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Abstract. In this article, we discuss the dynamics of Foot-and-Mouth Disease (FMD) spread model by considering

direct infections from infected and carrier population, indirect infections from patogen population in environment,

and the intervention such as vaccination, culling, and environment sanitation. The proposed model contains six

subpopulations: susceptible (S), vaccinated (V ), exposed (E), infected (I), carrier (IC), and patogen (P). For the

dynamics of proposed model, we first show the non-negativity and boundedness of solutions. The equilibrium

point, basic reproduction number, local and global stability of equilibrium points are also investigated analytically.

The proposed model has disease-free equilibrium point always exists and endemic equilibrium point exists when

R0 > 1. The disease-free equilibrium point is locally asymptotically stable when R0 < 1 and fulfills the Routh-

Hurwitz criterion, and globally asymptotically stable when R0 < 1. While the endemic equilibrium point is locally

asymptotically stable when Lienard-Chipart criterion is satisfied, and globally asymptotically stable when R0 > 1

and one of the following conditions (i) If c = 0 and ϕ = 0, or (ii) If N ≤ Π

µ
, is satisfied. Numerical simulations

are performed to verify the analytical result. The simulation results demonstrate the local and global stability of

equilibrium point.
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1. INTRODUCTION

Foot-and-Mouth Disease (FMD) is transboundary animal disease that highly contagious or

transmissible, epidemic diseases, have the potential for rapid spread regardless across the globe,

cause substantial socioeconomic losses, and result in negative public health outcomes [5], [11].

FMD attacks cloven-hoofed animals, namely ruminants (cattle, buffalo, goats, sheep), pigs, and

similar species caused by Foot and Mouth Disease Virus (FMDV) [5], [8], [17]. Indonesia is one

of the countries in the Asian region affected by FMD. In the last few months, since April 2022,

FMD has started to reoccur widely and infect livestock, especially cattle [8]. As of July 2022,

the Government of Indonesia through the Indonesian Disaster Management Authority or Badan

Nasional Penanggulangan Bencana (BNPB) reported 233,370 cases of FMD in 246 districts in

22 provinces in Indonesia. According to data from the Ministry of Agriculture’s Crisis Center,

Central Java province is the first province with the most FMD with 133460 reported cases. Next

is West Nusa Tenggara province with 48246 cases, East Java with 33178 cases, Aceh province

with 32330 cases and West Java with 32178 cases [2].

Direct or indirect contact with FMDV infected animals can result in susceptible animals

becoming diseased or sub-clinically infected [6], [10]. The main route of virus entry, in natural

infections, is the respiratory tract through inhalation of airborne virus and in ruminants, but

not pigs, complete clearance of virus from the pharynx to persistently infected carriers [6],[12].

Other animals and humans can also pose a risk of transmission if they become contaminated

with the virus (for example, from aerosolization, feces and clothing) [16], [5], [4].

An effective control of FMD is prevention through vaccination [13]. In addition to vacci-

nation, culling infected animals is also an effort to suppress the spread of FMD virus to the

environment [10]. In addition to induce immunity in animals and eliminating sources of trans-

mission by culling infected animals, virus transmission in the environment can also be min-

imized by decontaminating cages, equipment, vehicles and other contaminated materials that

can transmit the disease [8]. Culling is also done on carrier animals because after the clinical

phase of FMD, most ruminants (cattle, buffalo, goats and sheep) still excrete the virus even

though they look clinically healthy [3]. Until now, there has been no known specific treatment
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for FMD. Therefore, it is also important to understand the spread of FMD so that prevention

and treatment can be optimized.

Based on the history of the spread of FMD, it is necessary to study the spread of FMD. Math-

ematical modeling is an approach to understanding the dynamics of FMD spread [9]. Mathe-

matical modeling can be applied to represent the phenomenon of change so that it can be used to

understand the dynamics of FMD spread. In [15], Mushayabasa and Tapedzesa constructed the

SV EV IIC model by considering vaccination and direct transmission method caused by contact

with infected and carrier. Furthermore, in [10], Gashirai et al. stated that the transmission can

occur by direct and indirect method, and consider pathogen in the environment. The transmis-

sion rates of both are different. In [18], Sseguya et al. constructed the SV EIIC (Susceptible-

Vaccinated-Exposed-Infected-Carrier) model that also consider vaccination, carrier properties,

and FMD transmission caused by contact with exposed and infected.

The various characteristics of FMD disease and the intervention are important to consider

in the mathematical model. In this study, we propose the FMD model by considering direct

infections from infected and carrier population, indirect infections from patogen population in

environment, carrier properties, and the intervention such as vaccination, culling, and enviro-

mental sanitation. First, in Section 2 we construct SV EIICP model. Based on the model that

has been constructed, we analyze the dynamic of proposed model containing basic properties

in Section 3 (non-negativity and boundedness of solutions), equilibrium points and basic re-

production number in Section 4, stability of equilibrium points, both locally in Section 5 and

globally in Section 6. We showed a numerical simulations to confirm the result. Furthermore,

we conclude in Section 7.

2. MODEL FORMULATION

The model of FMD transmission in this study describe the interaction between six subpo-

pulations, that is, S,V,E, I, IC, and P, which represent the subpopulations size of susceptible,

vaccinated, exposed, infected, carrier, and patogen, respectively. The model assumes that sus-

ceptible individual (S) may become exposed if there are contact between susceptible individual

with infected or carrier individual by direct contact transmission, or by indirect transmission

between susceptible individual with patogen in environment. Vaccinated subpopulation (V )
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is susceptible individuals who get vaccination and vaccinated subpopulation can return to be

susceptible individuals due to the decay of the vaccination effect. Carrier subpopulation (IC)

is infected individuals that have recovered clinically but can still excrete the virus into the en-

vironment from the pharynx and cannot be cured by treatment. Patogen subpopulation (P) is

FMD virus population that spread in the environment due to excretion from infected and carrier

individuals. In this model, we consider three intervention including vaccination, culling, and

environmental sanitation. The interaction between six subpopulations of the proposed model

are shown by compartment diagram in Figure 1.

FIGURE 1. The compartment diagram of proposed FMD spread model.

The proposed model is expressed in a first-order differential equations system (1).

dS
dt

= Π+ τV − (ν +µ)S− (β1(I + IC)+β2(1−κ)P)S,

dV
dt

= νS− (τ +µ)V,

dE
dt

= (β1(I + IC)+β2(1−κ)P)S− (µ +αγ +(1−α)γ)E,

dI
dt

= αγE− (σ +µ +ϕ + c)I,

dIC
dt

= (1−α)γE +σ I− (µ + c)IC,

dP
dt

= ηI +ηρ1IC−ψP.

(1)

with non-negative initial values S(0) = S0, V (0) = V0, E(0) = E0, I(0) = I0, IC(0) = IC0 ,

P(0) = P0. The definition of parameters in model (1) could be seen in Table 1.
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TABLE 1. Model parameter and their description

Parameter Descriptions Value Source

Π Number of cattle recruitment 100 Gashirai et al. (2020)

ν Vaccination rate of S 0,25 Mushayabasa & Tapedzesa (2015)

τ

Rate of loss of

vaccine-induced immunity
0,011 Gashirai et al. (2020)

µ Natural mortality rate 0,002 Gashirai et al. (2020)

β1
Direct disease transmission

rate
10−6 Gashirai et al. (2020)

β2
Indirect disease transmission

rate
10−10 Gashirai et al. (2020)

κ

Proportion of environmental

sanitation
0,2 Assumed

α

Proportion of E that become

persistently infected
0,85 Gashirai et al. (2020)

γ Rate of FMD progression 0,25 Gashirai et al. (2020)

σ

Rate at which symptomatic

cattle become carriers
0,14 Gashirai et al. (2020)

ϕ Death rate due to disease 0,1 Gashirai et al. (2020)

c Culling rate 0,1 Assumed

η

Environmental

decontamination rate
104 Gashirai et al. (2020)

ρ1
Proportion of carrier

decontamination
0,7 Assumed

ψ

Environmental patogen

decay rate
0,07 Gashirai et al. (2020)



6 H. F. ROMLI, A. SURYANTO, I. DARTI

To simplify the System (1), we introduce new symbols ξ1 = ν + µ , ξ2 = τ + µ , ξ3 = µ +

αγ +(1−α)γ , ξ4 = σ +µ +ϕ + c, ξ5 = µ + c, and ξ6 = ψ expressed in System (2).

dS
dt

= Π+ τV − (β1(I + IC)+β2(1−κ)P)S−ξ1S,

dV
dt

= νS−ξ2V,

dE
dt

= (β1(I + IC)+β2(1−κ)P)S−ξ3E,

dI
dt

= αγE−ξ4I,

dIC
dt

= (1−α)γE +σ I−ξ5IC,

dP
dt

= ηI +ηρ1IC−ξ6P.

(2)

3. NON-NEGATIVITY AND BOUNDEDNESS OF SOLUTIONS

Since model (2) describes the interaction of animal and patogen subpopulations, the solu-

tion of the system must be non-negative and ultimately bounded. The following theorem has

guaranteed the non-negativity and boundedness of solution of Model (2).

Theorem 1. All solutions of the FMD Model (2) subject to non-negative initial values are non-

negative and bounded.

Proof. We first prove that S(t) and V (t) are non-negative. Assume the contrary; then let t1 and

t2 be the first time such they are equal to zero at t1 and t2, respectively. From first and second

equations of Model (2), we get

dS(t)
dt

∣∣∣
t=t1

= Π+ τV (t1),

dV (t)
dt

∣∣∣
t=t2

= νS(t2).
(3)

Since the right-hand side of equation (3) depends on t1 and t2, we separate this proof cases.

If t1 ≤ t2, then V (t1)≥ 0. We have

dS(t)
dt

∣∣∣
t=t1

= Π+ τV (t1).
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This means that S(t) > 0 on (t1, t1 + ε1) for arbitrary small positive constant ε1. This leads

to a contradiction. As a result, S(t) ≥ 0 for all t ≥ 0. Consequently, dV (t)
dt

∣∣∣
t=t2

= νS(t2) > 0.

Similarly, V (t) ≥ 0 on (t2, t2 + ε2) for arbitrary small positive constant ε2. This leads to a

contradiction. As a result, V (t)≥ 0 for all t ≥ 0.

If t1 > t2, then S(t2)> 0. We have

dV (t)
dt

∣∣∣
t=t2

= νS(t2).

This means that V (t) > 0 on (t2, t2 + ε2) for arbitrary small positive constant ε2. This leads to

a contradiction. As a result, V (t) ≥ 0 for all t ≥ 0. Consequently, dS(t)
dt

∣∣∣
t=t1

= Π+ τV (t1) > 0.

Similarly, S(t) > 0 on (t1, t1 + ε1) for arbitrary small positive constant ε1. This leads to a

contradiction. As a result, S(t)≥ 0 for all t ≥ 0.

The non-negativity of E(t), I(t), IC(t),P(t) can also been shown in similar way. Therefore,

all solutions of Model (2) are non-negative. �

Proof. We next let N = S+V +E + I + IC. Based on Model (2), we have

dN
dt

= Π−µS−µV − (µ +ϕ + c)I−µE− (µ + c)IC ≤Π−µN,

dP
dt

= ηI +ηρ1IC−ψP≤ (η +ρ1η)
Π

µ
−ψP.

It is easy to show that N and P satisfy

N ≤ Π

µ
+
(

N(0)− Π

µ

)
exp(−µt),and thus lim

t→+∞
N ≤ Π

µ

and

P≤ η +ρ1η

ψ

Π

µ
+
(

P(0)− η +ρ1η

ψ

Π

µ

)
exp(−ψt),and thus lim

t→+∞
P≤ η +ρ1η

ψ

Π

µ
.

Hence, the feasible region of Model (2) is

Ω =
{
(S,V,E, I, IC,P) ∈ R6

+∪{0}
∣∣∣N ≤ Π

µ
,P≤ η +ρ1η

ψ

Π

µ

}
.

Therefore, all solutions of Model (2) are bounded. �
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4. EQUILIBRIUM POINT AND BASIC REPRODUCTION NUMBER

We first, let X1 = β1

(
αγ

ξ4
+ ((1−α)ξ4+σα)γ

ξ4ξ5

)
+β2(1−κ)

(
(ηαγξ5+((1−α)ξ4+σα)ηρ1γ

ξ4ξ5ξ6

)
, and~x =

(S,V,E, I, IC,P). By setting the right-hand side of equation Model (2) to be zero, we get the

solutions as equilibrium points. We see the third equation of Model (2):

(X1S−ξ3)E = 0.

It is clear that either E = 0 or X1S = ξ3, from which we obtain two equilibrium points of

Model (2), that is, disease-free equilibrium point x0 and endemic equilibrium point x∗. The

disease-free equilibrium point is x0 =
(

ξ2Π

ξ1ξ2−ντ
, νΠ

ξ1ξ2−ντ
,0,0,0,0

)
which is always exists.

We next determine the basic reproduction number (R0) of Model (2). First, we define~z =

(E, I, IC,P), which is vector of infected compartment. The expression

F (~z) =


(β1(I + IC)+β2(1−κ)P)S

0

0

0

and V (~z) =


ξ3E

−αγE +ξ4I

−(1−α)γE−σ I +ξ5IC

−ηI−ηρ1IC +ξ6P


The Jacobian matrices of F and V at x0 are respectively

F =


0 β1S0 β1S0 β2(1−κ)S0

0 0 0 0

0 0 0 0

0 0 0 0

and V =


ξ3 0 0 0

−αγ ξ4 0 0

−(1−α)γ −σ ξ5 0

0 −η −ηρ1 ξ6


The next generation matrix is

FV−1 =


R01 +R02 b1 c1 d1

0 0 0 0

0 0 0 0

0 0 0 0


where R01 = β1S0

(
αγ

ξ3ξ4
+ ((1−α)ξ4+σα)γ

ξ3ξ4ξ5

)
and R02 = β2(1−κ)S0(ηαγξ5+((1−α)ξ4+σα)ηρ1γ

ξ3ξ4ξ5ξ6
).

The basic reproduction number is the radius spectral ρ of the next generation matrix, which in
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our case is given by

R0 = ρ(FV−1) = R01 +R02 =
X1

ξ3

(
ξ2Π

ξ1ξ2−ντ

)
.

We notice that the basic reproduction number has two terms which are from direct transmission

and indirect transmission, respectively [10].

The second equilibrium point is endemic equilibrium point x∗ = (S∗,V ∗,E∗, I∗, I∗C,P
∗) with

S∗ =
1

R0

(
ξ2Π

ξ1ξ2−ντ

)
,V ∗ =

1
R0

(
ξ2Π

ξ1ξ2−ντ

)
ν

ξ2
,E∗ =

Π

ξ3

(
1− 1

R0

)
, I∗ =

αγ

ξ4

Π

ξ3

(
1− 1

R0

)
,

I∗C =
(((1−α)ξ4 +σα)γ

ξ4ξ5

)
Π

ξ3

(
1− 1

R0

)
,P∗=

(
ηαγξ5 +((1−α)ξ4 +σα)ηρ1γ

ξ4ξ5ξ6

)
Π

ξ3

(
1− 1

R0

)
.

The endemic equilibrium point x∗ exists if R0 > 1.

5. LOCAL STABILITY

In this section, we investigate the local stability of equilibrium points of non-linear Model

(2) with linearization around equilibrium point. In this linierization, the Jacobian matrix at

equilibrium point xk is given by

J(~xk) =



−(β1(Ik + Ik
C)+β2(1−κ)Pk)−ξ1 τ 0 −β1Sk −β1Sk −β2(1−κ)Sk

ν −ξ2 0 0 0 0

β1(Ik + Ik
C)+β2(1−κ)Pk 0 −ξ3 β1Sk β1Sk β2(1−κ)Sk

0 0 αγ −ξ4 0 0

0 0 (1−α)γ σ −ξ5 0

0 0 0 η ηρ1 −ξ6


By evaluating the real part of all eigenvalues of the Jacobian matrix, we get the following

stability conditions for the disease-free equilibrium point and the endemic equilibrium point.

Theorem 2. The disease-free equilibrium point x0 of Model (2) is locally asymptomatically

stable if R0 < 1, a1a2−a3 > 0, and a3(a1a2−a3)−a2
1a4 > 0.

Proof. Assume that R0 < 1. By evaluating det(λ Iid − J(x0)) = 0, we have the characteristic

equation of Jacobian matrix J at x0 as follow.

(4) ((λ +ξ1)(λ +ξ2)−ντ)(λ 4 +a1λ
3 +a2λ

2 +a3λ +a4) = 0,
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where

a1 = ξ3 +ξ4 +ξ5 +ξ6,

a2 = ξ3ξ4 +ξ3ξ5 +ξ3ξ6 +ξ4ξ5 +ξ4ξ6 +ξ5ξ6− γβ1S0,

a3 = ξ3ξ5ξ6 +ξ4ξ5ξ6 +ξ3ξ4ξ5 +ξ3ξ4ξ6−β1S0(αγ(ξ5 +ξ6 +σ)+(1−α)γ(ξ4 +ξ6))

−β2(1−κ)S0(αγη +(1−α)γηρ1),

a4 = ξ3ξ4ξ5ξ6(1−R0).

It is clear that the first two eigenvalues are determined by ((λ + ξ1)(λ + ξ2)− ντ) = 0 or

equivalently by λ 2 + (ξ1 + ξ2)λ + (ξ1ξ2 − ντ) = 0. Since (ξ1 + ξ2) > 0 and ξ1ξ2 − ντ =

µ2 +(ν + τ)µ > 0, the real parts of eigenvalues λ1 and λ2 are negative. Based on the well-

known Routh-Hurwitz criterion, the solutions of

λ
4 +a1λ

3 +a2λ
2 +a3λ +a4 = 0

have negative real parts if and only if a1 > 0, a4 > 0, a1a2−a3 > 0, and a3(a1a2−a3)−a2
1a4 >

0. We see that a1 is always positive, a4 = ξ3ξ4ξ5ξ6(1−R0)> 0 if R0 < 1 and other conditions

will be proven by numerical simulations. Therefore all solutions of the characteristic Equations

(4) have negative real parts if R0 < 1, a1a2− a3 > 0, and a3(a1a2− a3)− a2
1a4 > 0. In other

word, the disease-free equilibrium point is locally asymptotically stable. �

Theorem 3. Let the endemic equilibrium point x∗ of Model (2) exists. The point x∗ is locally

asymptotically stable if w1 > 0, w3 > 0, w5 > 0, w6 > 0, ∆∗3 > 0 and ∆∗5 > 0,.

Proof. By evaluating det(λ Iid− J(x∗)) = 0, the characteristic equation of Jacobian matrix J at

x∗ can be written as

(5) λ
6 +w1λ

5 +w2λ
4 +w3λ

3 +w4λ
2 +w5λ +w6 = 0,

where

w1 = ξ1 +ξ2 +ξ3 +ξ4 +ξ5 +ξ6 +β1(I∗+ I∗C)+β2(1−κ)P∗,

w2 = ξ6(ξ1 +ξ2 +ξ3 +ξ4 +ξ5)+ξ1(ξ2 +ξ3 +ξ4 +ξ5)+ξ2(ξ3 +ξ4 +ξ5)+ξ3(ξ4 +ξ5)+ξ4ξ5

+(β1(I∗+ I∗C)+β2(1−κ)P∗)(ξ2 +ξ3 +ξ4 +ξ5 +ξ6)− γβ1S∗−ντ,



DYNAMICS OF FOOT-AND-MOUTH DISEASE MODEL 11

w3 = ξ1ξ2(ξ3 +ξ4 +ξ5)+ξ1ξ3(ξ4 +ξ5)+ξ4ξ5(ξ1 +ξ3)+ξ2(ξ3ξ4 +ξ3ξ5 +ξ4ξ5)+ξ1ξ6(ξ2

+ξ3 +ξ4 +ξ5)+ξ2ξ6(ξ3 +ξ4 +ξ5)+ξ3ξ6(ξ4 +ξ5)+ξ4ξ5ξ6 +(β1(I∗+ I∗C)+β2(1−κ)P∗)

(ξ2ξ3 +ξ2ξ4 +ξ2ξ5 +ξ2ξ6 +ξ3ξ4 +ξ3ξ5 +ξ3ξ6 +ξ4ξ5 +ξ4ξ6 +ξ5ξ6)−β1S∗γ(ξ1 +ξ2

+(1−α)ξ4 +α(ξ5 +σ)+ξ6)−β2S∗γ((1−α)(1−κ)ηρ1 +α(1−κ)η)

−ντ(ξ3 +ξ4 +ξ5 +ξ6),

w4 = ξ1ξ2ξ6(ξ3 +ξ4)+ξ1ξ5ξ6(ξ2 +ξ4)+ξ1ξ3ξ6(ξ4 +ξ5)+ξ2ξ5ξ6(ξ3 +ξ4)+ξ1ξ2ξ3(ξ4 +ξ5)

+ξ1ξ4ξ5(ξ2 +ξ3)+ξ3ξ4(ξ5ξ6 +ξ2ξ6 +ξ2ξ5)+(β1(I∗+ I∗C)+β2(1−κ)P∗)(ξ2ξ3ξ4

+ξ2ξ3ξ5 +ξ2ξ3ξ6 +ξ2ξ4ξ5 +ξ2ξ4ξ6 +ξ2ξ5ξ6 +ξ3ξ4ξ5 +ξ3ξ4ξ6 +ξ3ξ5ξ6 +ξ4ξ5ξ6)

−β1S∗γ((1−α)ξ4ξ6 +(1−α)ξ2ξ4 +ξ1(ξ2 +ξ6)+(1−α)ξ1ξ4 +ασ(ξ1 +ξ2 +ξ6)

+α(ξ1ξ5 +ξ2ξ5 +ξ5ξ6)+ξ2ξ6−ντ)−β2S∗γ((1−κ)(1−α)ηρ1ξ4 +(1−κ)(ασηρ1

+αηξ5)+(1−κ)(ξ1 +ξ2)(αη +(1−α)ηρ1))−ντ(ξ3ξ4 +ξ3ξ5 +ξ3ξ6 +ξ4ξ5 +ξ4ξ6 +ξ5ξ6);

w5 = (ξ1ξ2ξ3ξ4ξ5)+(ξ1ξ3ξ4ξ5ξ6)+(ξ2ξ3ξ4ξ5ξ6)+(ξ1ξ2ξ3ξ4ξ6)+(ξ1ξ2ξ3ξ5ξ6)+(ξ1ξ2ξ4ξ5ξ6)

+(β1(I∗+ I∗C)+β2(1−κ)P∗)(ξ2ξ3ξ4ξ6 +ξ2ξ3ξ5ξ6 +ξ2ξ4ξ5ξ6 +ξ3ξ4ξ5ξ6 +ξ2ξ3ξ4ξ5)

−ντ(ξ3ξ4ξ5 +ξ3ξ4ξ6 +ξ3ξ5ξ6 +ξ4ξ5ξ6)+β1S∗(αγ(ξ1ξ2ξ4 +ντξ5 +ντσ)+ γ(ντξ6

+ντξ4))+β2S∗((1−κ)ντγηρ1 +(1−κ)νταγη)−β1S∗(αγ(ξ1ξ5ξ6 +ξ2ξ5ξ6−ξ1ξ4ξ6

−ξ2ξ4ξ6 +ξ1ξ2ξ5 +σξ1ξ6 +σξ2ξ6 +σξ1ξ2 +ντξ4)+ γ(ξ1ξ2ξ4 +ξ1ξ2ξ6 +ξ1ξ4ξ6

+ξ2ξ4ξ6))−β2S∗((1−κ)(1−α)γηρ1(ξ1ξ2 +ξ1ξ4 +ξ2ξ4)+(1−κ)αγηξ1ξ2

+(1−κ)νταγηρ1 +(1−κ)αγη(ξ1ξ5 +ξ2ξ5)+(1−κ)σαγηρ1(ξ1 +ξ2));

w6 = ξ1ξ2ξ3ξ4ξ5ξ6 +(β1(I∗+ I∗C)+β2(1−κ)P∗)ξ2ξ3ξ4ξ5ξ6 +β1S∗γ(νταξ5ξ6 +ντασξ6

+ασξ1ξ2ξ6 +αξ1ξ2ξ4ξ6 +ντξ4ξ6)+β2S∗(αγηρ1κσξ1ξ2 +νταγηρ1κξ4

+αγηκξ1ξ2ξ5 +αγηρ1ξ1ξ2ξ4 + γηρ1κξ1ξ2ξ4 +νταγηξ5 +ντγηρ1ξ4)

−β1S∗γ(νταξ4ξ6 +ασξ1ξ2ξ6 +ξ1ξ2ξ4ξ6 +αξ1ξ2ξ5ξ6)−β2S∗γ(αηρ1κξ1ξ2ξ4

+ηρ1ξ1ξ2ξ4 +νταηρ1κσ +αηρ1σξ1ξ2 +νταηκξ5 +νταηρ1ξ4 +ντηρ1κξ4

+αηξ1ξ2ξ5)−ντξ3ξ4ξ5ξ6;
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The endemic equilibrium point x∗ is locally asymptotically stable if all characteristic roots of

(5) have negative real parts. Based on Lienard-Chipart Criterion [7], this condition is achieved

when w1 > 0, w3 > 0, w5 > 0, w6 > 0, ∆∗3 > 0 and ∆∗5 > 0, where

∆
∗
3 = w3(w1w2−w3)−w1(w1w4−w5),

and

∆
∗
5 =w5[w4∆

∗
3−w2(w1(w2w5−w1w6)−w3w5)+w1(w4w5−w3w6)−w2

5]

−w6[w3∆
∗
3−w1(w1(w2w5−w1w6)w3w5)].

Since the forms of wi, i = 1, ...,6 are too complicated, the Lienard-Chipart Criterion will be

evaluated numerically. �

6. GLOBAL STABILITY

In this section, we investigate the global stability of equilibrium points by introducing suitable

Lyapunov functions. The conditions for global stability of the equilibrium point of Model (2)

are given by the following theorems.

Theorem 4. The disease-free equilibrium point x0(S0,V 0,0,0,0,0) of Model (2) is globally

asymptotically stable if R0 < 1.

Proof. We assume that R0 < 1 and define a Lyapunov function

L1(~x) = g1

(
S−S0−S0ln

( S
S0

))
+g2

(
V −V 0−V 0ln

( V
V 0

))
+g3E +g4I +g5IC +g6P,

where~x = (S,V,E, I, IC,P),g1 =
X1
ξ3
, g2 =

τX1
ξ2ξ3

, g3 =
X1
ξ3
, g4 =

β1
ξ4
, g5 =

β1
ξ5
, g6 =

β2(1−κ)
ξ6

.

Since the geometric mean is less than or equal to the arithmetic mean [14], we get

dL1(~x)
dt = X1

ξ3

(
1− S0

S

)
dS
dt +

τX1
ξ2ξ3

(
1− V 0

V

)
dV
dt +

X1
ξ3

dE
dt +

β1
ξ4

dI
dt +

β1
ξ5

dIC
dt + β2(1−κ)

ξ6

dP
dt

= X1
ξ3

(
1− S0

S

)
(Π+ τV − (β1(I + IC)+β2(1−κ)P)S−ξ1S)

+ τX1
ξ2ξ3

(
1− V 0

V

)
(νS−ξ2V )+ X1

ξ3
((β1(I + IC)+β2(1−κ)P)S−ξ3E)

+β1
ξ4
(αγE−ξ4I)+ β1

ξ5
((1−α)γE +σ I−ξ5IC)+

β2(1−κ)
ξ6

(ηI +ηρ1IC−ξ6P)
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= X1
ξ3

(
Π

(
2− S

S0 − S0

S

)
+ τV 0

(
2− S0V

SV 0 − V 0S
V S0

))
+(R0−1)(β1(I + IC)+β2(1−κ)P).

Therefore, dL1(~x)
dt ≤ 0 if R0 ≤ 1. Moreover, dL1(~x)

dt = 0 is achieved if and only if ~x = x0. The

LaSalle’s Invariance Principle [14] guarantees that the disease-free equilibrium point is globally

asymptotically stable. �

Theorem 5. Let the endemic point x∗ of Model (2) exists. The point x∗ is globally asymptotically

stable if R0 > 1 and one of the following conditions holds

(i). If c = 0 and ϕ = 0,

(ii). If N ≤ Π

µ
.

Proof. First we assume that R0 > 1 such that the endemic point x∗ exists. Then we consider a

Lyapunov function

L2(~x) =
1
2

(
(S−S∗)+(V −V ∗)+(E−E∗)+(I− I∗)+(IC− I∗C)

)2
+

1
2
(P−P∗)2,

where~x = (S,V,E, I, IC,P). It is easy to show that

dL2(~x)
dt = ∂L2

∂S
dS
dt +

∂L2
∂V

dV
dt +

∂L2
∂E

dE
dt +

∂L2
∂ I

dI
dt +

∂L2
∂ IC

dIC
dt + ∂L2

∂P
dP
dt

=
[
(S−S∗)+(V −V ∗)+(E−E∗)+(I− I∗)+(IC− I∗C)

]
d
dt (S+V +E + I + IC)

+(P−P∗)dP
dt

= (N−N∗)dN
dt +(P−P∗)dP

dt

≤
(

N−
(

Π

µ
− (ϕ+c)

µ
I∗− c

µ
I∗C
))

(Π−µN− (ϕ + c)I− cIC)

+(P−P∗)((η +ρ1η)Π

µ
−ψP)

≤ µ

(
(ϕ+c)

µ
I∗+ c

µ
I∗C
)(

Π

µ
−N

)
+
(
(ϕ+c)

µ
I + c

µ
IC
)(

Π

µ
−N

)
−
(
(ϕ+c)

µ
I + c

µ
IC
)

(
(ϕ+c)

µ
I∗+ c

µ
I∗C
)
+µ

(
Π

µ
−N

)(
N− Π

µ

)
−ψ(P−P∗)2.

Therefore,

(i). If c = 0 and ϕ = 0 then dL2(~x)
dt ≤ 0,

(ii). If N ≤ Π

µ
then dL2(~x)

dt ≤ 0.
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Furthermore, dL2(~x)
dt = 0 is satisfied if only if ~x = x∗. By applying the LaSalle’s Invariance

Principle [14], the endemic equilibrium x∗ is globally asymptotically stable. �

7. NUMERICAL SIMULATIONS

In this section, we present results of numerical simulations to illustrate the dynamics of

FMD. We solve the Model (2) with parameters values shown in Table 1 numerically using the

fourth-order Runge-Kutta scheme with the step size h = 0.01. Here, the initial values are set to

be N1(0) = (750,1000,400,200,15000,20000), N2(0) = (500,10000,150,150,20000,15000),

and N3(0) = (100,3000,100,400,10000,10000). Here, we obtain two equilibrium points,

namely the disease-free equilibriun point x0(2472,47529,0,0,0,0) and the endemic equilibrium

point x∗(386,7434,334,293,26852,2685687068). Moreover, the basic reproduction number is

R0 = 0.1661 < 1. In addition, we also get Routh-Hurwitz Criteria, a1a2−a3 = 0.1309 > 0 and

a3(a1a2−a3)−a2
1a4 = 0.0021 > 0. This means that the disease-free equilibrium point x0 is lo-

cally and globally asymptotically stable. The visualization for this stability is shown in Figure

2.
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FIGURE 2. The disease-free equilibrium point x0 is asymptotically stable
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Based on the given initial values, where R0 < 1, the solution curve appears to flatten towards

the disease-free equilibrium point x0 as t approaches infinity. It can be observed that from

the different given initial values, the solution orbits in the S,V,E space, the S,V, I space, the

S,V, IC space and the S,V,P space converge towards the disease-free equilibrium point x0. The

simulation results support the previous analysis. Therefore, it can also be concluded that if

R0 < 1, the disease-free equilibrium point x0 is locally and globally asymptotically stable.

Furthermore, when no culling cattle rate (c = 0), the basic reproduction number is R0 =

6.3927 > 1. The endemic equilibrium point is exist when R0 > 1 which means that the av-

erage number of new exposed individual by one infected individual in susceptible subpopu-

lation is 6.3927. This indicates that the infection of FMDV will continue to exist. The en-

demic equilibrium point is exist when R0 > 1. In addition, we also get Lienard-Chipart Criteria

w3 = 0.05671 > 0, w5 = 0.0000279 > 0, w6 = 2.3913x10−8 > 0, ∆∗3 = 0.0172x10−9 > 0, and

∆∗5 = 1.2156 > 0. This means that the endemic equilibrium point x∗ is locally asymptotically

stable. The simulation results is presented in Figure 3, and it can be observed that from the

different given initial values, the solution orbits in the S,V,E space, the S,V, I space, the S,V, IC

space and the S,V,P space converge towards the endemic equilibrium point x∗. This support the

previous analysis that when R0 > 1 and one of the following conditions (i) If c = 0 and ϕ = 0,

or (ii) If N ≤ Π

µ
, is satisfied, the endemic equilibrium point exists and globally asymptotically

stable.
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8. CONCLUSIONS

In this article, FMD model by considering direct infections from infected and carrier popu-

lation, indirect infections from patogen population in environment, and the intervention such as

vaccination, culling, and enviromental sanitation is constructed. The non-negativity and bound-

edness of solutions of the proposed model have been proven. The model (2) has two equilibrium

points, that are, the disease-free equilibrium point (x0) and the endemic equilibrium point (x∗).

The disease-free equilibrium point always exists and is asymptotically stable, both locally and

globally, if R0 < 1. The endemic equilibrium exists if R0 > 1. If the endemic equilibrium exists,

then it is global asymptotically stable if one of the following conditions applies: (i) c = 0 and

ϕ = 0, or (ii) N ≤ Π

µ
. Such properties have been confirmed by our numerical simulations.
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