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Abstract. We study the dynamic behavior of a logistic model with feedback control and harvesting. The solutions

of the model are shown to be non-negative and uniformly bounded. We prove that the extinction point always

exists and it is locally and globally asymptotically stable if the harvesting constant (b) is greater than one. For

smaller harvesting constant, i.e. when b < 1, the model has also a positive equilibrium point which is locally and

globally stable. These theoretical results are confirmed by our numerical simulations.
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1. INTRODUCTION

The logistic equation

(1)
dN(τ)

dτ
= rN(τ)

(
1− N(τ)

K

)
,

is one of single-species population growth models and has been implemented as the basis for

the development of several population dynamics models. In equation (1), N(τ) represents the
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population size at time τ , while the parameters r and K are the intrinsic growth rate and envi-

ronmental carrying capacity, respectively. It can be shown that if N(0)> 0, then the solution to

equation (1) has the property that

lim
τ→∞

N(τ) = N∗ = K,

namely that the population grows until it reaches saturation level (K). However, as explained

by Gopalsamy and Weng [1], the equilibrium N∗ in some situation is not desirable (or unattain-

able), and thus the population is required to be stable at a smaller value. This requirement can

be achived by introducing feedback control variables into the system (1). Feedback control is a

process whereby if a certain component of a system changes, then other components will also

undergo a series of changes, which in turn affect the component that initially changed [2]. This

feedback control can be achieved through biological control. A species can be also influenced

by negative feedbacks in the environment in which it lives, such as the accumulation of toxic

residues or artificial control adjustments. In this regard, Fan and Wang [3] proposed a logistics

model with feedback control

dN(τ)

dτ
= rN(τ)

(
1− N(τ)

K
−au(τ)

)
, N(0)≥ 0

du(τ)
dτ

= − eu(τ)+CN(τ), u(0)≥ 0,

(2)

where a,e and C are positive parameters. Models of population growth of a single species

with feedback control have attracted the interest of many researchers, for example see [5, 6, 7,

4]. Recently, feedback control has also been implemented to epidemic models in [8]. It has

been shown that feedback control is effective in controlling and treating the disease. Based on

this result, feedback control models for epidemic models have been widely applied for disease

control purposes, see for example see [9, 10, 11, 12].

Harvesting of species has been widely practiced in aquaculture, agriculture, forestry and

wildlife conservation for various reasons. Of course, harvesting policies and their optimization

must be adjusted to the objectives. In general, harvesting is optimized in such a way as to

maintain species conservation. However, for pest control, harvesting is performed with the

aim of eradicating them. Hence, species harvesting is of great interest to many scholars. For
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example, the effect of harvesting in the predator-prey interaction has been studied in [13, 14,

15, 16, 17, 18, 19].

The effects of harvesting have not only been studied on predator-prey interactions, but also

on populations of a single species. In a real sense, the population of a species always interacts

with populations of other species, but the growth of a single population can be observed on a

laboratory scale or in artificial breeding. Artificial breeding is carried out by humans because

it provides many necessary roles in production or for economic purposes. Society needs to

develop the resources of a single population for a long time and continuously, and give full

play to the best use value based on the lowest possible consumption costs, so the control and

prediction of a single population is very important [20]. Harvesting of a single species and its

optimization have attracted many researchers, see [21, 22, 23, 24, 25, 26]. However, as far as

we know, the effect of harvesting on a single species population with feedback control has not

been studied in any literature. Thus, in this paper we modify the logistic model with feedback

control (2) by adding a linear harvesting of the population and study the dynamic behavior of

the model. The proposed model is given by

dN(τ)

dτ
= rN(τ)

(
1− N(τ)

K
−au(τ)

)
−BN(τ), N(0)≥ 0

du(τ)
dτ

= − eu(τ)+CN(τ), u(0)≥ 0,

(3)

where B is the harvesting constant. For simplicity, the model (3) are simplified by introducing

variable transformation (N,τ)→
(
Kx, t

r

)
to get the following non-dimensional system

dx(t)
dt

= x(t)
(

1− x(t)−au(t)
)
−bx(t), x(0)≥ 0

du(t)
dt

= − eu(t)+ cx(t), u(0)≥ 0,

(4)

where b =
B
r

and c = CK. This paper is organized as follows. In Section 2 we show that the

non-negativity and boundedness of solutions of system (4). Next we investigate the existence

and local stability of equilibrium points of (4) in Section 3. The global stability properties of

all possible equilibria are discussed in Section 4. Numerical simulations of the model (4) are

presented in Section 5 to illustrate the analytical results. Finally, we present some conclusions

in Section 6.
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2. NON-NEGATIVITY AND BOUNDEDNESS OF SOLUTION

System (4) describes the population of a single species, and thus we require that the solution

of this model must be non-negative and bounded. The non-negativity of solution is stated in the

following theorem.

Theorem 1. All solutions of system (4) with positive initial values x(0) ≥ 0 and u(0) ≥ 0 are

always non-negative.

Proof. From the first equation of system (4), we can show that

x(t) = x(0)exp
(∫ t

0
(1− x(s)−au(s)−b)ds

)
.

Then, it is clear that x(t) ≥ 0 if x(0) ≥ 0. Moreover, based on the second equation of system

(4), we have that
du(t)

dt
|u=0 = cx(t).

Since x(t)≥ 0,
du(t)

dt
|u=0 ≥ 0 and therefore, by applying Proposition B.7 in [27] we can show

that u(t)≥ 0 if u(0)≥ 0 and x(0)≥ 0. �

To show the boundedness of x(t), we apply the comparison lemma as in [28]. The first

equation of system (4) leads to

x(t)
dt

= x(t)
(

1− x(t)−au(t)−b
)
≤ x(t)

(
1− x(t)

)
.

Then, using the comparison theorem we get

lim
t→∞

supx(t)≤ 1.

Hence, x(t) is uniformly bounded. Using the same method as in [1], we rewrite the second

equation of system (4) as follows

d
dt

(
u(t)exp(et)

)
= cx(t)exp(et),

u(t)exp(et) = u(0)+ c
∫ t

0
x(s)exp(es)ds

≤ u(0)+
c
e

x̄
(

exp(et)−1
)

; x̄ = sup
t≥0

x(t)
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u(t)≤ u(0)exp(−et)+
c
e

x̄
(

1− exp(−et)
)
, t > 0.

A summary of the results of the above analysis can be stated in the following theorem.

Theorem 2. All solutions of system (4) with positive initial values x(0) ≥ 0 and u(0) ≥ 0 are

uniformly bounded.

3. EXISTENCE AND LOCAL STABILITY OF EQUILIBRIA

3.1. Existence of Equilibria. The equilibrium points of (4) are determined by the following

equation

x(t)
(

1− x(t)−au(t)
)
−bx(t) = 0

−eu(t)+ cx(t) = 0.

It is trivial to show that system (4) always admits the extinction equilibrium point E0 =

(x0,u0) = (0,0). Furthermore, the system also has a unique positive equilibrium point E∗ =

(x∗,u∗) where

x∗ =
e(1−b)
e+ac

, u∗ =
c(1−b)
e+ac

.

We find that the system (4) without feedback control and without harvesting has a positive equi-

librium point x∗ = 1. When the feedback control presents in the system but without harvesting,

the positive equilibrium point is given by x∗ = e
e+ac < 1,u∗ = c

e+ac . The presence of both

feedback control and harvesting in the system causes the positive equilibrium point to become

smaller. Furthermore, it is clear that the positive equilibrium point E∗ exists only if b < 1. The

existence of equilibrium points of system (4) is summarized in the following theorem.

Theorem 3. System (4) has always an extinction equilibrium E0 = (0,0). The existence of

positive equilibrium point is dependent on the value of b as follows.

(i). If b < 1 then system (4) also has a unique positive equilibrium point E∗ = (x∗,u∗).

(ii). Otherwise, if b≥ 1 then the positive equilibrium E∗ = (x∗,u∗) does not exist.
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3.2. Local Stability of Equilibria. To study the local stability of an equilibrium point Ê =

(x̂, û), we calculate the Jacobian matrix of system (4) evaluated at an equilibrium point Ê as

follows

(5) J(Ê) =

 1−2x̂−aû−b −ax̂

c −e

 .
Hence, the Jacobian matrix at the extinction point E0 is

J(E0) =

 1−b 0

c −e

 .
Clearly that J(E0) has two eigenvalues, namely λ1 = 1− b and λ2 = −e < 0. Thus, if b < 1

then we get λ1 > 0 and E0 is a hyperbolic saddle. On the other hand, if b > 1, we have λ1 < 0,

and then E0 is asymptotically stable.

Similarly, the Jacobian matrix at the positive equilibrium point E∗ is

J(E∗) =

 1−2x∗−au∗−b −ax∗

c −e

 .
The determinant and the trace of J(E∗) are respectively given by

Det(J(E∗)) = e(b+2x∗+au∗)+acx∗ = e(1−b),

Tr(J(E∗)) = 1−2x∗−au∗−b− e =−e(1+
e(1−b)
ac+ e

).

It is seen that if b < 1 then Det(J(E∗))> 0 and Tr(J(E∗))< 0. If b > 1 then Det(J(E∗))< 0.

Therefore, if b < 1 then E∗ is locally asymptotically stable. On the contrary, if b > 1 then E∗ is

unstable. We summarize the local stability of equilibrium points in the following theorem.

Theorem 4. The local stability properties of equilibrium points of system (4) is as follows.

(i). If b > 1 then the extinction point E0 is asymptotically stable, while the positive equili-

brium point E∗ is unstable.

(ii). If b < 1 then the extinction point E0 is unstable, while the positive equilibrium E∗ is

asymptotically stable.
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4. GLOBAL STABILITY

Theorem 5. If b > 1 then the extinction point E0 is globally asymptotically stable.

Proof. When b > 1, Theorem 3 and 4 state that the system (4) only has the extinction equili-

brium point E0, which is locally asymptotically stable. Furthermore, Theorem 1 and 2 show

that the solutions are always non-negative and uniformly bounded. The system (4) does not

have a closed orbit in the first quadrant. This is caused by the fact that if a closed orbit exists

then there must be a positive equilibrium in the interior of the closed orbit. Since E0 is the only

possible equilibrium point, hence the system does not have a closed orbit. Consequently, the

extinction point E0 is globally asymptotically stable. �

Theorem 6. If b < 1 then the positive equilibrium point E∗ is globally asymptotically stable.

Proof. We first consider a Lyapunov function

V (x,u) =
c
a

(
x− x∗− x∗ ln

x
x∗

)
+

1
2
(u−u∗)2.

The first derivative of V (x,u) with respect to t is given by

dV
dt

=
c
a

(
1− x∗

x

)
dx
dt

+(u−u∗)
du
dt

=
c
a

(
1− x∗

x

)
(1− x−au−b)x+(u−u∗)(−eu+ cx)

=
c
a
(x− x∗)(x− x∗+a(u−u∗))+(u−u∗)(−eu+ cx+ eu∗− cx∗)

= − c
a
(x− x∗)2− (u−u∗)2 ≤ 0.

It is observed that the only invariant set on which
dV
dt

= 0 is the singleton {E∗ = (x∗,u∗)}.

Then, according to the LaSalle’s invariance principle, E∗ is globally asymptotically stable. �

5. NUMERICAL SIMULATIONS

To confirm our previous theoretical results, in this Section we present some numerical sim-

ulation results of the model (4), which are obtained by the fourth-order Runge-Kutta method.
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Because field data are not available, we apply hypothetical parameter value. For the first nu-

merical simulation, we use the following parameter values

(6) a = 0.8, b = 0.25, c = 0.5, e = 1.

System (4) with parameter values as in (6) has two equilibrium points: the extinction point E0 =

(0,0) and the positive equilibrium point E∗ = (0,5357,0.2679). Since b < 1, E0 is unstable

while E∗ is globally asymptotically stable. This behavior is clearly seen in Figure 1 where all

solutions with various initial values are convergent to the positive equilibrium point E∗.
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0.2

0.4
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1

u
(t

)

E*

FIGURE 1. Phase portrait of system (4) with parameter values a = 0.8,b =

0.25,c = 0.5, and e = 1.

Next, we perform numerical simulations of system (4) with parameter values as in (6), except

b = 1.25. Figure 2 shows that all numerical solutions with various initial values are convergent

to the extincion point E0 = (0,0). This figure confirms our theoretical results that for b > 1,

the system (4) does not have a positive equilibrium point and the extinction point E0 is globally

asymptotically stable.
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FIGURE 2. Phase portrait of system (4) with parameter values a = 0.8,b =

1.25,c = 0.5, and e = 1.
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6. CONCLUSIONS

In this article, we investigate the effect of linear harvesting on a logistic model with feedback

control. It is shown that all solutions of the logistic model with feedback control and harvesting

are non-negative and uniformly bounded. The proposed model has always an extinction equi-

librium point E0 = (0,0) which is globally asymptotically stable if the harvesting constant is

greater than one (b > 1). When the harvesting constant is less than one (b < 1), then the system

also has a positive equilibrium point E∗ which is globally asymtotically stable. The theoretical

finding has been confirmed by our numerical simulations.
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