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Abstract. In this study, we propose an advanced stochastic mathematical model that delves into the intricate dy-

namics of multi-strain COVID-19 transmission. By accounting for environmental fluctuations, we introduce white

noise into each compartment of the multi-strain system, enriching our understanding of its behavior. Rigorous

proofs establish the system’s existence and uniqueness, providing a robust foundation for further exploration. We

investigate key control measures within the model, specifically focusing on vaccination and targeted treatment for

each strain’s compartment, as potent strategies to curtail the spread of multi-strain COVID-19. Moreover, our

analysis extends to the realm of stochastic optimal control, where we examine the associated optimality conditions

of the stochastic maximum Pontryagin. The ultimate goal is to reduce infections through precise control measures,

paving the way for evidence-based policies that can effectively manage the pandemic’s impact. By offering deep

insights into multi-strain COVID-19 propagation, our innovative model contributes significantly to the fight against

the virus, guiding the development of proactive strategies and public health interventions.
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1. INTRODUCTION

Coronaviruses encompass a family of viruses capable of inducing respiratory illnesses in hu-

mans. The name "coronavirus" originates from the distinctive crown-like spikes that adorn the

surface of the virus. Among these viruses, a specific strain named SARS-CoV-2 is accountable

for the development of the disease known as COVID-19. The emergence of this novel strain

was initially documented in December 2019 in Wuhan, China, and swiftly disseminated across

the globe. COVID-19 can manifest a spectrum of respiratory symptoms, ranging from mild

to severe, with potentially fatal outcomes in certain cases. The primary mode of viral entry

into the body is through direct contact with infected individuals, including activities such as

sneezing, talking, singing, breathing, or through physical interactions like handshakes. Addi-

tionally, the virus can spread indirectly via contact with contaminated surfaces or objects that

have been in contact with an infected person. Viral evolution is an inherent phenomenon that

occurs as viruses disseminate within populations. As the virus undergoes alterations that de-

viate significantly from the original strain, these modifications are labeled as "variants". To

detect and analyze these variants, scientists utilize genetic sequencing methods to scrutinize the

viral genetic material. Through comparative analysis of the genetic sequences, researchers can

discern noteworthy changes that have transpired in the virus’s genetic composition. [Centers

for Disease Control and Prevention. (2021). COVID-19: How it spreads. Retrieved from [16]

Since the global spread of the SARS-CoV-2 virus, the causative agent of COVID-19, numerous

variants have emerged and been identified in multiple countries worldwide [18]. One prominent

example is the Omicron variant, scientifically known as variant B.1.1.529. The World Health

Organization (WHO) was first notified of the Omicron variant on November 24, 2021, and sub-

sequently classified it as a variant of concern on November 26, 2021, following guidance from

the Technical Advisory Group on Virus Evolution [18]. This classification was primarily based

on information originating from South Africa, which indicated that the Omicron variant car-

ries a substantial number of mutations and has been associated with detrimental changes in the

epidemiology of COVID-19 [1].

The Delta variant, designated as a variant of concern by the World Health Organization

(WHO) on May 11, 2021, has become the prevailing strain circulating worldwide. It exhibits
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heightened transmissibility compared to earlier virus strains and has contributed to a significant

increase in the number of COVID-19 cases and fatalities on a global scale [1].

RELATED WORK

In recent years, there has been a notable upswing in research dedicated to the modeling of

infectious diseases [2, 3, 4]. At the forefront of this field is the SIR model, a fundamental frame-

work that sheds light on the intricate dynamics among three pivotal populations: the susceptible

(S), the infected (I), and the recovered (R). First proposed by Kermack and Mc Kendricks in

1927 [5], the SIR model has garnered substantial recognition due to its aptitude in capturing the

nuanced behavior of infectious diseases. In their research, Jaouad Danane et al. [6] delves into

the intricate dynamics of a stochastic model that aims to understand the behavior of COVID-

19 when an isolation strategy is implemented. Their study sheds light on the effectiveness of

such a strategy in mitigating the spread of the disease. On a related note, R. Aboulaich et

al. [7] conduct an in-depth investigation to identify optimal treatment regimens that minimize

the overall tumor burden. Their research focuses on a diffusion process and proposes a novel

stochastic optimal control model. The study specifically explores the potential of the Bacillus

Calmette-Guerin (BCG) bacterium as an immunotherapeutic agent for combating superficial

bladder cancer. The findings contribute to advancing our understanding of treatment strate-

gies for this particular form of cancer. In a pioneering investigation by Hassan Laarabi et al.

[8], an exceptional exploration was conducted on a mathematical model for a SIR epidemic,

encompassing a saturated incidence rate. Their study operates within the realm of nonlinear

optimal control, opening up new avenues for innovative approaches. Notably, they employ op-

timal vaccination strategies to minimize the count of susceptible and infected individuals, while

simultaneously maximizing the population of recovered individuals. This comprehensive anal-

ysis provides invaluable insights into effective control measures and contributes significantly

to the ongoing endeavors in combating epidemics. Abdelfatah Kouidere et al. [9] present an

advanced continuous mathematical model that effectively captures the transmission dynamics

of COVID-19 virus within the human population. The model comprehensively incorporates

various stages, including susceptible, exposed, infected, quarantined, hospitalized, and recov-

ered individuals, providing a holistic representation of the disease’s spread. Kassahun Getnet
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Mekonen et al. [10] have made a significant contribution by extending the deterministic mathe-

matical model to shed light on the coinfection of COVID-19 and Tuberculosis (TB) through an

optimal control framework. They enhance the deterministic model by incorporating four essen-

tial control measures: preventive efforts against TB, preventive techniques against COVID-19,

infection treatments, and medical care for COVID-19. By integrating these measures, the study

offers valuable insights and optimal strategies for effectively managing both diseases. In their

discrete mathematical model, Amine El Bhih et al. [11] examined optimal control strategies

for combating the spread of Covid-19. Their study focused on six population compartments

(SEICWCR) representing susceptible, exposed, infected, infected with complications, infected

multimorbidity with complications, and recovered individuals. They proposed an effective ap-

proach utilizing four controls: media and education for sensitizing and preventing the disease

among susceptible individuals, home quarantine for infected individuals, hospital quarantine

for infected individuals with complications, and hospital quarantine with necessary breathing

assistance for infected individuals with multimorbidity and complications. In the realm of infec-

tious disease modeling, Masaaki Ishikawa [12] conducted a notable study on stochastic models.

His research delved into a population comprising four compartments: susceptible, infected,

recovered, and vaccinated individuals. Ishikawa specifically explored the optimal vaccination

strategy within the context of stochastic optimal control problems. By addressing the uncertain-

ties inherent in disease dynamics, his work provides valuable insights into effective vaccination

planning and management. Further models of problems of optimal control and population dy-

namics can be seen in [19, 20, 21, 22, 23].

PROBLEM STATEMENT

The new Corona virus appeared at the end of 2019 in China, and then spread throughout the

world, and it was not long before several mutated strains appeared for this virus, for example, the

mutated strain Delta and the mutated strain Omicron, etc. With the emergence of these mutated

strains, the thing that made us predict the emergence of strains new mutant in the future. We

assume in this paper that n mutated strains will appear denote by I1, I2, I3, ..., In. and each strain

Ii spreads with infection rate βi. The propagation of these mutated strains is subject to several

environmental fluctuations, so an infection rate βi will be become βi +W (t) where w(t) wiener
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process which describe environment fluctuation, the aim of this paper is controlling the spread

of these mutant strains that reduce the number of people infected with each mutated strain and

increasing the number of the recovered.

2. DETERMINISTIC MODEL

2.1. The deterministic model without controls. The following proportions P(t),s(t), i j(t),

and r(t) represent respectively the number of the entire population, the number of susceptible

to infection, the number of infectious of mutant strain I j, and the number of recovered at time t.

we assume that the population size is constant which denote by N(t) = S(t)+∑
n
i=1 Ii(t)+

R(t) = 1, where S(t) = s(t)
P(t) represent percentage of susceptible to infection at time t,

I j(t) =
i j(t)
P(t) , j = 1, ....,n represent the percentage of infectious of mutant strain I j and

R(t) = r(t)
P(t) represent the percentage of recovered people.

The following model is the deterministic model witch describe interactions between the var-

ious compartments of this population.

(1)


dS(t)

dt = Λ−Σn
i=1βiIi(t)S(t)−µS(t).

dIi(t)
dt = βiIi(t)S(t)− (γi +ωi +µ)Ii i = 1,2...,n.

dR(t)
dt = Σn

i=1γiIi(t)−µR(t).

where βi transmission rate the Ii mutant strain , µ death rate (we assume that natural death rate

is equal to the birth rate), γi recovery rate from Ii mutant strain and ωi presents the death rate

due to Ii mutant strain.

3. A STOCHASTIC MODEL

3.1. The Stochastic model without controls. Because actual infectious diseases include ran-

dom fluctuations induced by changes in the environment and weather, we evaluate the transmis-

sion rate with a random fluctuation. by substituting the transmission rate of each mutant strain

with:

βi→ βi +ξidWi(t)
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where Wi(t) denote the wiener process, we propose the following stochastic model that describe

the interactions between the different compartments of population.

(2)


dS(t) =

{
Λ−Σn

i=1βiIi(t)S(t)−µS(t)
}

dt−Σn
i=1ξiIi(t)S(t)dWi(t).

dIi(t) = {βiIi(t)S(t)− (γi +ωi +µ)Ii}dt +ξiIi(t)S(t)dWi(t) i = 1,2...,n.

dR(t) =
{

Σn
i=1γiIi(t)−µR(t)

}
dt.

The quantities S(0) = S0, Ii(0) = I0
i ,R(0) = R0,(i = 1,2....n) are the initial conditions, where

ξi (i = 1,2, .....n) are constants that indicate the intensities of fluctuations caused by in the

environment and weather, (Wi(t))t∈[1,T ] is an independent Brownian motion.

3.2. Existence and Uniqueness of Solutions and Sufficient Conditions. The state system

(2) can be rewritten as follows

(3)

 dX(t) = f (t,X(t))dt +σ(t.Xt)dW (t)

X(0) = X0 gevin.

where

f (t,Xt) =



Λ−Σn
i=1βiIi(t)S(t)−µS(t)

β1I1(t)S(t)− (γ1 +ω1 +µ)I1

β2I2(t)S(t)− (γ2 +ω2 +µ)I2
...

βnIn(t)S(t)− (γn +ωn +µ)In

Σn
i=1γiIi(t)−µR(t)


Xt =



S(t)

I1(t)

I2(t)
...

In(t)

R(t)


and

σ(t.Xt) =



0 −ξ1I1S −ξ2I2S . . . −ξnInS 0

0 ξ1I1S 0 . . . 0 0

0 0 ξ2I2S 0 . . . 0
...

... . . . . . . . . . ...

0 0 . . . 0 ξnInS 0

0 0 . . . 0 0 0


In this section, we prove the existence and uniqueness the solution of the stochastic differen-

tial equation (3).
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Theorem 3.1. For any initial condition X(0)=X0 ∈ [0,1]n+2 the stochastic differential equation

(3) has a unique solution.

Proof. We will make sure that the conditions of theorem [13, 17] are verified:

The function F(., .) is composed of measurable functions, therefore it is measurable. Simi-

larly, for σ(., .).

1) let Xt = (S(t), I1(t), I2(t), ...In(t),R(t)) ∈ [0,1]n+2, we have

|σ(t.Xt)|+‖ f (t,Xt)‖=

√
2

n

∑
i=1

ξ 2
i I2

i (t)S2(t) +

√√√√((Λ− n

∑
i=1

βiIi(t)S(t)−µS(t)

)2

+
n

∑
i=1

[βiIi(t)S(t)− (γi +ωi +µ)Ii]2 +

(
n

∑
i=1

γiIi(t)−µR(t)

)2

Let’s find a majoration for each of the terms under the radicals.

The first term:

2∑
n
i=1 ξ 2

i I2
i (t)S

2(t) ≤ 2∑
n
i=1 ξ 2

i because Ii,S ∈ [0,1]

The second term:

[(Λ−∑
n
i=1 βiIi(t)S(t)−µS(t)]2 ≤ Λ2 +[∑n

i=1 βiIi(t)S(t)+µS(t)]2

≤ Λ2 +[∑n
i=1 βiIi(t)+µ]2S(t)2

≤ Λ2 +(n+1)[∑n
i=1 β 2

i I2
i (t)+µ2]S(t)2

≤ Λ2 +(n+1)[∑n
i=1 β 2

i +µ2]S(t)2 because Ii ∈ [0,1]

The third term: let i ∈ {,2, .....,n}

[βiIi(t)S(t)− (γi +ωi +µ)Ii]
2 ≤ β 2

i I2
i (t)S

2(t)+(γi +ωi +µ)2I2
i

≤ [β 2
i S2(t)+(γi +ωi +µ)2]I2

i

≤ [β 2
i +(γi +ωi +µ)2]I2

i where Si ∈ [0,1]

The fourth term:
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[∑n
i=1 γiIi(t)−µR(t)]2 ≤ [∑n

i=1 γiIi(t)]2 +µ2R(t)2

≤ n∑
n
i=1 γ2

i Ii(t)2 +µ2R(t)2

≤ n∑
n
i=1 γ2

i +µ2R(t)2 where Ii ∈ [0,1]

So we have

|σ(t.Xt)|+‖ f (t,Xt)‖ ≤

√
2

n

∑
i=1

ξ 2
i +√

Λ2 +(n+1)[
n

∑
i=1

β 2
i +µ2]S(t)2 +

n

∑
i=1

[β 2
i +(γi +ωi +µ)2]I2

i +n
n

∑
i=1

γ2
i +µ2R(t)2

We set

C = max

(n+1)[
n

∑
i=1

β
2
i +µ

2] , [β 2
i +(γi +ωi +µ)2] , µ

2 ,

(
Λ

2 +n
n

∑
i=1

γ
2
i

) 1
2

+2
n

∑
i=1

ξ
2
i . | i = 1, ...,n


Then

|σ(t.Xt)|+‖ f (t,Xt)‖ ≤C(1+‖Xt‖).

We will investigate in following the other condition of theorems [13, 17]:

Let

X(t) = (S(t), I1(t), I2(t), ..., In(t),R(t)), and Y (t) = (S
′
(t), I

′
1(t), I

′
2(t), ..., I

′
n(t),R

′
(t)); t ∈ [0,T ].

We have

‖ f (t,Xt)− f (t,Yt)‖+ |σ(t.Xt)−σ(t.Yt)|=

( n

∑
i=1

βi[I
′
i(t)S

′
(t)− Ii(t)S(t)]+µ[S

′
(t)−S(t)]

)2

+
n

∑
i=1

(
(γi +ωi +µ)[I

′
i(t)− Ii]−βi[I

′
i(t)S

′
(t)− Ii(t)S(t)]

)2
+

(
µ[R

′
(t)−R(t)]−

n

∑
i=1

γi[I
′
i(t)− Ii(t)]

)2
 1

2

+

√
2

n

∑
i=1

ξ 2
i [I

′
i(t)S

′
(t)− Ii(t)S(t)]2.

We put the expressions as follows, and getting the majoration of each one of them:

A =
(

∑
n
i=1 βi[I

′
i(t)S

′
(t)− Ii(t)S(t)]+µ[S

′
(t)−S(t)]

)
Bi =

(
(γi +ωi +µ)[I

′
i(t)− Ii]−βi[I

′
i(t)S

′
(t)− Ii(t)S(t)]

)
. i = 1,2, ...,n



A STOCHASTIC OPTIMAL CONTROL STRATEGY FOR MULTI-STRAIN COVID-19 SPREAD 9

C =
(

µ[R
′
(t)−R(t)]−∑

n
i=1 γi[I

′
i(t)− Ii(t)]

)
E = 2∑

n
i=1 ξ 2

i [I
′
i(t)S

′
(t)− Ii(t)S(t)]2.

For expression A:

A = ∑
n
i=1 βi[I

′
i(t)S

′
(t)− Ii(t)S(t)]+µ[S

′
(t)−S(t)]

= ∑
n
i=1 βi[I

′
i(t)S

′
(t)+S

′
(t)Ii(t)−S

′
(t)Ii(t)− Ii(t)S(t)]+µ[S

′
(t)−S(t)]

= ∑
n
i=1 βiS

′
(t)[I

′
i(t)− Ii(t)]+

(
µ +∑

n
i=1 βiI

′
i(t)
)
[S
′
(t)−S(t)]

Then by using the inequality of Cauchy-Schwarz[5] we get:

A2 ≤ 2

( n

∑
i=1

βiS
′
(t)[I

′
i(t)− Ii(t)]

)2

+

((
µ +

n

∑
i=1

βiIi(t)

)
[S
′
(t)−S(t)]

)2


≤ 2

[
n

n

∑
i=1

β
2
i S
′2(t)[I

′
i(t)− Ii(t)]2 +(n+1)

(
µ

2 +
n

∑
i=1

β
2
i I2

i (t)

)
[S
′
(t)−S(t)]2

]

≤ 2

[
n

n

∑
i=1

β
2
i [I

′
i(t)− Ii(t)]2 +(n+1)

(
µ

2 +
n

∑
i=1

β
2
i )

)
[S
′
(t)−S(t)]2

]
,

because S
′
(t), Ii(t) ∈ [0,1].

For expressions

(Bi : i = 1,2, ...n), Bi =
(
(γi +ωi +µ)[I

′
i(t)− Ii(t)]−βi[I

′
i(t)S

′
(t)− Ii(t)S(t)]

)
.

We have

βi[I
′
i(t)S

′
(t)− Ii(t)S(t)] = βiS

′
(t)[I

′
i(t)− Ii(t)]+βiIi(t)[S

′
(t)−S(t)]

Then

Bi = (γi +ωi +µ) [I
′
i(t)− Ii(t)]−βiS

′
(t)[I

′
i(t)− Ii(t)]−βiIi(t)[S

′
(t)−S(t)]

=
(

γi +ωi +µ−βiS
′
(t)
)
[I
′
i(t)− Ii(t)]−βiIi(t)[S

′
(t)−S(t)]
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Then

B2
i ≤

(
γi +ωi +µ−βiS

′
(t)
)2

[I
′
i(t)− Ii(t)]2 +β

2
i I2

i (t)[S
′
(t)−S(t)]2

≤
(
(γi +ωi +µ)2 +β

2
i S
′2(t)

)
[I
′
i(t)− Ii(t)]2 +β

2
i I2

i (t)[S
′
(t)−S(t)]2

≤
(

3(γ2
i +ω

2
i +µ

2)+β
2
i S
′2(t)

)
[I
′
i(t)− Ii(t)]2 +β

2
i I2

i (t)[S
′
(t)−S(t)]2

≤
(
3(γ2

i +ω
2
i +µ

2)+β
2
i
)
[I
′
i(t)−Ii(t)]2+β

2
i [S

′
(t)−S(t)]2, because S

′
(t), Ii(t)∈ [0,1].

For expression C we have:

C2 ≤ µ
2[R

′
(t)−R(t)]2 +

(
n

∑
i=1

γi[I
′
i(t)− Ii(t)]

)2

≤ µ
2[R

′
(t)−R(t)]2 +n

(
n

∑
i=1

γ
2
i [I
′
i(t)− Ii(t)]2

)
For expression E we have

E = 2
n

∑
i=1

ξ
2
i

(
[I
′
i(t)S

′
(t)− Ii(t)S

′
(t)]+ [Ii(t)S

′
(t)− Ii(t)S(t)]

)2

≤ 4
n

∑
i=1

ξ
2
i

(
[I
′
i(t)S

′
(t)− Ii(t)S

′
(t)]2 +[Ii(t)S

′
(t)− Ii(t)S(t)]2

)
≤ 4

n

∑
i=1

ξ
2
i S
′2(t)

(
[I
′
i(t)− Ii(t)]

)2
+4

n

∑
i=1

ξ
2
i I2

i (t)
(
[S
′
(t)−S(t)]

)2

≤ 4
n

∑
i=1

ξ
2
i

(
[I
′
i(t)− Ii(t)]

)2
+4

n

∑
i=1

ξ
2
i

(
[S
′
(t)−S(t)]

)2
, because S

′
(t), Ii(t)∈ [0,1]

Let’s find the majoration of:

A2 +
n

∑
i=1

B2
i +C2 ≤ 2n

n

∑
i=1

β
2
i [I

′
i(t)− Ii(t)]2 +2(n+1)

(
µ

2 +
n

∑
i=1

β
2
i

)
[S
′
(t)−S(t)]2

+
n

∑
i=1

(
3(γ2

i +ω
2
i +µ

2)+β
2
i
)
[I
′
i(t)− Ii(t)]2 +

n

∑
i=1

β
2
i [S

′
(t)−S(t)]2

+n

(
n

∑
i=1

γ
2
i [I
′
i(t)− Ii(t)]2

)
+µ

2[R
′
(t)−R(t)]2

≤

[
2(n+1)

(
µ

2 +
n

∑
i=1

β
2
i

)
+

n

∑
i=1

β
2
i

]
[S
′
(t)−S(t)]2

+
n

∑
i=1

(
2nβ

2
i +3(γ2

i +ω
2
i +µ

2)+β
2
i +nγ

2
i
)
[I
′
i(t)− Ii(t)]2+µ

2[R
′
(t)−R(t)]2
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≤

[
(2n+3)

n

∑
i=1

β
2
i +2(n+1)µ2

]
[S
′
(t)−S(t)]2

+
n

∑
i=1

(
(2n+1)β 2

i +(n+3)γ2
i +3(ω2

i +µ
2)
)
[I
′
i(t)− Ii(t)]2 +µ

2[R
′
(t)−R(t)]2

So we have

‖ f (t,Xt)− f (t,Yt)‖+ |σ(t.Xt)−σ(t.Yt)|=

(
A2 +

n

∑
i=1

B2
i +C2

) 1
2

+
√

E.

We put

D=
[(
(2n+3)∑

n
i=1 β 2

i +2(n+1)µ2)∨((2n+1)β 2
j +(n+3)γ2

j +3(ω2
j +µ2)

)
: j = 1, ...n

] 1
2

∨
(

2
√

∑
n
i=1 ξ 2

i

)
.

Then

‖ f (t,Xt)− f (t,Yt)‖+ |σ(t.Xt)−σ(t.Yt)≤ D‖Xt−Yt‖|.

According to the Existence and Uniqueness Theorem [13, 17], the EDS (3) admits a unique

solution.

�

3.3. The Stochastic model with controls. So the objective of this paper is controlling the

spread of these mutated strains and not letting them get out of control, otherwise there will

be an unprecedented environment. to avoid the latter, we add controls to this model. and the

previous model will become as shown in the following:

(4)


dS(t) =

{
Λ−Σn

i=1βiIi(t)S(t)−u(t)S(t)−µS(t)
}

dt−Σn
i=1ξiIi(t)S(t)dWi(t).

dIi(t) = {βiIi(t)S(t)− (γi +ωi +µ)Ii− vi(t)Ii(t)}dt +ξiIi(t)S(t)dWi(t) i = 1,2...,n.

dR(t) =
{

Σn
i=1γiIi(t)−µR(t)+Σn

i=1vi(t)Ii(t)
}

dt.

where u(t) presents the percentage of vaccinated at time t, and vi(t) represents the treatment

for infected people of mutant strain Ii the role of control u(t) is to protect as many people as

possible from infection, and roles of controls vi, i = 1, ...,n are to provide treatments for the

infected people of each mutant strain Ii.

3.4. A Stochastic Optimal Control Approach.
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3.4.1. The Hamiltonian function and Cost function. we consider the cost function J(u,v) such

that

J(u,v) = E

{∫ t f

0

(
n

∑
i=1

AiIi(t)−BR(t)+
C
2

u2(t)+
1
2

n

∑
i=1

Div2
i (t)

)
dt +

1
2

n

∑
i=1

KiI2
i (t f )

}
where Ai,B,Di,Ki are positive constants. Our objective is to reduce the number of infected

persons while also reducing systemic expenses by striving to maximize the number of people

recovered from each Ii mutant strain. In other words, we are looking for the optimal control

(u∗,v∗) such that:

J(u∗,v∗)≤ J(u,v), ∀u ∈U, ∀v ∈V.

where U and V are admissible controls sets defined as;

U [0, t f ] = {u(t) : u(t) Ft− progressively measurable, u(t) ∈ [0,umax] ∀t ∈ [0, t f ]}

V [0, t f ] = {vi(t) : vi(t)Ft− progressively measurable, vi(t)∈ [0,vmax
i ]∀t ∈ |0, t f ], i= 1,2, .....n}

Then we define the Hamiltonian function H as

H = p0 [Λ−∑
n
i=1 βiIi(t)S(t)−u(t)S(t)−µS(t)]+∑

n
i=1 pi [βiIi(t)S(t)− (γi +ωi +µ)Ii− vi(t)Ii(t)]+

pn+1 [∑
n
i=1 γiIi(t)−µR(t)+∑

n
i=1 vi(t)Ii(t)] + [∑n

i=1 AiIi(t) +BR(t) + C
2 u2(t) + 1

2 ∑
n
i=1 Div2

i (t) +
1
2 ∑

n
i=1 KiI2

i (t f )]−q0 ∑
n
i=1 ξiIi(t)S(t)+∑

n
i=1 qiξiIi(t)S(t)

where (p0, p1, ...., pn+1) and (q0,q1, ....,qn+1) are adjoint vectors

we set as x∗(t) = [S∗(t), I∗1 (t), I
∗
2 (t), ....., I

∗
n (t),R

∗(t)]t and v∗ = [v∗1,v
∗
2, .....,v

∗
n]

t .

The following follows from the stochastic maximum principle:

dx∗(t) =
∂H(x∗,u∗,v∗, p,q)

∂ p
dt +σ(x∗(t))dW (t)

d p(t) =
−∂H(x∗,u∗,v∗, p,q)

∂x
dt +q(t))dW (t)

H(x∗,u∗,v∗, p,q)) = min
(u,v)∈(U,V )

H(x∗,u,v, p,q))

After calculation we obtain the fallowing:

dS∗(t) = ∂H(x∗,u∗,v∗,p,q)
∂ p0

dt +σ0(x∗(t))dW (t)

=

[
Λ−

n

∑
i=1

βiI∗i (t)S(t)
∗−u∗(t)S∗(t)−µS∗(t)

]
dt−

n

∑
i=1

ξiI∗i (t)S
∗(t)dW (t)
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dI∗(t) = [βiI∗i (t)S(t)
∗− (γi +ξi +µ)I∗i (t)− v∗i I∗i (t)]dt +ξiI∗i (t)S(t)

∗dW (t)

(i = 1,2, ...,n)

dR∗(t) = [∑n
i=1 γiIi(t)−µR(t)+∑

n
i=1 vi(t)Ii(t)]dt

d p0(t) =
−∂H(x∗,u∗,v∗,p,q)

∂S dt +q0(t))dW (t)

=−

[
p0

(
−

n

∑
i=1

βiIi(t)−u(t)−µ

)
+

n

∑
i=1

pi[βiIi(t)]−q0

n

∑
i=1

ξiIi(t)+
n

∑
i=1

qiξiIi(t)

]
dt

+q0(t))dW (t)

d pi(t) =
−∂H(x∗,u∗,v∗,p,q)

∂ Ii
dt +qi(t))dW (t)

=−{−p0βiS(t)+ pi[βiS(t)− (γi +ωi +µ)− vi(t)]+ pn+1(γi + vi(t))+Ai−q0ξiS(t)+qiξiS(t)}dt

+qi(t))dW (t), i = 1.......n

d pn+1(t) =
−∂H(x∗,u∗,v∗,p,q)

∂R dt +qn+1(t))dW (t) = (pn+1µ +B)dt +qn+1(t))dW (t)

3.4.2. Optimal Control Characterization and Necessary Conditions. We derivative the

Hamiltonian function with respect to u,vi i = 1......n

∂H(x∗,u∗,v∗, p,q)
∂u

= 0.
∂H(x∗,u∗,v∗, p,q)

∂vi
= 0.

We obtain u = p0S∗(t)
C . Therefore

u∗(t) = max
{

min
{

p0S∗(t)
C

,umax

}
,0
}

and vi(t) =
(pi−pn+1)I∗(t)

Di
. Therefore

v∗i (t) = max
{

min
{
(pi− pn+1)I∗(t)

Di
,vmax

i

}
,0
}

CONCLUSION

In conclusion, our study introduces a cutting-edge stochastic mathematical model that un-

ravels the intricate dynamics of multi-strain COVID-19 transmission. The incorporation of

environmental fluctuations through white noise enriches the model’s accuracy and realism, bol-

stering the credibility of our findings. The rigorous proofs of existence and uniqueness establish

a solid foundation for further exploration in this critical area of research. Our analysis of control
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measures, including vaccination and targeted treatment, underscores their indispensable role in

curbing the spread of multi-strain COVID-19, offering practical solutions for public health of-

ficials and policymakers.

Moreover, our investigation into stochastic optimal control provides invaluable insights for

designing evidence-based policies that effectively reduce infections. These findings have sig-

nificant implications for managing the pandemic’s impact and safeguarding global health. In

summary, our innovative stochastic model makes a substantial contribution to the battle against

multi-strain COVID-19, serving as a vital resource for shaping public health strategies and

guiding policy development to protect communities worldwide. As the pandemic continues to

evolve, the knowledge gained from this study remains crucial in empowering efforts to combat

the virus and build resilient healthcare systems for a more secure future.
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