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Abstract: Taking into account the significance of food chains in the environment, it demonstrates the interdependence 

of all living things and has economic implications for people. Hunting cooperation, fear, and intraspecific competition 

are all included in a food chain model that has been developed and researched. The study tries to comprehend how 

these elements affect the behavior of species along the food chain. We first examined the suggested model's solution 

properties before calculating every potential equilibrium point and examining the stability and bifurcation nearby. We 

have identified the factors that guarantee the global stability of the positive equilibrium point using the geometric 

approach. Additionally, the circumstances that would guarantee the continued existence of all living beings were 

computed. The theoretical findings were supported by numerical simulations, which also showed how altering 

parameter values affected the food chain's dynamic behavior.  

Keywords: predator-prey; local stability; global stability; second additive compound matrix; hunting cooperation; 

fear effect; food chain; bifurcation analysis. 
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1. INTRODUCTION 

Prey-predator models have been used to explain a wide range of animal behavior, including the 

hunting and predation behaviors exhibited by predators and prey [1], [2], [3]. Several papers have 
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suggested that predator-prey interactions follow a simple set of rules that govern the relationships 

between predators and their prey [3], [4]. Predation can be defined as a behavior in which one 

species attempts to kill another species. A predator is defined as a species that feeds on other 

species, while the prey is an animal that is targeted by a predator for consumption [5], [6]. Predators 

and prey are thought to have evolved distinct adaptations to survive in their different habitats [7]. 

The interaction between predators and prey can be influenced by a variety of factors; hence a lot 

of mathematical models had been developed to help us understand their behavior [3], [5]. In these 

models, the researchers considered various environmental factors that may affect the existence and 

stability of the model such as refuge of prey [8], [9], [10] harvesting [11], [12], [13], [14], disease 

[11], [15], seasonal variation [16], [17], delay [18], [19], sex structure and sexual favoritism [20], 

[21], Allee effects [22], [23], fear in prey populations [8], [12], [13], and many other factors 

affecting the dynamics of the system. 

The basic model of prey-predator can be generalized to use with three or more species. Many 

researchers have extended the model into more realistic and complex forms by incorporating 

different types of habitats and considering multiple types of predator-prey relationships [11], [15], 

[24]. The relationship between these species can be put as a food chain [25], [26]. And food chain 

can be defined simply as a sequence of organisms feeding on each other [5], [27]. Food chains can 

be quite complex, involving a large number of species all competing for the same resources [28]. 

In addition, the behavior of individual animals within a food chain can have significant effects on 

the entire ecosystem.  

The effects of fear induced by the predation process have been extensively examined in several 

theoretical models [29], [30]. Several studies have investigated the impact of predation on prey 

population dynamics by considering alternative strategies for escaping predation risk. In particular, 

the level of fear experienced by individual prey is generally associated with escape risk Two 

possible strategies employed by prey are referred to as "hiding" and "running away". The former 

entails a reduction in activity levels and a decrease in the likelihood of detection by predators [31]. 
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The latter involves rapid movement and evasion of predators to prevent being killed. Both of these 

strategies have the potential to negatively influence prey population dynamics and survival. 

Conversely, reducing activity levels could result in a decreased food supply for reproduction, 

ultimately leading to a reduction in population size over the long term. Kumar and Kumari [32] 

showed that an increase in fear factors can make the system stable from chaotic dynamics, and 

large levels of fear can cause extinction of a population and they concluded that fear parameters 

can control chaotic dynamics in a food chain model. Pal [33] observed that high levels of fear can 

stabilize the eco-epidemiological model by excluding the periodic solution, and can also reduce 

the prey population as the level of fear increases. Maghool and Naji [34] showed that the increasing 

of the fear coefficients causes the chaotic regions to decrease and the solution to approach a stable 

point or periodic dynamics. 

In ecosystems, some predators show cooperative behavior during hunting. This hunting 

cooperation usually creates fear in the prey community, in this case, prey tends to hide in a specific 

area or run away [35]. Hence, hunting cooperation has an indirect effect to increase the level of 

fear. For example, wolves are known to hunt in packs to hunt prey in large groups. Wolves in a 

pack can hunt faster than a single wolf to get at the same prey. Thus, prey (such as deer) that see a 

wolf pack, feel fear of wolves and will hide or run a safe distance away. Thus, the presence of 

hunting cooperation can increase the risk of prey that escaping from the predators by decreasing 

the probability of predator attack. Many researchers studied the impacts of hunting cooperation 

and fear effect in their suggested models separately or together. In [36], Belew and Melese 

observed that increasing the hunting cooperation of the predator population can decrease both the 

prey and predator populations, while the fear factor has a stabilizing effect on the dynamics of the 

system. The researchers in [37], showed that an increase in hunting cooperation by predators can 

create fear in prey populations, which can lead to a decrease in their birth rate. This can destabilize 

the ecosystem and lead to periodic oscillations. The strength of cooperation and fear can determine 

the stability of the ecosystem. 
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Another important factor that may affect the dynamics of the system is intraspecific competition, 

which is occurs between the individuals of the same species [30]. It occurs when the available 

resource is limited and the individuals in a species compete for this resource. In this situation, 

individuals with a larger amount of resources win, and individuals with less amount of resources 

lose out. 

In a model of a three-species food chain, the impacts of hunting cooperation and fear are examined 

in this article. The model also takes into account the impact of intraspecific competition. The 

remainder of the article is structured as follows. The mathematical model is built in section 2. 

Section 3 provides evidence for the solution's positivity and boundness. Section 4 examines the 

stability of equilibria and analyzes the presence of equilibria. Section 5 talks about the system's 

persistence. Section 6 examines the global stability of the equilibrium points. The bifurcation 

analysis is provided in section 7. Section 8 provides the model's numerical simulation. The results 

discussion and final observations are offered at the end. 

 

2. MATHEMATICAL MODEL FORMULATION 

This section proposes and investigates an ecological food chain system that takes into account fear 

cost, hunting cooperation potential, and intraspecific competition. The cost of fear is thought to 

have an impact on both the growth and death rates, as well as the consumption rate of middle 

predators. As a result, the following assumptions are used to mathematically formulate the 

described system. 

1. Without predation, it is thought that the population of prey increases logistically. It pays a cost 

for its fear of the growth and death of those it fears due to the presence of the middle predator. 

2. It is believed that the middle predator eats the prey in accordance with the Lotka-Volterra 

functional response, which is impacted by the fear cost brought on by the presence of the top 

predator. Additionally, the middle predator's rate of death is impacted by the fear cost brought 
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on by the presence of top predators. The middle predator's individuals compete with one 

another within their own species.  

3. According to the Lotka-Volterra functional response, which is influenced by the top predator's 

capability for hunting cooperatively, it is assumed that the top predator eats the middle 

predator. The attack rate, let's say 𝑎2 > 0, can therefore be enhanced by the cooperative term 

to become (𝑎2 + ℎ𝑍), where ℎ ≥ 0 denotes the top predator cooperation hunting rate [38]. 

The top predator individuals compete with one another within their own species. 

Accordingly, the following set of nonlinear differential equations of the first order can be used to 

characterize the movements of the stated ecological food chain system. 

 

𝑑𝑋

𝑑𝑇
=

𝑟𝑋

1+𝑘1𝑌
− (1 + 𝑏1𝑌)𝑑1𝑋 − 𝑐1𝑋

2 −
𝑎1𝑋𝑌

1+𝑘2𝑍
               

𝑑𝑌

𝑑𝑇
=

𝑒1𝑎1𝑋𝑌

1+𝑘2𝑍
− (1 + 𝑏2𝑍)𝑑2𝑌 − 𝑐2𝑌

2 − (𝑎2 + ℎ𝑍)𝑌𝑍

𝑑𝑍

𝑑𝑇
= 𝑒2(𝑎2 + ℎ𝑍)𝑌𝑍 − 𝑑3𝑍 − 𝑐3𝑍

2                               

,                (1) 

where 𝑋(𝑇), 𝑌(𝑇), and 𝑍(𝑇) stand for the density of the prey’s community, the density of the 

middle predator’s community, and the density of the top predator’s community at time 𝑇 

respectively. Obviously, ℝ+
3 = {(𝑋, 𝑌, 𝑍) ∈ ℝ3: 𝑋(𝑇) ≥ 0, 𝑌(𝑇) ≥ 0, 𝑍(𝑇) ≥ 0}  describes the 

domain of the system (1). Furthermore, all the parameters are set to be nonnegative and defined in 

Table (1). 

Table 1: Parameters description 

Parameters description 

𝑟 > 0 The rate of birth of 𝑋 

𝑘1 ≥ 0 The intensity of fear in 𝑋 

𝑘2 ≥ 0 The intensity of fear in 𝑌 

𝑏1 ≥ 0 The intensity of fear that affects the death of 𝑋 

𝑏2 ≥ 0 The intensity of fear that affects the death of 𝑌 

𝑑1 ∈ (0,1) The rate of mortality for 𝑋 
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𝑑2 ∈ (0,1) The rate of mortality for 𝑌 

𝑑3 ∈ (0,1) The rate of mortality for 𝑌 

𝑐1 > 0 The intraspecific competition rate in 𝑋 

𝑐2 > 0 The intraspecific competition rate in 𝑌 

𝑐3 > 0 The intraspecific competition rate in 𝑍 

𝑎1 > 0 The per-capita consumption rate of 𝑌 

𝑎2 > 0 The attack rate of 𝑍 

𝑒1 ∈ (0,1) The conversion rate from 𝑋 biomass into 𝑌 biomass 

𝑒2 ∈ (0,1) The conversion rate from 𝑌 biomass into 𝑍 biomass 

ℎ > 0 The cooperation of hunting rate of 𝑍 

 

Be aware that when utilizing variables scaling 𝑟𝑇 = 𝑡, 𝑥 =
𝑐1

𝑟
𝑋, 𝑦 =

𝑎1

𝑟
𝑌, and 𝑧 =

𝑎2

𝑟
𝑍 the total 

quantity of parameters in system (1) is reduced from 16 to 12, system (2) adopts the following 

dimensionless form: 

 

𝑑𝑥

𝑑𝑡
= 𝑥 (

1

1+𝑤1𝑦
− 𝑤2(1 + 𝑤3𝑦) − 𝑥 −

𝑦

1+𝑤4𝑧
) ≔ 𝑥𝑔1(𝑥, 𝑦, 𝑧),                

𝑑𝑦

𝑑𝑡
= 𝑦 (

𝑤5𝑥

1+𝑤4𝑧
− 𝑤6(1 + 𝑤7𝑧) − 𝑤8𝑦 − (1 + 𝑤9𝑧)𝑧) ≔ 𝑦𝑔2(𝑥, 𝑦, 𝑧),

𝑑𝑧

𝑑𝑡
= 𝑧(𝑤10(1 + 𝑤9𝑧)𝑦 − 𝑤11 − 𝑤12𝑧) ≔ 𝑧𝑔3(𝑥, 𝑦, 𝑧),                           

             (2) 

with the starting conditions: 

𝑥(0) = 𝑥0 ≥ 0,  𝑦(0) = 𝑦0 ≥ 0, 𝑧(0) = 𝑧0 ≥ 0.                       (3) 

However, the dimensionless parameters are given by: 

 𝑤1 =
𝑘1 𝑟

𝑎1
,  𝑤2 =

𝑑1

𝑟
,  𝑤3 =

𝑏1 𝑟

𝑎1
,  𝑤4 =

𝑘2 𝑟

𝑎2
,  𝑤5 =

𝑒1𝑎1

𝑐1
, 𝑤6 =

𝑑2

𝑟
,  

  𝑤7 =
𝑏2 𝑟

𝑎2
,  𝑤8 =

𝑐2

𝑎1
,  𝑤9 =

ℎ 𝑟

𝑎2
2 ,  𝑤10 =

𝑒2𝑎2

𝑎1
, 𝑤11 =

𝑑3

𝑟
,  𝑤12 =

𝑐3

𝑎2
. 

Keep in mind that system (2) has a single solution that belongs to ℝ+
3  because the functions on the 

right-hand side are continuous and have continuous partial derivatives. 
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3. POSITIVITY AND BOUNDEDNESS 

In this section, the following theorems studied the positivity and uniformly bounded properties of 

system (2) solutions with the conditions (3). 

Theorem 1: With initial conditions (3), all system (2) solutions are permanently positive. 

Proof: The proof is direct and hence it is omitted. 

Theorem 2: Uniform bounds exist for all system (2) solutions that start in the positive octant ℝ+
3 .  

Proof: The first equation of system (2) shows that, 
𝑑𝑥

𝑑𝑡
≤ 𝑥(1 − 𝑥) , and the solution of this 

inequality is given by 𝑥(𝑡) ≤
𝑥0

𝑒−𝑡(1−𝑥0)−𝑥0
, where 𝑥0 is the initial value of 𝑥 at 𝑡 = 0. Therefore, 

the solution 𝑥(𝑡) as 𝑡 → ∞ satisfies that 𝑥 ≤ 1. 

Now, let 𝐺(𝑡) = 𝑤5𝑤10𝑥(𝑡) + 𝑤10𝑦(𝑡) + 𝑧(𝑡), then simple calculation gives 

𝑑𝐺

𝑑𝑡
≤ 𝑤5𝑤10(2 − 𝑤2) − 𝑤5𝑤10𝑥 − 𝑤6𝑤10𝑦 − 𝑤11𝑧, 

𝑑𝐺

𝑑𝑡
≤ 𝐿 − 𝛿𝐺, 

where 𝐿 = 𝑤5𝑤10(2 − 𝑤2) and 𝛿 = min {1, 𝑤6, 𝑤11}, with the survival condition 1 − 𝑤2 > 0. 

Therefore, by the Gronwall lemma for differential inequality [39], 𝐺(𝑡) ≤
𝐿

𝛿
 as 𝑡 → ∞. So, all the 

solutions of system (2) are uniformly bounded in the following region: 

{(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 |0 ≤ 𝑥(𝑡) ≤ 1, 0 ≤ 𝑤5𝑤10𝑥(𝑡) + 𝑤10𝑦(𝑡) + 𝑧(𝑡) ≤

𝐿

𝛿
}.  □ 

 

4. EXISTENCE AND THE STABILITY OF EQUILIBRIA 

The existence of non-negative equilibria is examined, and the stability of these critical points is 

established. The non-negative equilibrium points are determined as follows: 

The entire extinction of prey and predator species corresponds to the trivial equilibrium point 

𝐸0(0, 0, 0) which always exists. 

The absences of the predator species correspond to the axial equilibrium point 𝐸1(1 − 𝑤2, 0,0) 

which exists when 𝑤2 < 1. This condition is known as a survival condition of the prey species in 

the absence of their predators (top and middle).  
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The boundary equilibrium point 𝐸2(�̅�, �̅�, 0), which corresponds to the absence of the top predator 

species exists when 

�̅� =
𝑤6+𝑤8𝑦

𝑤5
,                      (4) 

and �̅� is the positive root of the quadratic equation  

𝛼0 + 𝛼1𝑦 + 𝛼2𝑦
2 = 0, 

where  

𝛼0 = 𝑤5(1 − 𝑤2) − 𝑤6. 

𝛼1 = −(𝑤2𝑤3𝑤5 + 𝑤8 + 𝑤5 + 𝑤1𝑤2𝑤5 + 𝑤1𝑤6) < 0. 

𝛼2 = −𝑤1(𝑤2𝑤3𝑤5 + 𝑤8 + 𝑤5) < 0. 

It is clear that a unique positive root exists if: 

𝑤6 < 𝑤5(1 − 𝑤2),                           (5) 

Hence, the value of �̅� can be written as:  

�̅� =
−𝛼1−√𝛼1

2−4𝛼2𝛼0

2𝛼2
.                   (6) 

Obviously, when 1 − 𝑤2 < 0, the boundary equilibrium point does not exist.    

The positive equilibrium point 𝐸3(𝑥
∗, 𝑦∗, 𝑧∗)  is found by solving system (2) for 𝑥 > 0, 𝑦 > 0, and 

𝑧 > 0. Direct computation gives that 

 
𝑥∗ =

(1+𝑤4𝑧∗)[𝑤6𝑤10(1+𝑤7𝑧∗)(1+𝑤9𝑧∗)+𝑤10𝑧(1+𝑤9𝑧∗)2+𝑤8(𝑤11+𝑤12𝑧∗)]

𝑤5𝑤10(1+𝑤9𝑧∗)
,

𝑦∗ =
𝑤11+𝑤12𝑧∗

(1+𝑤9𝑧∗)𝑤10
.                                                                                         

             (7) 

While, 𝑧∗ denotes the positive root of the following sixth-order equation. 

 𝑁1𝑧
6 + 𝑁2𝑧

5 + 𝑁3𝑧
4 + 𝑁4𝑧

3 + 𝑁5𝑧
2 + 𝑁6𝑧 + 𝑁7 = 0,                 (8) 

where 

 𝑁1 = 𝑤4
2𝑤9

2𝑤10(𝑤9𝑤10 + 𝑤1𝑤12) 

 
𝑁2 = 𝑤4𝑤9𝑤10[3𝑤4𝑤9𝑤10 + 𝑤4𝑤9𝑤10𝑤6𝑤7 + 2𝑤9

2𝑤10 + 𝑤1𝑤4𝑤9𝑤11

+2𝑤1𝑤4𝑤12 + 𝑤1𝑤4𝑤6𝑤7𝑤12 + 2𝑤1𝑤9𝑤12]
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𝑁3 = 3𝑤4
2𝑤9𝑤10

2 + 2𝑤4
2𝑤6𝑤7𝑤9𝑤10

2 + 6𝑤4𝑤9
2𝑤10

2 + 𝑤4
2𝑤6𝑤9

2𝑤10
2

+2𝑤4𝑤6𝑤7𝑤9
2𝑤10

2 + 𝑤9
3𝑤10

2 + 2𝑤1𝑤4
2𝑤9𝑤10𝑤11

+𝑤1𝑤4
2𝑤6𝑤7𝑤9𝑤10𝑤11 + 2𝑤1𝑤4𝑤9

2𝑤10𝑤11 + 𝑤1𝑤4
2𝑤10𝑤12

+𝑤1𝑤4
2𝑤6𝑤7𝑤10𝑤12 + 4𝑤1𝑤4𝑤9𝑤10𝑤12 + 𝑤1𝑤4

2𝑤6𝑤9𝑤10𝑤12

+2𝑤1𝑤4𝑤6𝑤7𝑤9𝑤10𝑤12 + 𝑤4
2𝑤8𝑤9𝑤10𝑤12

+𝑤1𝑤9
2𝑤10𝑤12 + 𝑤1𝑤4

2𝑤8𝑤12
2

 

 

𝑁4 = 𝑤4
2𝑤10

2 + 𝑤4
2𝑤6𝑤7𝑤10

2 + 6𝑤4𝑤9𝑤10
2 + 2𝑤4

2𝑤6𝑤9𝑤10
2 + 4𝑤4𝑤6𝑤7𝑤9𝑤10

2

+3𝑤9
2𝑤10

2 − 𝑤4𝑤5𝑤9
2𝑤10

2 + 𝑤2𝑤4𝑤5𝑤9
2𝑤10

2 + 2𝑤4𝑤6𝑤9
2𝑤10

2

+𝑤6𝑤7𝑤9
2𝑤10

2 + 𝑤1𝑤4
2𝑤10𝑤11 + 𝑤1𝑤4

2𝑤6𝑤7𝑤10𝑤11

+4𝑤1𝑤4𝑤9𝑤10𝑤11 + 𝑤1𝑤4
2𝑤6𝑤9𝑤10𝑤11 + 2𝑤1𝑤4𝑤6𝑤7𝑤9𝑤10𝑤11

+𝑤4
2𝑤8𝑤9𝑤10𝑤11 + 𝑤1𝑤9

2𝑤10𝑤11 + 2𝑤1𝑤4𝑤10𝑤12 + 𝑤1𝑤4
2𝑤6𝑤10𝑤12

+2𝑤1𝑤4𝑤6𝑤7𝑤10𝑤12 + 𝑤4
2𝑤8𝑤10𝑤12 + 2𝑤1𝑤9𝑤10𝑤12 + 𝑤1𝑤2𝑤4𝑤5𝑤9𝑤10𝑤12

+𝑤2𝑤3𝑤4𝑤5𝑤9𝑤10𝑤12 + 2𝑤1𝑤4𝑤6𝑤9𝑤10𝑤12 + 𝑤1𝑤6𝑤7𝑤9𝑤10𝑤12

+2𝑤4𝑤8𝑤9𝑤10𝑤12 + 2𝑤1𝑤4
2𝑤8𝑤11𝑤12 + 𝑤1𝑤2𝑤3𝑤4𝑤5𝑤12

2 + 2𝑤1𝑤4𝑤8𝑤12
2

 

𝑁5 = 2𝑤4𝑤10
2 + 𝑤4

2𝑤6𝑤10
2 + 2𝑤4𝑤6𝑤7𝑤10

2 + 3𝑤9𝑤10
2 − 2(1 − 𝑤2)𝑤4𝑤5𝑤9𝑤10

2

+4𝑤4𝑤6𝑤9𝑤10
2 + 2𝑤6𝑤7𝑤9𝑤10

2 − 𝑤5𝑤9
2𝑤10

2 + 𝑤2𝑤5𝑤9
2𝑤10

2 + 𝑤6𝑤9
2𝑤10

2

+2𝑤1𝑤4𝑤10𝑤11 + 𝑤1𝑤4
2𝑤6𝑤10𝑤11 + 2𝑤1𝑤4𝑤6𝑤7𝑤10𝑤11 + 𝑤4

2𝑤8𝑤10𝑤11

+2𝑤1𝑤9𝑤10𝑤11 + 𝑤1𝑤2𝑤4𝑤5𝑤9𝑤10𝑤11 + 𝑤2𝑤3𝑤4𝑤5𝑤9𝑤10𝑤11

+2𝑤1𝑤4𝑤6𝑤9𝑤10𝑤11 + 𝑤1𝑤6𝑤7𝑤9𝑤10𝑤11 + 2𝑤4𝑤8𝑤9𝑤10𝑤11

+𝑤1𝑤4
2𝑤8𝑤11

2 + 𝑤1𝑤10𝑤12 + 𝑤1𝑤2𝑤4𝑤5𝑤10𝑤12 + 𝑤2𝑤3𝑤4𝑤5𝑤10𝑤12

+2𝑤1𝑤4𝑤6𝑤10𝑤12 + 𝑤1𝑤6𝑤7𝑤10𝑤12 + 2𝑤4𝑤8𝑤10𝑤12 + 𝑤5𝑤9𝑤10𝑤12

+𝑤1𝑤2𝑤5𝑤9𝑤10𝑤12 + 𝑤2𝑤3𝑤5𝑤9𝑤10𝑤12 + 𝑤1𝑤6𝑤9𝑤10𝑤12 + 𝑤8𝑤9𝑤10𝑤12

+2𝑤1𝑤2𝑤3𝑤4𝑤5𝑤11𝑤12 + 4𝑤1𝑤4𝑤8𝑤11𝑤12 + 𝑤1𝑤5𝑤12
2

+𝑤1𝑤2𝑤3𝑤5𝑤12
2 + 𝑤1𝑤8𝑤12

2

 

𝑁6 = −(1 − 𝑤2)𝑤5𝑤10
2 [𝑤4 + 2𝑤9] + 𝑤10

2 [1 + 2𝑤4𝑤6 + 𝑤6𝑤7 + 2𝑤6𝑤9]
+𝑤10𝑤11[𝑤1 + 𝑤1𝑤2𝑤4𝑤5 + 𝑤2𝑤3𝑤4𝑤5 + 2𝑤1𝑤4𝑤6 + 𝑤1𝑤6𝑤7

+2𝑤4𝑤8 + 𝑤5𝑤9 + 𝑤1𝑤2𝑤5𝑤9 + 𝑤2𝑤3𝑤5𝑤9 + 𝑤1𝑤6𝑤9 + 𝑤8𝑤9]

+𝑤1𝑤4𝑤11
2 [𝑤2𝑤3𝑤5 + 2𝑤8] + 𝑤10𝑤12[𝑤5 + 𝑤1𝑤2𝑤5 + 𝑤2𝑤3𝑤5

+𝑤1𝑤6 + 𝑤8] + 2𝑤1𝑤11𝑤12[𝑤5 + 𝑤2𝑤3𝑤5 + 𝑤8]

 

𝑁7 = −(1 − 𝑤2)𝑤5𝑤10
2 + 𝑤6𝑤10

2 + 𝑤10𝑤11[𝑤5 + 𝑤1𝑤2𝑤5 + 𝑤2𝑤3𝑤5

+𝑤1𝑤6 + 𝑤8] + 𝑤1𝑤11
2 [𝑤5 + 𝑤2𝑤3𝑤5 + 𝑤8]

 

If one set of the following requirements is met, direct calculation reveals that equation (8) has a 

single positive root. 

 

𝑁4 > 0, 𝑁6 < 0,𝑁7 < 0
𝑁4 > 0,𝑁5 > 0,𝑁6 > 0,𝑁7 < 0
𝑁4 < 0,𝑁5 < 0,𝑁6 < 0,𝑁7 < 0

}                 (9) 
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The Jacobian matrix of system (2) is generated at any position (𝑥, 𝑦, 𝑧), as shown below, to 

examine the behavior near it. 

 𝐽(𝑥, 𝑦, 𝑧) =

[
 
 
 
 𝑥

𝜕𝑔1

𝜕𝑥
+ 𝑔1 𝑥

𝜕𝑔1

𝜕𝑦
𝑥

𝜕𝑔1

𝜕𝑧

𝑦
𝜕𝑔2

𝜕𝑥
𝑦

𝜕𝑔2

𝜕𝑦
+ 𝑔2 𝑦

𝜕𝑔2

𝜕𝑧

𝑧
𝜕𝑔3

𝜕𝑥
𝑧

𝜕𝑔3

𝜕𝑦
𝑧

𝜕𝑔3

𝜕𝑧
+ 𝑔3]

 
 
 
 

,            (10) 

where 

𝜕𝑔1

𝜕𝑥
= −1, 

𝜕𝑔1

𝜕𝑦
= −𝑤2𝑤3 −

𝑤1

(1+𝑤1𝑦)2
−

1

1+𝑤4𝑧
, 

𝜕𝑔1

𝜕𝑧
=

𝑤4𝑦

(1+𝑤4𝑧)2
, 

𝜕𝑔2

𝜕𝑥
=

𝑤5

1+𝑤4𝑧
, 

𝜕𝑔2

𝜕𝑦
= −𝑤8,  

𝜕𝑔2

𝜕𝑧
= −(1 + 𝑤6𝑤7 + 2𝑤9𝑧 +

𝑤4𝑤5𝑥

(1+𝑤4𝑧)2
), 

𝜕𝑔3

𝜕𝑥
= 0, 

𝜕𝑔3

𝜕𝑦
= 𝑤10(1 + 𝑤9𝑧),  

𝜕𝑔2

𝜕𝑧
= −𝑤12 + 𝑤9𝑤10𝑦. 

Theorem 3: For system (2) 

i. The point 𝐸0 is asymptotically stable locally if 𝑤2 > 1. 

ii. The point 𝐸1 is asymptotically stable locally if 𝑤6 > 𝑤5(1 − 𝑤2). 

iii. The point 𝐸2 is asymptotically stable locally if �̅� <
𝑤11

𝑤10
. 

Proof: (i) Depending on the general Jacobian matrix given by (10), the Jacobian matrix at 

𝐸0(0,0,0) is given by: 

𝐽0(0,0,0) = [
1 − 𝑤2 0 0

0 −𝑤6 0
0 0 −𝑤11

].                  (11) 

The eigenvalues of 𝐽0 are 𝜆1 = 1 − 𝑤2, 𝜆2 = −𝑤6, and 𝜆3 = −𝑤11. So, if 𝑤2 > 1, then the three 

eigenvalues are negative, and 𝐸0 is an asymptotically stable locally or stable node. That means if 

the birth of the prey is less than its death, both prey and predators (top and middle) populations 

will be extinct. 

(ii) The Jacobian matrix at 𝐸1(1 − 𝑤2, 0,0) is given by: 

𝐽1(𝐸1) = [

𝑤2 − 1 −(1 − 𝑤2)(1 + 𝑤1 + 𝑤2𝑤3) 0

0 𝑤5(1 − 𝑤2) − 𝑤6 0
0 0 −𝑤11

].                    (12) 
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The eigenvalues of 𝐽1 are 𝜆1 = 𝑤2 − 1, 𝜆2 = 𝑤5(1 − 𝑤2) − 𝑤6, and 𝜆3 = −𝑤11. It is clear that 

𝜆1 < 0 due to the condition of existence. Also, if 𝑤6 > 𝑤5(1 − 𝑤2), then all three eigenvalues are 

negative, and 𝐸1 is an asymptotically stable locally or stable node. 

(iii) The Jacobian matrix at 𝐸2(�̅�, �̅�, 0) is given by: 

𝐽2(𝐸2) = [

−�̅� −�̅� (1 + 𝑤2𝑤3 +
𝑤1

(1+𝑤1�̅�)2
) 𝑤4�̅��̅�

𝑤5�̅� −𝑤8�̅� −�̅�(1 + 𝑤6𝑤7 + 𝑤4𝑤5�̅�)
0 0 𝑤10�̅� − 𝑤11

] = [𝑗𝑖𝑘].     (13) 

The characteristics equation of 𝐽2 is  

(𝜆2 + 𝐴1𝜆 + 𝐴2)[𝜆 − (𝑤10�̅� − 𝑤11)] = 0,              (14) 

where 𝐴1 = −(𝑗11 + 𝑗22) and 𝐴2 = (𝑗11𝑗22 − 𝑗12𝑗21). Obviously, 𝐴1 > 0 and 𝐴2 > 0, hence 𝜆1 

and 𝜆2 have negative real parts. Moreover, 𝜆3 = 𝑤10�̅� − 𝑤11 will be negative if �̅� <
𝑤11

𝑤10
, and that 

makes 𝐸2 an asymptotically stable locally.  □   

Theorem 4: The point 𝐸3(𝑥
∗, 𝑦∗, 𝑧∗), is an asymptotically stable locally if  

𝑦∗ <
𝑤12

𝑤9𝑤10
.                 (15) 

𝑤4𝑤5 <
(1+𝑤4𝑧∗)3(1+𝑤6𝑤7+2𝑤9𝑧∗)

𝑦∗−(1+𝑤4𝑧∗)𝑥∗ .            (16) 

Proof: At 𝐸3, the Jacobian matrix can be written as  

𝐽3(E3) = [𝑎𝑖𝑗]3×3
, 

where the components of 𝐽3 are as follows 

𝑎11 = −𝑥∗ < 0 , 𝑎12 = −𝑥∗ (𝑤2𝑤3 +
𝑤1

(1+𝑤1𝑦∗)2
+

1

1+𝑤4𝑧∗) < 0, 𝑎13 =
𝑤4𝑥∗𝑦∗

(1+𝑤4𝑧∗)2
> 0,    

𝑎21 =
𝑤5𝑦∗

1+𝑤4𝑧∗ > 0, 𝑎22 = −𝑤8𝑦
∗ < 0, 𝑎23 = −𝑦∗ (1 + 𝑤6𝑤7 + 2𝑤9𝑧

∗ +
𝑤4𝑤5𝑥∗

(1+𝑤4𝑧∗)2
) < 0, 

𝑎31 = 0, 𝑎32 = 𝑤10(1 + 𝑤9𝑧
∗)𝑧∗ > 0, 𝑎33 = (𝑤10𝑤9𝑦

∗ − 𝑤12)𝑧
∗ . 

The corresponding characteristic equation is 

𝜆3 + 𝜔1𝜆
2 + 𝜔2𝜆 + 𝜔3 = 0, 

where  
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𝜔1 = −(𝑎11 + 𝑎22 + 𝑎33), 

𝜔2 = 𝑎22𝑎33 + 𝑎11(𝑎22 + 𝑎33) − (𝑎12𝑎21 + 𝑎23𝑎32), 

𝜔3 = 𝑎32(𝑎11𝑎23 − 𝑎13𝑎21) + 𝑎33(𝑎12𝑎21 − 𝑎11𝑎22), 

Moreover 

𝜔1𝜔2 − 𝜔3 = −2𝑎11𝑎22𝑎33 − (𝑎11 + 𝑎22)[𝑎11𝑎22 − 𝑎12𝑎21] − 𝑎11𝑎33(𝑎11 + 𝑎33)

− (𝑎22 + 𝑎33)[𝑎22𝑎33 − 𝑎23𝑎32] + 𝑎13𝑎21𝑎32 

Condition (15) ensure that 𝑎33 < 0, hence 𝜔1 > 0 and condition (16) ensure that 𝜔3 > 0 and 

𝜔1𝜔2 − 𝜔3 > 0. Accordingly, 𝐸3 is an asymptotically stable locally due to the Routh-Hurwitz 

criterion [40].   □   

Table (2) summarizes the conditions for the existence of equilibrium points and their local stability 

criteria. 

Table 2: Summary of existence and the stability of equilibria 

Equilibrium Point Existence Conditions Stability Criteria 

𝐸0(0,0,0) always exists 𝑤2 > 1 

𝐸1(1 − 𝑤1, 0,0) 𝑤2 < 1 𝑤2 >
𝑤5 − 𝑤6

𝑤5
 

𝐸2(�̅�, �̅�, 0) 𝑤2 <
𝑤5 − 𝑤6

𝑤5
 �̅� <

𝑤11

𝑤10
 

𝐸3(𝑥
∗, 𝑦∗, 𝑧∗) 0 < 1 − 𝐴 < 𝑦∗(1 + 𝑤1𝑦

∗) 

𝑤12

𝑤9𝑤10
< 𝑦∗ 

𝑤4𝑤5 <
(1 + 𝑤4𝑧

∗)3(1 + 𝑤6𝑤7 + 2𝑤9𝑧
∗)

𝑦∗ − (1 + 𝑤4𝑧
∗)𝑥∗

 

Table (2) makes it evident that due to the 𝐸0's stability, no additional equilibrium points exist in 

the system (2). But when 𝐸0 is unstable, either 𝐸1 is stable and 𝐸2 doesn't exist, or 𝐸1 is unstable 

and 𝐸2 exists. 

5. PERSISTENCE 

This section examines system (2)'s persistence. It is entirely understood that the system is regarded 

as persistent if and only if none of its species have gone extinct. Accordingly, system (2) persists 
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if its domain's border planes do not have an omega limit set on its trajectory, which starts at a 

positive initial point. 

Theorem 5: System (2) has no periodic dynamics on the border planes. 

Proof: It is obvious that, system (2) contains only one subsystem, which is located in the 𝑥𝑦-plane. 

 

𝑑𝑥

𝑑𝑡
= 𝑥 (

1

1+𝑤1𝑦
− 𝑤2(1 + 𝑤3𝑦) − 𝑥 − 𝑦) : = 𝑓1(𝑥, 𝑦)

𝑑𝑦

𝑑𝑡
= 𝑦(𝑤5𝑥 − 𝑤6 − 𝑤8𝑦):= 𝑓2(𝑥, 𝑦)                           

.       (17) 

It is easily confirmed that subsystem (17) has a positive equilibrium point 𝐸(�̅�, �̅�) in the interior 

of border plane 𝑥𝑦-plane, which coincides with 𝐸2(�̅�, �̅�, 0).  

Therefore, Bendixson–Dulac theorem [41], [42], can be utilized to check the possibility of 

existence of the periodic dynamics on the positive quadrant of the border plane 𝑥𝑦-plane.  

Let 𝐵1(𝑥, 𝑦) =
1

𝑥𝑦
. Clearly, this function is positive and 𝐶1 function in the interior of ℝ+

2  of 𝑥𝑦-

plane. Now 

∆1(𝑥, 𝑦) =
𝜕

𝜕𝑥
(𝐵1 ∙ 𝑓1) +

𝜕

𝜕𝑦
(𝐵1 ∙ 𝑓2) = −(

1

𝑦
+

𝑤8

𝑥
) 

Obviously, ∆1(𝑥, 𝑦)  does not change their sign and does not vanish, hence according to 

Bendixson–Dulac theorem there are no periodic dynamics in the interior of the positive quadrant 

of the 𝑥𝑦 −plane. □   

Theorem 6: Provided the following requirements are met, System (2) is uniformly persistent: 

i. 𝑤2 < 1 

ii. 𝑤6 < (1 − 𝑤2)𝑤5 

iii. �̅� >
𝑤11

𝑤10
 

Proof: Let 𝜑(𝑥, 𝑦, 𝑧) = 𝑥𝑝1𝑦𝑝2𝑧𝑝3 be the average Lyapunov function [43], where 𝑝1, 𝑝2, and 𝑝3 

are positive constants. Obviously, 𝜑 is positive for all (𝑥, 𝑦, 𝑧) in the first octant  ℝ+
3 . Moreover, 

𝜑 → 0 when any one of the three variables goes to zero. 

𝜓(𝑥, 𝑦, 𝑧) =
𝜑′

𝜑
= ∑ 𝑝𝑖𝑔𝑖(𝑥, 𝑦, 𝑧)3

𝑖=1 , 
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where 𝑔𝑖 for all 𝑖 = 1,2,3 are given in system (2). 

𝜓(𝐸0) = (1 − 𝑤2)𝑝1 − 𝑤6𝑝2 − 𝑤11𝑝3. 

𝜓(𝐸1) = ((1 − 𝑤2)𝑤5 − 𝑤6)𝑝2 − 𝑤11𝑝3. 

𝜓(𝐸2) = 𝑝3(𝑤10�̅� − 𝑤11). 

It is clear that 𝜓(𝐸0) > 0 if condition (i) is satisfied and 𝑝1 is chosen to be sufficiently large in 

relation to 𝑝2 and 𝑝3. The expression 𝜓(𝐸1) > 0 holds under condition (ii) when 𝑝2 is selected 

sufficiently larger than 𝑝3. Finally, 𝜓(𝐸3) > 0 if condition (iii) holds with any choice of 𝑝3. Hence, 

the average Lyapunov function is positive and the proof is complete [43].   □   

 

6. GLOBAL STABILITY 

This section examines the global stability of the positive equilibrium point 𝐸3. It is widely known 

that an equilibrium point is asymptotically stable globally with regard to an open set 𝐷 if it is 

asymptotically stable locally and its basin of attraction contains 𝐷, as shown in [28]. Consequently, 

a second additive compound matrix was used to discuss its stability. 

Theorem 6: The point 𝐸3 is asymptotically stable globally in the 𝐷 ⊂ ℝ3 provided that  

Θ < w8𝑦𝑚𝑖𝑛,                 (18) 

where all the new symbols are given in the proof. 

Proof: System (2) can be reformulated in vector form as follows: 

𝑑𝐗

𝑑𝑡
= 𝐅(𝐗), 𝐗 = [

𝑥
𝑦
𝑧
],  𝐅 = [

𝑥𝑔1(𝑥, 𝑦, 𝑧)

𝑦𝑔2(𝑥, 𝑦, 𝑧)

𝑧𝑔3(𝑥, 𝑦, 𝑧)
],             (19) 

where 𝐅:𝐷 ⟶ ℝ3 is a 𝐶1(𝐷) and 𝐷 is a simply connected open set. 

The equilibrium point 𝐸3 is said to be globally stable in 𝐷 provided that it’s locally stable and all 

the trajectories approach to 𝐸3. 

Let 𝐴(𝐗) be a 3 × 3 matrix-valued function that is 𝐶1 for 𝐗 ∈ 𝐷, and assume that 𝐴−1(𝐗) exists 

and continuous for 𝐗 ∈ 𝐷 , which means 𝐷  represents the compact absorbing set, so that they 

define by:  
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𝐴 = (

1 0 0

0
𝑦

𝑧
0

0 0
𝑦

𝑧

), 𝐴−1 = (

1 0 0

0
𝑧

𝑦
0

0 0
𝑧

𝑦

). 

Consider  

𝐵 = 𝐴𝐅𝐴
−1 + 𝐴𝐽[2]𝐴−1, 

where 𝐴𝐅 is the matrix of the directional derivatives in the direction of 𝐅 and 𝐽[2] is the second 

additive compound matrix of the Jacobian matrix (10) [44], [45].  

𝐴𝐅 = (

0 0 0

0
𝑦′

𝑧
−

𝑦 𝑧′

𝑧2 0

0 0
𝑦′

𝑧
−

𝑦 𝑧′

𝑧2

), 

𝐽[2] =

(

 
 

−𝑥 − w8𝑦 −𝑦 (1 + 𝑤6𝑤7 + 2𝑤9𝑧 +
𝑤4𝑤5𝑥

(1+𝑤4𝑧)2
) −

𝑤4𝑥𝑦

(1+𝑤4𝑧)2

𝑤10(1 + 𝑤9𝑧)𝑧 −𝑥 + (𝑤10𝑤9𝑦 − 𝑤12)𝑧 −𝑥 (𝑤2𝑤3 +
𝑤1

(1+𝑤1𝑦)2
+

1

1+𝑤4𝑧
)

0
𝑤5𝑦

1+𝑤4𝑧
−𝑤8𝑦 + (𝑤10𝑤9𝑦 − 𝑤12)𝑧 )

 
 

.  

Accordingly, the matrix 𝐵 can be written as: 

 𝐵 = (𝑏𝑖𝑗)3×3
, 

where  

 𝑏11 = −𝑥 − w8𝑦,  

𝑏12 = −𝑧 (1 + 𝑤6𝑤7 + 2𝑤9𝑧 +
𝑤4𝑤5𝑥

(1+𝑤4𝑧)2
), 

𝑏13 = −
𝑤4𝑥𝑧

(1+𝑤4𝑧)2
, 

𝑏21 = 𝑤10(1 + 𝑤9𝑧)𝑦, 

𝑏22 =
𝑦′

𝑦
−

 𝑧′

𝑧
− 𝑥 + (𝑤10𝑤9𝑦 − 𝑤12)𝑧, 

𝑏23 = −𝑥 (𝑤2𝑤3 +
𝑤1

(1+𝑤1𝑦)2
+

1

1+𝑤4𝑧
), 

𝑏31 = 0, 

𝑏32 =
𝑤5𝑦

1+𝑤4𝑧
, 
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𝑏33 =
𝑦′

𝑦
−

 𝑧′

𝑧
− 𝑤8𝑦 + (𝑤10𝑤9𝑦 − 𝑤12)𝑧. 

Therefore, the matrix 𝐵 can be reformulated in block form at 𝐸3 as: 

 𝐵 = (
𝐵11 𝐵12

𝐵21 𝐵22
), 

with 

 𝐵11 = (𝑏11), 𝐵12 = [𝑏12 𝑏13], 𝐵21 = [
𝑏21

0
], 𝐵22 = (

𝑏22 𝑏23

𝑏32 𝑏33
). 

Consider the vector norm ‖∙‖  in ℝ3  as ‖(𝑢1, 𝑢2, 𝑢3)‖ = max{|𝑢1|, |𝑢2| + |𝑢3|} , where 

(𝑢1, 𝑢2, 𝑢3) represents the vector in ℝ3. Let 𝜇(𝐵) be the Lozinski measure with respect to the 

considered norm. Then by using a similar argument as in [46] or [47] it follows that 

𝜇(𝐵) ≤ sup  {𝑘1, 𝑘2} ≡ sup  {𝜇1(𝐵11) + |𝐵12|, 𝜇1(𝐵22) + |𝐵21| },  

where |𝐵12|, and |𝐵21| are matrix norms with respect to the ℒ1 vector norm and 𝜇1 represents the 

Lozinski measure with respect to the ℒ1 vector norm. Thus, it is obtained:  

𝜇1(𝐵11) = 𝐵11 = −(𝑥 + w8𝑦).  

𝜇1(𝐵22) = max  {𝑏22 + |𝑏32|, 𝑏33 + |𝑏23|}, 

where 

 𝑏22 + |𝑏32| =
𝑦′

𝑦
−

 𝑧′

𝑧
− 𝑥 + (𝑤10𝑤9𝑦 − 𝑤12)𝑧 +

𝑤5𝑦

1+𝑤4𝑧
. 

 𝑏33 + |𝑏23| =
𝑦′

𝑦
−

 𝑧′

𝑧
− 𝑤8𝑦 + (𝑤10𝑤9𝑦 − 𝑤12)𝑧 + 𝑥 (𝑤2𝑤3 +

𝑤1

(1+𝑤1𝑦)2
+

1

1+𝑤4𝑧
). 

Accordingly, it easy to verify that 

 𝜇1(𝐵22) =
𝑦′

𝑦
−

 𝑧′

𝑧
− 𝑤8𝑦 + (𝑤10𝑤9𝑦 − 𝑤12)𝑧 + 𝑥 (𝑤2𝑤3 +

𝑤1

(1+𝑤1𝑦)2
+

1

1+𝑤4𝑧
). 

Also, we have 

 

|𝐵12| = max {|−𝑧 (1 + 𝑤6𝑤7 + 2𝑤9𝑧 +
𝑤4𝑤5𝑥

(1+𝑤4𝑧)2
)| , |−

𝑤4𝑥𝑧

(1+𝑤4𝑧)2
|}

= 𝑧 (1 + 𝑤6𝑤7 + 2𝑤9𝑧 +
𝑤4𝑤5𝑥

(1+𝑤4𝑧)2
)

. 

 |𝐵21| = |𝑤10(1 + 𝑤9𝑧)𝑦| + |0| = 𝑤10(1 + 𝑤9𝑧)𝑦 

Hence, it is resulted that 
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𝑘1 = 𝜇1(𝐵11) + |𝐵12| = −(𝑥 + w8𝑦) + 𝑧 (1 + 𝑤6𝑤7 + 2𝑤9𝑧 +
𝑤4𝑤5𝑥

(1+𝑤4𝑧)2
).  

𝑘2 = 𝜇1(𝐵22) + |𝐵21| =
𝑦′

𝑦
−

 𝑧′

𝑧
− 𝑤8𝑦 + (𝑤10𝑤9𝑦 − 𝑤12)𝑧

+𝑥 (𝑤2𝑤3 +
𝑤1

(1+𝑤1𝑦)2
+

1

1+𝑤4𝑧
) + 𝑤10(1 + 𝑤9𝑧)𝑦

=
(𝑤5+1)𝑥

1+𝑤4𝑧
− 𝑤6(1 + 𝑤7𝑧) − 𝑤8𝑦 − (1 + 𝑤9𝑧)𝑧 + 𝑤11

−𝑤8𝑦 + 𝑤10𝑤9𝑦𝑧 + 𝑥 (𝑤2𝑤3 +
𝑤1

(1+𝑤1𝑦)2
)

. 

Consequently, the following has resulted  

 𝑘1 ≤ −w8𝑦𝑚𝑖𝑛 + 𝑧𝑚𝑎𝑥 (1 + 𝑤6𝑤7 + 2𝑤9𝑧𝑚𝑎𝑥 +
𝑤4𝑤5

(1+𝑤4𝑧𝑚𝑖𝑛)2
), 

 𝑘2 ≤
(𝑤5+1)

1+𝑤4𝑧𝑚𝑖𝑛
− 𝑤8𝑦𝑚𝑖𝑛 + 𝑤11 + 𝑤10𝑤9𝑦𝑚𝑎𝑥𝑧𝑚𝑎𝑥 + 𝑤2𝑤3 +

𝑤1

(1+𝑤1𝑦𝑚𝑖𝑛)2
, 

where 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑖𝑛, and 𝑧𝑚𝑎𝑥 are positive constants represent the bounds of  𝑦 and 𝑧 in the 

interior of 𝐷. Now, define the positive constant Θ as  

 
Θ = max {𝑧𝑚𝑎𝑥 (1 + 𝑤6𝑤7 + 2𝑤9𝑧𝑚𝑎𝑥 +

𝑤4𝑤5

(1+𝑤4𝑧𝑚𝑖𝑛)2
) ,

(𝑤5+1)

1+𝑤4𝑧𝑚𝑖𝑛
+ 𝑤11 

+𝑤10𝑤9𝑦𝑚𝑎𝑥𝑧𝑚𝑎𝑥 + 𝑤2𝑤3 +
𝑤1

(1+𝑤1𝑦𝑚𝑖𝑛)2
 } .

 

Then, we obtain that 

 𝑘𝑖 ≤ −w8𝑦𝑚𝑖𝑛 + Θ, i = 1,2 

Therefore, 𝜇(𝐵) ≤  −(w8𝑦𝑚𝑖𝑛 − Θ), hence the proof is done provided that the condition (18) is 

met. 

 

7. BIFURCATION ANALYSIS 

This section attempts to determine the possibility of the occurrence of bifurcations in the system 

(2) and specify the conditions of obtaining saddle-node, transcritical, and pitchfork bifurcation 

near equilibria. Recall the equation (19), then it is simply to obtain that: 

𝐷2𝐅(𝐗)(𝐕, 𝐕) = (𝑐𝑖1
[2]

)
3×3

,                            (20) 

where 𝐕 = (𝑣1, 𝑣2, 𝑣3)
𝑇 is a general vector with 
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𝑐11

[2]
=

2𝑣1𝑣3𝑤4𝑦

(1+𝑤4𝑧)2
− 2𝑣1

2 + 2𝑥 (
𝑣2

2𝑤1
2

(1+𝑤1𝑦)3
−

𝑣3
2𝑤4

2𝑦

(1+𝑤4𝑧)3
+

𝑣2𝑣3𝑤4

(1+𝑤4𝑧)2
)

+𝑣1𝑣2 (−2𝑤2𝑤3 −
2𝑤1

(1+𝑤1𝑦)2
−

2

1+𝑤4𝑧
)

 

 
𝑐21

[2]
= −2𝑣2(𝑣3 + 𝑣2𝑤3 + 𝑣3𝑤6𝑤7) − 2𝑣3

2𝑤9𝑦 − 4𝑣2𝑣3𝑤9𝑧 +
2𝑣3

2𝑤4
2𝑤5𝑥𝑦

(1+𝑤4𝑧)3

−
2𝑣3𝑤4𝑤5(𝑣2𝑥+𝑣1𝑦)

(1+𝑤4𝑧)2
+

2𝑣1𝑣2𝑤5

1+𝑤4𝑧

 

 𝑐31
[2]

= 2𝑣3(−𝑣3𝑤12 + 𝑤10(𝑣2 + 𝑣3𝑤9𝑦 + 2𝑣2𝑤9𝑧)) 

Furthermore, we have  

𝐷3𝐅(𝐗)(𝐕, 𝐕, 𝐕) = (𝑐𝑖1
[3]

)
3×3

,             (21) 

 𝑐11
[3]

=
6𝑣1𝑣2

2𝑤1
2

(1+𝑤1𝑦)3
−

6𝑣2
3𝑤1

3𝑥

(1+𝑤1𝑦)4
+

6𝑣2𝑣3𝑤4(𝑣1−𝑣3𝑤4𝑥+𝑣1𝑤4𝑧)

(1+𝑤4𝑧)3
−

6𝑣3
2𝑤4

2𝑦(𝑣1−𝑣3𝑤4𝑥+𝑣1𝑤4𝑧)

(1+𝑤4𝑧)4
. 

 𝑐21
[3]

= −
6𝑣3(𝑣1𝑤4𝑤5(1+𝑤4𝑧)(𝑣2−𝑣3𝑤4𝑦+𝑣2𝑤4𝑧)+𝑣3(𝑣3𝑤4

3𝑤5𝑥𝑦+𝑣2(1+𝑤4𝑧)(−𝑤4
2𝑤5𝑥+𝑤9(1+𝑤4𝑧)3)))

(1+𝑤4𝑧)4
. 

 𝑐31
[3]

= 6𝑣2𝑣3
2𝑤10𝑤9. 

Theorem 7: A transcritical bifurcation takes place at the trivial point 𝐸0 of the system (2) when 

the parameters meet 𝑤2 = 𝑤2
∗ = 1, where 𝑤2 is taken as the bifurcation parameter. 

Proof: In the following, we demonstrate the transversality requirement of transcritical bifurcation 

at 𝑤2 = 𝑤2
∗  by using Sotomayor’s theorem [48], [49]. At 𝐸0  with 𝑤2 = 𝑤2

∗  the matrix (11) 

becomes: 

𝐽0
∗ = 𝐷𝐅(𝐸0, 𝑤2

∗) = [
0 0 0
0 −𝑤6 0
0 0 −𝑤11

].  

Simple calculation shows that, there are zero eigenvalue with two negative eigenvalues, moreover 

𝐔1 = (1,0,0)T and 𝐖1 = (1,0,0)T are the eigenvector corresponding to the zero eigenvalue of 𝐽0
∗ 

and 𝐽0
∗𝑇

 respectively. Also, by using equation (20), it’s obtained:    

𝐅𝑤2
= (

−(1 + 𝑤3𝑦)𝑥
0
0

) ⟹ 𝐅𝑤2
(𝐸0, 𝑤2

∗) = (
0
0
0
). 
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𝐷𝐅𝑤2
(𝐸0, 𝑤2

∗). 𝐔1 = (
−1
0
0

). 

𝐷2𝐅(𝐸0, 𝑤2
∗)(𝐔1, 𝐔1) = (

−2
0
0

). 

Therefore, straightforward computation shows that: 

 𝐖1
T𝐅𝑤2

(𝐸0, 𝑤2
∗) = 0. 

 𝐖1
T(𝐷𝐅𝑤2

(𝐸0, 𝑤2
∗). 𝐔1) = −1 ≠ 0. 

𝐖1
T[𝐷2𝐅(𝐸0, 𝑤2

∗)(𝐔1, 𝐔1)] = −2 ≠ 0. 

Therefore, system (2) has a transcritical bifurcation near 𝐸0 due to Sotomayor’s theorem [48], 

[49].□   

Theorem 8: A transcritical bifurcation takes place at the axial point 𝐸1 of the system (2) when the 

parameters meet 𝑤6 = 𝑤6
∗ = 𝑤5(1 − 𝑤2), where 𝑤6 is taken as the bifurcation parameter. 

Proof: Similarly at 𝐸1 with 𝑤6 = 𝑤6
∗ equation (12) becomes: 

𝐽1
∗ = 𝐷𝐅(𝐸1, 𝑤6

∗) = [
𝑤2 − 1 (𝑤2 − 1)(1 + 𝑤1 + 𝑤2𝑤3) 0

0 0 0
0 0 −𝑤11

]. 

It is simply to verify that, there are zero eigenvalue with two negative eigenvalues, and the 

corresponding eigenvectors for the zero eigenvalue of 𝐽1
∗  and 𝐽1

∗T
 are 𝐔2 = (−(1 + 𝑤1 +

𝑤2𝑤3), 1,0)T and  𝐖2 = (0,1,0) respectively. Moreover, it’s obtained:    

𝐅𝑤6
= (

0
−(1 + 𝑤7𝑧)𝑦

0
) ⟹ 𝐅𝑤6

(𝐸1, 𝑤6
∗) = (

0
0
0
). 

𝐷𝐅𝑤6
(𝐸1, 𝑤6

∗). 𝐔2 = (
0

−1
0

). 

𝐷2𝐅(𝐸1, 𝑤6
∗)(𝐔2, 𝐔2) = (

2𝑤1
2(1 − 𝑤1)

−2𝑤3 − 2(1 + 𝑤1 + 𝑤2𝑤3)𝑤5

0

). 

Therefore, straightforward computation shows that: 
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 𝐖2
T𝐅𝑤6

(𝐸1, 𝑤6
∗) = 0. 

 𝐖2
T(𝐷𝐅𝑤6

(𝐸1, 𝑤6
∗). 𝐔2) = −1 ≠ 0. 

𝐖2
T[𝐷2𝐅(𝐸1, 𝑤6

∗)(𝐔2, 𝐔2)] = −2𝑤3 − 2(1 + 𝑤1 + 𝑤2𝑤3)𝑤5 ≠ 0. 

Consequently, a transcritical bifurcation near 𝐸1.  □   

Theorem 9: A transcritical bifurcation takes place at the boundary point 𝐸2 of the system (2) when 

the parameters meet 𝑤11 = 𝑤11
∗ = 𝑤10�̅� , where 𝑤11  is taken as the bifurcation parameter 

provided that: 

 𝑤10(𝜌2 + 𝑤9�̅�) ≠ 𝑤12.                 (22) 

A pitchfork bifurcation takes place otherwise if the following condition holds 

 𝜌2 ≠ 0.                      (23) 

Proof: From equation (13) the Jacobian matrix at 𝐸2 with 𝑤11 = 𝑤11
∗ , which is denoted by 𝐽2

∗ =

𝐷𝐅(𝐸2, 𝑤11
∗ ) becomes: 

𝐽2
∗ = [

−�̅� −�̅� (1 + 𝑤2𝑤3 +
𝑤1

(1+𝑤1�̅�)2
) 𝑤4�̅��̅�

𝑤5�̅� −𝑤8�̅� −�̅�(1 + 𝑤6𝑤7 + 𝑤4𝑤5�̅�)
0 0 0

] = (𝑘𝑖𝑗)3×3
. 

Direct computation shows that 𝐽2
∗  has zero eigenvalue with the other two eigenvalues having 

negative real parts, also  𝐔3 = (𝜌1, 𝜌2, 1)𝑇 and 𝐖3 = (0,0,1), where 𝜌1 =
𝑘12𝑘23−𝑘13𝑘22

𝑘11𝑘22−𝑘12𝑘21
> 0 and 

𝜌2 =
𝑘13𝑘21−𝑘11𝑘23

𝑘11𝑘22−𝑘12𝑘21
, are the eigenvectors corresponding to the zero eigenvalue of 𝐽2

∗  and 𝐽2
∗𝑇

 

respectively. Moreover, it is resulted that:    

𝐅𝑤11
= (

0
0
−𝑧

) ⟹ 𝐅𝑤11
(𝐸2, 𝑤11

∗ ) = (
0
0
0
). 

𝐷𝐅𝑤11
(𝐸2, 𝑤11

∗ ). 𝐔3 = (
0
0

−1
). 

𝐷2𝐅(𝐸2, 𝑤11
∗ )(𝐔3, 𝐔3) = (𝑐𝑖1

[2](𝐸2, 𝑤11
∗ ))

3×1
, 

where 
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𝑐11
[2](𝐸2, 𝑤11

∗ ) = 2𝜌1𝑤4�̅� − 2𝜌1
2 + 2�̅� (

𝜌2
2𝑤1

2

(1+𝑤1�̅�)3
− 𝑤4

2�̅� + 𝜌2𝑤4)

+𝜌1𝜌2 (−2𝑤2𝑤3 −
2𝑤1

(1+𝑤1�̅�)2
− 2)

. 

 
𝑐21

[2](𝐸2, 𝑤11
∗ ) = −2𝜌2(1 + 𝜌2𝑤3 + 𝑤6𝑤7) − 2𝑤9�̅� + 2𝑤4

2𝑤5�̅��̅�

−2𝑤4𝑤5(𝜌2�̅� + 𝜌1�̅�) + 2𝜌1𝜌2𝑤5

 

 𝑐31
[2](𝐸2, 𝑤11

∗ ) = 2[−𝑤12 + 𝑤10(𝜌2 + 𝑤9�̅�)] 

Therefore, straightforward computation using condition (22) shows that: 

 𝐖3
T𝐅𝑤11

(𝐸2, 𝑤11
∗ ) = 0. 

 𝐖3
T(𝐷𝐅𝑤11

(𝐸2, 𝑤11
∗ ). 𝐔3) = −1 ≠ 0. 

𝐖3
T[𝐷2𝐅(𝐸2, 𝑤11

∗ )(𝐔3, 𝐔3)] = 2[−𝑤12 + 𝑤10(𝜌2 + 𝑤9�̅�)] ≠ 0. 

Hence a transcritical bifurcation takes place at E2. On the other hand, if  𝑤10(𝜌2 + 𝑤9�̅�) = 𝑤12, 

then 𝐖3
T[𝐷2𝐅(𝐸2, 𝑤11

∗ )(𝐔3, 𝐔3)] = 0. While from equation (21), it is obtained that 

 𝐷3𝐅(𝐸2, 𝑤11
∗ )(𝐔3, 𝐔3, 𝐔3) = (𝑐𝑖1

[3](𝐸2, 𝑤11
∗ ))

3×1
, 

where 

 𝑐11
[3](𝐸2, 𝑤11

∗ ) =
6𝜌1𝜌2

2𝑤1
2

(1+𝑤1�̅�)3
−

6𝜌2
3𝑤1

3�̅�

(1+𝑤1�̅�)4
+ 6𝜌2𝑤4(𝜌1 − 𝑤4�̅�) − 6𝑤4

2�̅�(𝜌1 − 𝑤4�̅�). 

 𝑐21
[3](𝐸2, 𝑤11

∗ ) = −6[𝜌1𝑤4𝑤5(𝜌2 − 𝑤4�̅�) + (𝑤4
3𝑤5�̅��̅� + 𝜌2(𝑤9 − 𝑤4

2𝑤5�̅�))]. 

 𝑐31
[3](𝐸2, 𝑤11

∗ ) = 6𝜌2𝑤10𝑤9. 

Therefore, by using condition (23), it is obtained that 

 𝐖3
T[𝐷3𝐅(𝐸2, 𝑤11

∗ )(𝐔3, 𝐔3, 𝐔3)] = 6𝜌2𝑤10𝑤9 ≠ 0. 

Hence, pitchfork bifurcation takes place and the proof is done.  

Theorem 10: suppose that condition (15) is satisfied, then a saddle-node bifurcation takes place 

at positive equilibrium point 𝐸3(𝑥
∗, 𝑦∗, 𝑧∗) of the system (2) when the parameters meet 𝑤8 = 𝑤8

∗, 

where 𝑤8 is taken as the bifurcation parameter provided that the following conditions are met. 

 𝑎12𝑎21𝑎33 < [𝑎13𝑎21 − 𝑎11𝑎23]𝑎32.             (24) 

 𝜎3𝑐11
[2](𝐸4, 𝑤8

∗) + 𝜎4𝑐21
[2](𝐸4, 𝑤8

∗) + 𝑐31
[2](𝐸4, 𝑤8

∗) ≠ 0 
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with 

 𝑤8
∗ =

𝑎13𝑎21𝑎32−𝑎11𝑎23𝑎32−𝑎12𝑎21𝑎33

𝑎11𝑎33 𝑦∗ . 

Proof: The Jacobian matrix of system (2) at 𝐸3 with 𝑤8 = 𝑤8
∗ can be written: 

𝐽3
∗ = 𝐷𝐅(𝐸3, 𝑤8

∗) = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22
∗ 𝑎23

0 𝑎23 𝑎33

]. 

where 𝑎𝑖𝑗 are given in the theorem (4), and 𝑎22
∗ = 𝑎22(𝑤8

∗). It is easy to verify that  

 det( 𝐽3
∗) = 𝜔3(𝑤8

∗) = 𝑎32(𝑎11𝑎23 − 𝑎13𝑎21) + 𝑎33(𝑎12𝑎21 − 𝑎11𝑎22
∗ ) = 0. 

Therefore, the characteristic equation of the 𝐽3(𝐸3) at 𝑤8 = 𝑤8
∗ that is given in theorem (4) can be 

written as 

 𝜆3 + 𝜔1𝜆
2 + 𝜔2𝜆 = 𝜆[𝜆2 + 𝜔1𝜆 + 𝜔2] = 0. 

Accordingly, 𝐽3
∗  has zero eigenvalue with the other two eigenvalues given by 𝜆1,2 =

−
𝜔1±√𝜔1

2−4𝜔2

2
, where 𝜔1 > 0, 𝜔2 > 0 due to condition (15). Hence the eigenvalues 𝜆1,2 have 

negative real parts. It is determined that 𝐔4 = (𝜎1, 𝜎2, 1)𝑇 , where 𝜎1 =
𝑎12𝑎23−𝑎13𝑎22

𝑎11𝑎22
∗ −𝑎12𝑎21

> 0, and 

𝜎2 =
𝑎13𝑎21−𝑎11𝑎23

𝑎11𝑎22
∗ −𝑎12𝑎21

> 0 due to condition (24) and 𝐖4 = (𝜎3, 𝜎4, 1), where 𝜎3 =
𝑎21𝑎32

𝑎11𝑎22
∗ −𝑎12𝑎21

> 0, 

and 𝜎4 = −
𝑎11𝑎32

𝑎11𝑎22
∗ −𝑎12𝑎21

> 0 are the corresponding eigenvectors related with the zero eigenvalue 

of 𝐽3
∗ and 𝐽3

∗T
 respectively. 

Moreover, it’s obtained:     

𝐅𝑤8
= (

0
−𝑦2

0
) ⟹ 𝐅𝑤8

(𝐸3, 𝑤8
∗) = (

0
−(𝑦∗)2

0
). 

𝐷2𝐅(𝐸3, 𝑤8
∗)(𝐔4, 𝐔4) = (𝑐𝑖1

[2](𝐸4, 𝑤8
∗))

3×1
, 

where 

 
𝑐11

[2](𝐸4, 𝑤8
∗) =

2𝜎1𝑤4𝑦∗

(1+𝑤4𝑧∗)2
− 2𝜎1

2 + 2𝑥∗ (
𝜎2

2𝑤1
2

(1+𝑤1𝑦∗)3
−

𝑤4
2𝑦∗

(1+𝑤4𝑧∗)3
+

𝜎2𝑤4

(1+𝑤4𝑧∗)2
)

+𝜎1𝜎2 (−2𝑤2𝑤3 −
2𝑤1

(1+𝑤1𝑦∗)2
−

2

1+𝑤4𝑧∗)
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𝑐21

[2](𝐸4, 𝑤8
∗) = −2𝜎2(1 + 𝜎2𝑤3 + 𝑤6𝑤7) − 2𝑤9𝑦

∗ − 4𝜎2𝑤9𝑧
∗ +

2𝑤4
2𝑤5𝑥∗𝑦∗

(1+𝑤4𝑧∗)3

−
2𝑤4𝑤5(𝜎2𝑥∗+𝜎1𝑦∗)

(1+𝑤4𝑧∗)2
+

2𝜎1𝜎2𝑤5

1+𝑤4𝑧∗

 

 𝑐31
[2](𝐸4, 𝑤8

∗) = 2[−𝑤12 + 𝑤10(𝜎2 + 𝑤9𝑦
∗ + 2𝜎2𝑤9𝑧

∗)] 

Therefore, straightforward computation using condition (22) shows that: 

 𝐖4
T𝐅𝑤8

(𝐸3, 𝑤8
∗) = −𝜎4(𝑦

∗)2 ≠ 0. 

 𝐖4
T[𝐷2𝐅(𝐸3, 𝑤8

∗)(𝐔4, 𝐔4)] = 𝜎3𝑐11
[2](𝐸4, 𝑤8

∗) + 𝜎4𝑐21
[2](𝐸4, 𝑤8

∗) + 𝑐31
[2](𝐸4, 𝑤8

∗) ≠ 0. 

Hence a saddle-node bifurcation takes place at the positive equilibrium point E3. 

 

8. NUMERICAL ANALYSIS  

In this section, the aspects of system (2) dynamics are explored. The primary objective is to 

develop an understanding of how the system behaves as its parameters are altered. To accomplish 

this, a set of hypothetical parameter values (25) is employed. The solutions are analyzed through 

phase portraits and time series analyses using Matlab and AutoPortrait [50]. 

Parameter: 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9 𝑤10 𝑤11 𝑤12 
(25) 

Value: 0.3 0.05 0.15 0.3 0.75 0.1 0.25 0.3 0.5 0.6 0.15 0.5 

Based on the data set provided (25) it can be observed that system (2) has a positive equilibrium 

point 𝐸3 that remains stable globally over time. This stability is evident when analyzing the phase 

portrait shown in Figure (1a) and the corresponding time series depicted in Figures (1b-1e). 

Additionally, Figures (1f-1h) provide projections of the portrait onto the 𝑥𝑦 −, 𝑥𝑧 − and 𝑦𝑧 − 

planes. These figures demonstrate the existence of a globally asymptotically stable point of system 

(2), in agreement with the analytical results. 

Figure 2 demonstrates that when the value of the parameter 𝑤2 is increased to fall within the range 

of [0.4720, 0.8830] , system (2) loss its persistence since point 𝐸3  is approached to 𝐸2 , and 

extinction of the top predator is observed, while it continued approach to 𝐸1 when the value of 𝑤2 

surpasses the threshold of 0.8830, resulting in the extinction of the middle predator as well. 
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Furthermore, if the value of 𝑤2  exceeds 1, the point 𝐸3 will be approached to 𝐸0, signifying the 

extinction of all species. It is important to note the features represented in this figure and its 

subsequent ones, including stable equilibrium point (⚫), saddle equilibrium point (⚫), streamlines  

(--), trajectory (--), and nullcline (--). 

In Figure 3, it can be observed that as the value of the parameter 𝑤5 is decreased to fall within the 

range of [0.0930, 0.2600], system (2) again loss its persistence and point 𝐸3 is approached to  𝐸2, 

and the top predator extinct. Furthermore, when the value of 𝑤5 is reduced below the threshold of 

0.0930, 𝐸3 continues its approach to 𝐸1, resulting in the extinction of the middle predator as well.  

On the other hand, Figure 4, demonstrates that when the value of the parameter 𝑤6 is increased to 

fall within the range of [0.4260, 0.7230], point 𝐸3 is approached, leading to its transformation 

into 𝐸2 , and the observation of top predator extinction with a loss of the system persistence. 

Furthermore, when the value of 𝑤6  exceeds the threshold of 0.7230 , an approach to 𝐸1  is 

continued, resulting in the extinction of the middle predator as well. 

Figure 5 displays the behavior of the system (2) as the parameter 𝑤10 is varied. It is observed that 

point 𝐸3 transforms into 𝐸2 when the value of 𝑤10 falls below 0.2760, resulting in the occurrence 

of extinction in the top predator. In contrast, when 𝑤11 is less than 0.3090, the transformation of 

𝐸2 into 𝐸3 is depicted, as shown in Figure 6. 

Finally, a very large value of the parameter 𝑤1 causes 𝐸3 to be moved toward 𝐸2, resulting in the 

decrease of the top predator population till extinction, as Figure 7 shows. 
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Figure 1: (a) The trajectories of system (2) approach asymptotically to the positive equilibrium 

point 𝐸3(0.5181,0.3496,0.1515) from different initial points with the data given by (25), (b) 

their corresponding time series, while (c), (d), (e) show the trajectories projection on the 𝑥𝑦 −, 

𝑥𝑧 − and 𝑦𝑧 − plane respectively. 
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(a) 𝒘𝟐 = 𝟎. 𝟐 

   

(b) 𝒘𝟐 = 𝟎. 𝟔 

   

(c) 𝒘𝟐 = 𝟎. 𝟗 

   

(d) 𝒘𝟐 = 𝟏. 𝟐 

Figure 2: The phase portrait of the system (2) in the 𝑥𝑦 −, 𝑥𝑧 −, and 𝑦𝑧 − plane, respectively, 

for different values of 𝑤2.  
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(a) 𝒘𝟓 = 𝟎. 𝟗 

   

(b) 𝒘𝟓 = 𝟎. 𝟐 

   

(c) 𝒘𝟓 = 𝟎. 𝟎𝟖 

Figure 3: The phase portrait of the system (2) in the 𝑥𝑦 −, 𝑥𝑧 −, and 𝑦𝑧 − plane, respectively, 

for different values of 𝑤5.  
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(a) 𝒘𝟔 = 𝟎. 𝟐 

   

(b) 𝒘𝟔 = 𝟎. 𝟔 

   

(c) 𝒘𝟔 = 𝟎. 𝟗 

Figure 4: The phase portrait of the system (2) in the 𝑥𝑦 −, 𝑥𝑧 −, and 𝑦𝑧 − plane, respectively, 

for different values of 𝑤6.  
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(a) 𝒘𝟏𝟎 = 𝟎. 𝟕 

   
(b) 𝒘𝟏𝟎 = 𝟎. 𝟏 

Figure 5: The phase portrait of the system (2) in the 𝑥𝑦 −, 𝑥𝑧 −, and 𝑦𝑧 − plane, respectively, 

for different values of 𝑤10.  

   
(a) 𝒘𝟏𝟏 = 𝟎. 𝟐 

   
(b) 𝒘𝟏𝟏 = 𝟎. 𝟕 

Figure 6: The phase portrait of the system (2) in the 𝑥𝑦 −, 𝑥𝑧 −, and 𝑦𝑧 − plane, respectively, 

for different values of 𝑤11.  
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(a) 𝒘𝟏 = 𝟎. 𝟓 

   

(b) 𝒘𝟏 = 𝟓 

Figure 7: The phase portrait of the system (2) in the 𝑥𝑦 −, 𝑥𝑧 −, and 𝑦𝑧 − plane, respectively, 

for different values of 𝑤1.  

 

Finally, varying the other parameters are carried out too and the obtained results can be given in 

Table 3 below. 
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Table 3: The dynamical behavior of the system (2) as a function of some parameters: 

Parameter The Dynamical behavior using the numerical simulation with data (25) 

𝑤3 
The system loses persistence as the parameter value increases, and the solution 

goes ultimately to the boundary equilibrium point. 

𝑤4 
The system loses persistence as the parameter value increases, and the solution 

goes ultimately to the boundary equilibrium point. 

𝑤7 
The system loses persistence as the parameter value increases, and the solution 

goes ultimately to the boundary equilibrium point. 

𝑤8 
The system loses persistence as the parameter value increases, and the solution 

goes ultimately to the boundary equilibrium point. 

𝑤9 
As the parameter value increases, the system still persists and goes ultimately 

to the 3D periodic attractor. 

𝑤12 
The system loses persistence as the parameter value increases, and the solution 

goes ultimately to the boundary equilibrium point. 

  

9. DISCUSSION AND CONCLUSIONS 

The effects of hunting cooperation, fear, and intraspecific competition are developed upon and 

explored from a dynamics standpoint in this research using a three-species food chain model. The 

qualitative properties of the solution are explained. Analyzing the existence of equilibria and 

looking at their stability are both done. The persistence requirements of the system are established. 

The study of the global stability of the positive equilibrium point is employed utilizing the 

geometric technique. We propose the bifurcation conditions that ensure local bifurcation around 

the equilibrium points. According to the results, all other points do not exist when the trivial 

equilibrium point is stable, but when this point is unstable, the axial points do exist, and one of 

them will be asymptotically stable. Therefore, a crucial bifurcation parameter in the food chain 

system is the death rate for prey species, and this is supported by theorem (7) and Figure (2). 
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Extensive numerical simulations are performed using the fictitious set of data provided in equation 

(25), and the observed results can be summed up as follows. This is done in order to better 

understand the effects of changing parameters and to confirm our acquired conclusions.  

The rate of mortality for the prey, which has three bifurcation points, the rate of conversion of 

biomass from the prey into the middle predator, and the rate of mortality for the middle predator, 

both of which have two bifurcation points, are the factors that have the most impact on the 

dynamics of the system (2). One point serves as the bifurcation for all other factors. The biomass 

conversion rates from the prey to the middle and top predators are positively correlated with the 

stability of the positive equilibrium point. By approaching periodic dynamics, the top predator's 

hunting cooperative rate destabilizes the system and maintains its persistence.  All other biological 

factors, however, have caused the system to become unstable as a result of losing the system's (2) 

permanence. Based on the above, fear in general and intraspecific competition lead to 

destabilization of the system and loss of its persistence, while cooperation in hunting leads to 

destabilization of the system and maintaining its persistence. 
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