ia(t)

Na

f11(S,E,A, I,V,C,Cω ,H,R,Sa, Ia) = β4
Sa(t)Ia(t)

Na
−µ11Ia(t)−β3(1− v(t))

S(t)Ia(t)
Nh

Where

λ1
′ =−∂H

∂S
=

(
β1

A
Nh

+β2
I

Nh

)
(1−u(t))(λ1−λ2)+β3

Ia

Nh
(1− v(t))(λ11−λ4 +λ1)

+λ1µ1

λ2
′ =−∂H

∂E
= α1(λ2−λ3)+α2(λ2−λ4)+λ2µ2 +λ3µ4

λ3
′ =−∂H

∂A
= β1

S
N
(1−u(t))(λ1−λ2)+χ1(λ3−λ4)+χ2(λ3−λ5)
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λ4
′ =−∂H

∂ I
=−1+β2

S
Nh

(1−u(t))(λ1−λ2)+ γρ(λ4−λ7)+ γ(1−ρ)(λ4−λ6)

+w(λ4−λ8)

λ5
′ =−∂H

∂V
= σ1(λ5−λ9)+λ5µ5

λ6
′ =−∂H

∂C
=−1+(λ6−λ8)(n2 +w)+λ6(θ +µ6)

λ7
′ =− ∂H

∂Cω

=−1+(λ7−λ8)(n1 +w)+λ7µ7

λ8
′ =−∂H

∂H
= σ2(λ8−λ9)+λ8µ8

λ9
′ =−∂H

∂R
= λ9µ9

λ10
′ =− ∂H

∂Sa
= β4

Ia

Na
(λ10−λ11)+λ10µ10

λ11
′ =−∂H

∂ Ia
=−1+β3

S
Nh

(1− v(t))(λ1−λ4 +λ11)+β4
Sa

Na
(λ10−λ11)+λ11µ11

for t ∈
[
0,Tf

]
the optimal control u∗v∗ and w∗ can be solved from the optimality condition .

that are

−∂H
∂u =−A1u−λ1

(
β1

S(t)A(t)
Nh

+β2
S(t)I(t)

N

)
−λ2

(
−β1

S(t)A(t)
Nh
−β2

S(t)I(t)
Nh

)
= 0

−∂H
∂v =−A2v−λ1

(
β3

S(t)Ia(t)
Nh

)
−λ4

(
−β3

S(t)Ia(t)
Nh

)
−λ11

(
β3

S(t)Ia(t)
Nh

)
= 0

−∂H
∂w =−A3w+λ4 (−I(t))−λ6 (−C(t))−λ7 (−Cω(t)) = 0

we have

u = (λ2−λ1)
A1

(
β1

S(t)A(t)
Nh

+β2
S(t)I(t)

Nh

)
v = (λ4−λ1−λ11)

A2

(
β3

S(t)Ia(t)
Nh

)
w = 1

A3
(I(λ4−λ8)+C(λ6−λ8)+Cω(λ7−λ8))
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4. SIMULATION

In this section, we present the outcomes derived from the optimized system composed of

eleven equations. The problem entails both initial and final conditions at specified points. Ini-

tially, we utilize an estimated value for the initial transformation variables, solving for the ad-

jacent variables in subsequent time steps. This iterative process continues, incorporating ad-

justments based on descriptions, until the convergence of successive iterations is attained. A

MATLAB code is developed and compiled, employing the data provided in Table 1.

Figure 2 illustrates the progression of individuals exposed to viral infection. The graph

demonstrates a gradual increase in the number of individuals exposed to the virus, with a no-

ticeable acceleration after approximately 30 days. This swift rise signifies that symptoms of

infection begin to manifest more prominently as time progresses, leading to the emergence of

two categories of infected individuals. These categories include those carrying the virus with-

out exhibiting symptoms (Figure 3) and those displaying symptoms (Figure 4). The count of

asymptomatic virus carriers remains elevated over time, contributing significantly to the pool

of individuals who eventually develop symptoms. This transition occurs due to interactions

between susceptible individuals and virus-carrying birds or poultry, as well as contact with

individuals already exposed to the virus.

The situation further complicates as it leads to the emergence of two distinct categories of in-

fected individuals: those with severe symptoms (Figure 5) and those with non-severe symptoms

(Figure 6). This distinction arises from the varying levels of symptom severity experienced by

infected individuals.
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Parameter Value Source

Λ 50 Assumed

β1 0.25 Assumed

β2 0.25 Assumed

β3 0.23 assumed

β4 0.23 Assumed

σ1 0.28 Assumed

σ2 0.28 Assumed

µ 0.06 17

n1 0.08 Assumed

n2 0.08 Assumed

γ 0.05 Assumed

Λ1 30 Assumed

α1 0.30 Assumed

α2 0.21 Assumed

χ1 0.01 Assumed

θ 0.08 18

χ2 0.01 Assumed
TABLE 1. Liste of all parameters of system (1)

4.1.CHARACTERISATION OF THE OPTIMAL CONTROL

The control strategy proposed in this article serves multiple objectives, which are explored in

the following subsections:

4.1.1 STRATEGY A: SENSITIZATION AND PREVENTION

Incorporating the optimal controls u(t) and v(t), this strategy concentrates on two key goals.

The first is to raise awareness among the public about the gravity of avian flu and to equip them

with protective measures against its spread. Employing methods such as awareness campaigns

and protective initiatives (illustrated in Figures 7, 8, and 9), this strategy involves educating
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citizens about the seriousness of avian flu through media channels. Preventive measures include

avoiding contact with infected individuals, practicing regular hand hygiene (especially after

sneezing), and seeking medical consultation if symptoms arise. The outcome of this strategy

demonstrates a decrease in the numbers of infected individuals displaying symptoms, as well as

those who remain asymptomatic.

4.1.2. FOLLOW UP ON MEDICAL TREATMENT: CONTROL w(t)

This strategy, implemented through control w(t), emphasizes the importance of prompt medi-

cal treatment and consultation for individuals exhibiting severe symptoms. The approach yields

favorable outcomes, as depicted in Figures 10 and 11, showing an increased rate of treatment

among individuals suffering from severe symptoms.

5. CONCLUSION

This research delved into a mathematical epidemiological model to analyze avian influenza

infection dynamics. Following the presentation of the paper and a comprehensive review of

related literature, a mathematical model was formulated to describe the dynamics of avian in-

fluenza within various age groups of Chile’s population. The model aims to mitigate the infec-

tion rates among individuals with varying symptom presentations. Controls were introduced,

including patient isolation and quarantine, mask usage, regular hand washing, and medical con-

sultation, to combat the spread of the disease.

By applying control theory techniques, optimal control strategies were obtained and assessed.

The results underscored the efficacy of the proposed control measures. In the future, further in-

vestigation will be conducted into the temporal and spatial aspects of the disease’s propagation.
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