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Abstract. In this paper, we study an optimal control approach against seasonal coronaviruses by adding terms of

reinfection to dynamics of the optimization constraint and which is mainly defined by a stochastic multi-region

SIRS control differential system. In fact, in addition to the problem of infodemics spread, we take into account that

protective immunity against such viruses is short-lasting as there is a risk of reinfection, while the immunization

process control against the epidemic could be realized through any available actions either by following those who

suggest long-term awareness in response of any surprising COVID-19-like in future or those who recommend some

potentially effective medical intervention such as vaccines or antiviral drugs, while other strategists, especially in

times of global epidemic emergencies, could not see any alternative approach to the closure policies in order to

limit the movement of infected people. In front of all these different possibilities to intervene, we let our control

functions open to define any of such considerations and we analyze some of their advantages on preventing the
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viruses spread through different numerical scenarios associated to a boolean variable whose values directly define

the cases of uncontrolled and controlled regions but being interconnected by the factor of mobility.

Keywords: reinfection; stochastic model; stochastic control; infodemics; immunization; closure policy; Covid-19.
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1. INTRODUCTION

1.1. The need to modeling in the context of seasonal coronaviruses. HCoV-229E, HCoV-

NL63, HCoV-OC43, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV-2, are the most

known human coronaviruses, and that attack the respiratory system and cause mild diseases in

cases of the first four viruses, and severe diseases like COVID-19 and acute respiratory distress

syndrome (ARDS) in cases of the last three ones. Protective immunity against coronaviruses is

short-lasting as there is a risk of reinfection. In fact, the authors showed in [1] that reinfection

occured for four seasonal coronavirues, namely for HCoV-229E, HCoV-NL63, HCoV-OC43

and HCoV-HKU1, most frequently at 12 months after infection. In the near future, Rezaei et

al. in [2] are seeing that the incidence of this virus will depend more on the duration of immu-

nity and that we have to accept that even vaccinated people up to the present, are susceptible

to reinfection since there is still no proper vaccine that is able to guarantee a complete protec-

tion against this infection. Thus, if one would be interested to devise modeling framework to

describe the infection dynamics caused by such viruses, it would be more preferably to rely on

the logical form of an SIRS-type system as considered in [3, 4, 5, 6, 7, 8].

1.2. Role of media against infodemics. Since 2019, some countries started to launch aware-

ness campaigns as multi-pronged effort to combat the spread of misinformation online, as well

as enabling authorities concerned to block websites and accounts of influencers who spread fake

news [9]. In actions against false information, awareness campaigns that use media coverage are

very important and can reduce the contact of susceptible populations with infection. In fact, in

such anti-epidemic prevention measures, the media helps to generate a psychological impact on

the social conduct as explained in [10, 11, 12]. As a consequence, many researchers who con-

tributed in the subject of epidemics modeling, introduced and discussed the effect of media in

their models and showed how it can prevent the spread of diseases as in [13, 14, 15, 16, 17, 18].

More than this, in [19], the authors presented many forms of pandemic control models, but in
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the end, they even concluded that any control policy would fail if there is not enough focus

on the health educational system. As explained in [20], we note that infodemics are recently

spreading very quickly in the virtual world, and the role of media becomes more essential than

ever, for reporting and exhibiting truths about epidemics and importance of control interven-

tions for the benefit of the population, in a convincing way so people can follow any necessary

instruction and would not be influenced by rumors [21].

1.3. Contribution to existing control systems. Control methods have been applied to many

models of various diseases, either relying on systems of differential equations [22, 23, 24, 25,

26, 27, 28, 29, 30, 31] or systems of difference equations [32, 33, 34, 35] and that have all been

devised for the study of the disease dynamics under preventive or treatment policies. Recent

meta-population epidemic deterministic models as in [36, 37, 38, 39, 40, 41, 42, 43] studied the

regional spread of infection based on the framework of differential and difference equations.

These last references focused on the importance of people mobility factor and discussed the

effectiveness of closure policies between regions in the fight against of an infection that has the

ability to spread in a large geographical territory. Here, we study the stochastic version proposed

in [20] for those epidemic modeling approaches based on a susceptible-infected-removed-

susceptible”again” (SIRS) multi-regions stochastic model in the presence of perturbed control

with respect to immunization due to infodemics that can be diffused by some internet users, and

we also consider the control closure strategies to be perturbed due to some escapes of infected

travelers or because of the effects of some periods of reopening strategies. Many researchers

have been interested in the study of spatial spread of infection under different perturbations us-

ing stochastic compartmental epidemic models as in [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54].

We also also assume that contacts between susceptible and infected populations are unpre-

dictable, but compared to [20], the main contribution here, is that optimal control problems

subject to the devised SIRS stochastic system, depends on a boolean variable which defines the

degree of importance given to a control strategy in a region. In this paper, we start from the

idea of the optimal control approach studied in [37] in the case of a deterministic multi-regions

discrete SIR model, then we redesign it using a stochastic framework. The boolean variable or

index of importance is named ε j, j = 1, ..., p in the objective criterion to be optimized, and it is



4 FADWA EL KIHAL, IMANE ABOUELKHEIR, ILIAS ELMOUKI

defined as follows: if ε j = 1, this means that a region Ω j is controlled, and if ε j = 0, this means

that the region Ω j is uncontrolled. Then, we state theorems that include solutions existence and

necessary conditions of optimality in this stochastic case. Finally, we provide our numerical

results with a discussion of the two values of ε j.

2. THE MODEL WITH IMMUNIZATION

2.1. The stochastic model with no immunization. Let assume there are p geographical

regions denoted Ω j parts of the domain Ω =

p⋃
j = 1

Ω j.

We define NΩ j(t) as the population size in domain Ω j at time t. This represents the

number of individuals who are physically present in Ω j, both residents and travelers. Let the

host population of Ω j be grouped into three epidemiological compartments, let SΩ j(t), IΩ j(t)

and RΩ j(t) be the number of individuals in the susceptible, infective, and removed compart-

ments of Ω j at time t, respectively. As defined in [20], the stochastic disease transmission in a

given domain Ω j at time t is modeled using a perturbed standard incidence which we present

by
p

∑
k=1

ρ
jk(t)

IΩk(t)
NΩ j(t)

SΩ j(t)

where the stochastic disease transmission coefficient ρ jk(t) is the stochastic proportion of

adequate contacts in domain Ω j between a susceptible from Ω j ( j = 1, ..., p) and an infective

from another domain Ωk at a time t, and which we define by

ρ
jk(t) = β jk +σ j

dW Ω j(t)
dt

where β jk > 0 is the equivalent disease transmission coefficient to ρ jk but in the deterministic

case, which had been defined also as the proportion of adequate contacts in the study cases

of [12, 18], σ j ( j = 1, ..., p), are real constants and representing the intensities of fluctuations

caused by media, and {W Ω j(t)}t∈[0,T ] is an independent random variable composed with contin-

uous white noises independent to Ft ∈F , and which is a standard Brownian motion supposed

to be caused by to media coverage in region Ω j. Let define a boolean variable ε j (ε j = 1 or

ε j = 0) associated to domain Ω j, that will be called the importance index of Ω j. ε j is either
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equaling to 1, in the case when it is important to control the region Ω j, or ε j = 0 otherwise. Let

I = {1, ..., p}, and denote by IC ⊂ I, the set of indexes of regions which are important to control

(by immunization through vaccination or awareness), i.e. IC =
{

j ∈ I/ε j = 1
}

. The stochastic

multi-regional discrete-time SIRS model associated to Ω j with ε j = 0 (no control is introduced

yet in Ω j) is then presented as follows

ṠΩ j(t) =−
p

∑
k=1

ρ
jk(t)

IΩk(t)
NΩ j(t)

SΩ j(t)+
(
NΩ j(t)−SΩ j(t)

)
d j + e jRΩ j(t)(1)

İΩ j(t) =
p

∑
k=1

ρ
jk(t)

IΩk(t)
NΩ j(t)

SΩ j(t)− γ jIΩ j(t)−d jIΩ j(t)

ṘΩ j(t) = γ jIΩ j(t)− (d j + e j)RΩ j(t)(2)

where d j is the birth and death rate, γ j is the recovery rate and e j is the losing removal

individuals immunity rate. The biological background requires that all parameters be non-

negative.

NΩ j(t) = SΩ j(t)+ IΩ j(t)+RΩ j(t) is the population size corresponding to domain Ω j at time t.

The population size remains constant for all t ∈ [0,T ], in fact

ṄΩ j(t) = ṠΩ j(t)+ İΩ j(t)+ ṘΩ j(t) = 0

Therefore, in function of the deterministic proportion of adequate contacts β jk and the continu-

ous Wiener process W Ω j(t), the stochastic system (1)-(2) becomes the Itô discrete multi-regions

stochastic differential equations (SDEs) model

ṠΩ j(t) =−
p

∑
k=1

β jk
IΩk(t)
NΩ j(t)

SΩ j(t)+
(
NΩ j(t)−SΩ j(t)

)
d j + e jRΩ j(t)

−σ j

p

∑
k=1

IΩk(t)
NΩ j(t)

SΩ j(t)
dW Ω j(t)

dt
(3)

İΩ j(t) =
p

∑
k=1

β jk
IΩk(t)
NΩ j(t)

SΩ j(t)− γ jIΩ j(t)−d jIΩ j(t)

+σ j

p

∑
k=1

IΩk(t)
NΩ j(t)

SΩ j(t)
dW Ω j(t)

dt
(4)

ṘΩ j(t) = γ jIΩ j(t)− (d j + e j)RΩ j(t)(5)

2.2. Presentation of the control model. Let introduce a stochastic control variable θ Ω j(t)

which characterizes the effectiveness of immunization in the above mentioned model (3-5)

when the control variable function denoted by uΩ j(t), is perturbed with disturbances caused

by infodemics and rumors, and also ideas from feelings of fear and misconception. Then for
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a given domain Ω j with ε j = 1 (Ω j is targeted by immunization), the model is given by the

following equations

ṠΩ j(t) =−
p

∑
k=1

ρ
jk(t)

IΩk(t)
NΩ j(t)

SΩ j(t)+
(
NΩ j(t)−SΩ j(t)

)
d j

−θ
Ω j(t)SΩ j(t)+ e jRΩ j(t)(6)

İΩ j(t) =
p

∑
k=1

ρ
jk(t)

IΩk(t)
NΩ j(t)

SΩ j(t)− γ jIΩ j(t)−d jIΩ j(t)

ṘΩ j(t) = γ jIΩ j(t)− (d j + e j)RΩ j(t)+θ
Ω j(t)SΩ j(t)(7)

with

θ
Ω j(t) = uΩ j(t)+δ j

dW Ω j(t)
dt

.

Thus, in a more general form, it refers to the stochastic control difference equation written at a

time t as

ẋΩ(t) = f (t,xΩ(t),uΩ(t))+g(t,xΩ(t),uΩ(t))
dW Ω(t)

dt

where at time t and for j = 1, ..., p

xΩ(t) = xΩ j(t) =


SΩ j(t)

IΩ j(t)

RΩ j(t)


uΩ(t) = uΩ j(t),

f (t,xΩ(t),uΩ(t))

=


−

p

∑
k=1

β jk
IΩk(t)
NΩ j(t)

SΩ j(t)+
(

NΩ j(t)−SΩ j(t)
)

d j−uΩ j(t)SΩ j(t)+ e jRΩ j(t)

p

∑
k=1

β jk
IΩk(t)
NΩ j(t)

SΩ j(t)− γ jIΩ j(t)−d jIΩ j(t)

γ jIΩ j(t)− (d j + e j)RΩ j(t)+uΩ j(t)SΩ j(t)


and

g(t,xΩ(t),uΩ(t)) =


−

(
σ j

p

∑
k=1

IΩk(t)
NΩ j(t)

SΩ j(t)+δ jSΩ j(t)

)
σ j

p

∑
k=1

IΩk(t)
NΩ j(t)

SΩ j(t)

δ jSΩ j(t)
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Our goal is to minimize the population of the infected group and the cost of immunization in all

regions which are important to control. Our control functions taking values between uΩ j
min and

uΩ j
max, where uΩk

min,u
Ωk
max ∈ ]0,1[ , ∀k = 1, ..., p.

2.3. A stochastic optimal control approach.

2.3.1. Optimal control characterization and necessary conditions. Aiming to minimize the

number of the infected people and maximize the ones in the removed category for a given

region which is important to control, we try to find here, an optimal control for each region

including in our optimization criterion, different indexes of importance ε j, j = 1, ..., p. If ε j = 1

it means that Ω j is controlled, and if ε j = 0 it means that Ω j is uncontrolled. Then, we are

interested by minimizing the functional

(8) J(u) =

p

∑

k = 1

εkJk(uΩk)

where Jk(uΩk) is given by J j(uΩ j) = E
(∫ T

0
f0(t,xΩ j(t),uΩ j(t))dt

)
with

f0(t,xΩ j(t),uΩ j(t)) =

(
α

I
jI

Ω j(t)−α
R
j RΩ j(t)+

A j

2
(uΩ j(t))2

)
where A j > 0, α I

j > 0, αR
j > 0 are the weight constants of control, the infected and the re-

moved in region Ω j respectively.

In [37, 43], the authors have studied the special case of the minimization problem of the

cost functional J when there was no stochasticity. Here, our goal is to minimize the number

of infected people, minimize the systemic costs attempting to increase the number of removed

people in each Ω j while being under the stochastic perturbations explained above. In other

words, we are seeking an optimal control uΩ j∗ such that

J(uΩ j∗) = min{J(uΩ j)/uΩ j ∈U}

where U j is the control set defined by

U j([0,T ]) = {uΩ j(t) Ft progressively measurable|uΩ j
min 6 uΩ j(t)6 uΩ j

max}
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for all j ∈ IC, t ∈ [0,T ]

Let define the Hamiltonian function H by

H(xΩ,uΩ,µΩ,νΩ) =
p

∑
k=1

εk

(
f0(xΩ,uΩ)+ 〈 f (xΩ,uΩ),µΩ〉+ tr

[
ν

ΩT
g(xΩ,uΩ)

])
At time t ∈ [0,T ] and for j = 1, ..., p, it can be rewritten as

H(xΩ j(t),uΩ j(t),µΩ j(t),νΩ j(t)) =
p

∑
k=1

εk

(
f0(xΩ j(t),uΩ j(t))+ 〈 f (xΩ j(t),uΩ j(t)),µΩ j(t)〉

+
3

∑
l=1

glT
(xΩ j(t),uΩ j(t))νΩl

j(t)

)
Here .T means the transposition, while in a domain Ω, (µ(t),ν(t)) is a pair of adjoint variables

satisfying the following adjoint BSDE (Backward stochastic differential equation)
dµΩ(t) = −[ f T

x (t,xΩ(t),uΩ(t))µΩ(t)+∑
3
l=1 glT

xΩ(t,xΩ(t),uΩ(t))νΩl
(t)

+ f0xΩ
(t,xΩ(t),uΩ(t))]dt +νΩ(t)dW Ω(t),

µΩ(T ) = 0.

(9)

Using a stochastic version of Pontryagin’s maximum principle [55], we characterize the optimal

control u in the following theorem to find its analytical formulation.

Theorem 2.3.1. (Stochastic maximum principle and characterization of uΩ∗)

If there exists an optimal pair (xΩ∗,uΩ∗) and a pair of processes (µ(t),ν(t)) satisfying (9), then

for j = 1, ..., p, we have

H(t,xΩ j∗(t),uΩ j∗(t),µΩ j(t),νΩ j(t)) = min
uΩ j∈U

H(t,xΩ j(t),uΩ j∗(t),µΩ j(t),νΩ j(t)).

Moreover, we obtain the bounded stochastic control

uΩ j∗ = min(max(uΩ j
min,−

(µ
Ω j
3 (t)−µ

Ω j
1 (t))SΩ j∗

ε jA j
),uΩ j

max),

solution of the FBSDEs (Forward-backward stochastic differential equations)

dxΩ j(t) = f (t,xΩ j(t),uΩ j(t))dt +g(t,xΩ j(t),uΩ j(t))dW Ω j(t)

dµΩ j(t) = −[ f T
xΩ j

(t,xΩ j(t),uΩ j(t))µΩ j(t)+∑
3
l=1 glT

xΩ j
(t,xΩ j(t),uΩ j(t))νΩl

j(t)

+ f0
x
Ω j
(t,xΩ j(t),uΩ j(t))]dt +νΩ j(t)dW Ω j(t),

xΩ j(0) = (SΩ j
0 , IΩ j

0 ,RΩ j
0 )

µΩ j(T ) = 0.

(10)
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Similar reasoning as in [20], can be followed for obtaining the result. Proofs for Solutions

existence and sufficient conditions of optimality, can be found in the same mentioned reference.

2.3.2. Numerical Results.
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FIGURE 1. No control, i.e. ε1 = ε2 = ε3 = 0. SΩ jIΩ jRΩ j , j = 1,2,3 stochastic

dynamics without controls in cases of e j = 0, 0.1, 0.2 in (a), (b) and (c) re-

spectively. SΩ1
0 = 90000, IΩ1

0 = 1200, SΩ2
0 = 89000, IΩ2

2 = 1100, SΩ3
0 = 88000,

IΩ3
0 = 1000, RΩ j

0 = 0 ∀ j = 1,2,3, d1 = 0.06, γ1 = 0.04, β1 = 0.5, d2 = 0.05,

γ2 = 0.03, β2 = 0.4, d3 = 0.04, γ3 = 0.02, β3 = 0.1
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FIGURE 2. Control in all regions, i.e. ε1 = ε2 = ε3 = 1. SΩ jIΩ jRΩ j , j = 1,2,3

stochastic dynamics in the presence of all optimal controls uΩ1∗,uΩ2∗ and uΩ3∗

in cases of e j = 0, 0.1, 0.2. SΩ1
0 = 90000, IΩ1

0 = 1200, SΩ2
0 = 89000, IΩ2

2 = 1100,

SΩ3
0 = 88000, IΩ3

0 = 1000, RΩ j
0 = 0 ∀ j = 1,2,3, d1 = 0.06, γ1 = 0.04, β1 = 0.5,

d2 = 0.05, γ2 = 0.03, β2 = 0.4, d3 = 0.04, γ3 = 0.02, β3 = 0.1

In this part, we investigate the advantages of the immunization-based control in the pre-

vention of the viruses spread, using the stochastic forward-backward sweep method that in-

corporate stochastic progressive-regressive schemes devised for the case of stochastic optimal

control problem as in [20] and also detailed in [56]. In Figure 8.1., we compare between three

cases that depend on the value of the losing removal individuals immunity rate, namely (a)

e j = 0, j = 1,2,3 which defines the SIR model case, (b) e j = 0.1 and (c) e j = 0.2, all under the
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condition ε1 = ε2 = ε3 = 0 which defines the SΩ jIΩ jRΩ j , j = 1,2,3 stochastic dynamics when

there is yet no control. As we can observe in this Figure, the number of infected people increases

in the first days and stochastically stabilize in very important amount that takes higher values

every time e j is higher since when there is a fraction of removed people move again to the sus-

ceptible category, we will have more infected people. Simultaneously, the number of removed

people in all three regions increases to a modest value because of the natural recovery but this

becomes less important every time every time e j is smaller since there are individuals who join

the susceptible class. The Figure 8.2. depicts the SΩ jIΩ jRΩ j , j = 1,2,3 stochastic dynamics

when immunization is followed in all regions meeting the condition ε1 = ε2 = ε3 = 1 with an

investigation of the effectiveness of this policy in the three cases e j = 0, j = 1,2,3, e j = 0.1

and e j = 0.2. Here, we can deduce that the immunization control strategy has succeeded in

reducing the number of infected individuals and as we can see for the case e j = 0, j = 1,2,3,

IΩ j has increased just very little in the first 20 days and decreased towards zero values in al-

most remaining days. This number does not exceed the one third of its value in case of Figure

8.1. despite a slightly increase of its value in this Figure because of the importance given e j.

Simultaneously, RΩ j in all three regions increases exponentially after less than three days to an

important value that is very close to initial condition SΩ1
0 but this becomes less important every

time every time e j is smaller since there are individuals who join the susceptible class.

3. THE MODEL WITH IMMUNIZATION PLUS CLOSURE POLICY

3.1. Presentation of the control model. Let I = {1, ..., p} and IH ⊂ I the set of indexes of

regions at high-risk and then, having the ability to spread the epidemic to other regions. Here,

we study the case when a given region Ω j is under immunization control uΩ j and at the same

time under threat of infection coming from other regions. For this, we add to the immunization

strategy, an other control denoted as v jΩk to characterize the effectiveness of closure operations,

in order to prevent infected of regions Ωk, k ∈ IH to come to the controlled region Ω j, where

(11)

 v jΩk 6= 0 ∀k ∈ IH k 6= j

v jΩk = 0 elsewhere

Then, the model (6)-(7) in the controlled region Ω j is rewritten as follows
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ṠΩ j(t) = −
p

∑
k=1

ϑ
jk(t)

IΩk(t)
NΩ j(t)

SΩ j(t)+
(
NΩ j(t)−SΩ j(t)

)
d j−θ

Ω j(t)SΩ j(t)+ e jRΩ j(t)(12)

İΩ j(t) =
p

∑
k=1

ϑ
jk(t)

IΩk(t)
NΩ j(t)

SΩ j(t)− γ jIΩ j(t)−d jIΩ j(t)

ṘΩ j(t) = γ jIΩ j(t)− (d j + e j)RΩ j(t)+θ
Ω j(t)SΩ j(t)(13)

with the immunization control defined as

θ
Ω j(t) = uΩ j(t)+δ j

dW Ω j(t)
dt

.

and the function ϑ jk(t) defined as

ϑ
jk(t) =

(
1− v jΩk

)
β jk +(1− ς jk)σ j

dW Ω j(t)
dt

where σ j and ς jk k ∈ IH , ( j = 1, ..., p) are real constants and representing the intensities of

fluctuations caused by media and escapes of infected people in borders between Ωk and Ω j

respectively.

3.2. A stochastic optimal control approach. Now, we consider the minimization problem

of the following objective function

J(u,v) =
p

∑
k=1

εkJk(uΩk ,vΩk)(14)

but with a change of definition of Jk(uΩk ,vkΩ) to

J j(uΩ j ,v jΩ) = ∑
k∈IH

E

(∫ T

0

(
α

I
jI

Ω j(t)−α
R
j RΩ j(t)+

A j

2
(uΩ j(t))2 +

B j

2
(v jΩk(t))2

)
dt
)

where

B j > 0 is the weight constant of the new control, while uΩ j ∈ U j and v jΩ =
(
v jΩk

)
k∈IH

be-

longing to the control set V IH
j defined as

V IH
j ([0,T ]) = {v jΩ(t) Ft-progressively measurable|vΩ j

min 6 v jΩk(t)6 vΩ j
max,k ∈ IH}

for all j ∈ IC, t ∈ [0,T ].

The Hamiltonian in this case is defined as

H =
p

∑
k=1

εk ∑
l∈IH

(
α

I
jI

Ω j(t)−α
R
j RΩ j(t)+

A j

2
(uΩ j(t))2 +

B j

2
(v jΩl(t))2

+µ
ΩT

j (t) f (t,xΩ j(t),uΩ j(t),v jΩl(t))+
3

∑
m=1

gmT
(xΩ j(t),uΩ j(t),v jΩl(t))νΩl

j(t)
)
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where the state function f are defined as

f (t,xΩ(t),uΩ(t),v jΩ(t))

=


−

p

∑
k=1

(
1− v jΩk

)
β jk

IΩk(t)
NΩ j(t)

SΩ j(t)+
(

NΩ j(t)−SΩ j(t)
)

d j−uΩ j(t)SΩ j(t)+ e jRΩ j(t)

p

∑
k=1

(
1− v jΩk

)
β jk

IΩk(t)
NΩ j(t)

SΩ j(t)− γ jIΩ j(t)−d jIΩ j(t)

γ jIΩ j(t)− (d j + e j)RΩ j(t)+uΩ j(t)SΩ j(t)


and the diffusion matrix g defined as

g(t,xΩ(t),uΩ(t),v jΩ(t)) =


−

(
σ j

p

∑
k=1

(1− ς jk)
IΩk(t)
NΩ j(t)

SΩ j(t)+δ jSΩ j(t)

)
σ j

p

∑
k=1

(1− ς jk)
IΩk(t)
NΩ j(t)

SΩ j(t)

δ jSΩ j(t)


while in a domain Ω, (µ(t),ν(t))) is a pair of adjoint variables satisfying the following adjoint

BSDE (Backward stochastic differential equation)

dµΩ(t) = −[ f T
x (t,xΩ(t),uΩ(t),v jΩ(t))µΩ(t)

+∑
3
l=1 glT

xΩ(t,xΩ(t),uΩ(t),v jΩ(t))νΩl
(t)

+ f0xΩ
(t,xΩ(t),uΩ(t),v jΩ(t))]dt +νΩ(t)dW Ω(t),

µΩ(T ) = 0

(15)

3.2.1. Optimal control characterization and necessary conditions. Using the stochastic Pon-

tryagin’s Maximum Principle as done for the first control strategy, we obtain the following

optimal control characterization and necessary conditions.

Theorem 3.2.1. If there exists an optimal pair (xΩ∗,uΩ∗,v jΩ∗) and a pair of processes

(µ(t),ν(t)) satisfying (15), then for j = 1, ..., p, k ∈ IH we have

H(t,xΩ j∗(t),uΩ j∗(t),v jΩk∗(t),µΩ j(t),νΩ j(t))

= min
(uΩ j ,v jΩk (t))∈U j×V IH

j

H(t,xΩ j(t),uΩ j∗(t),v jΩk∗(t),µΩ j(t),νΩ j(t))

Moreover, we obtain the bounded stochastic control

uΩ j∗ = min(max(uΩ j
min,−

(µ
Ω j
3 (t)−µ

Ω j
1 (t))SΩ j∗

ε jA j
),uΩ j

max),



14 FADWA EL KIHAL, IMANE ABOUELKHEIR, ILIAS ELMOUKI

v jΩk∗ = min(max(uΩ j
min,−

(µ
Ω j
1 (t)−µ

Ω j
2 (t))β jkIΩk∗SΩ j∗

ε jB j
),uΩ j

max),

solutions of the FBSDEs (Forward-backward stochastic differential equations)

dxΩ j(t) = f (t,xΩ j(t),uΩ j(t),v jΩk(t))dt +g(t,xΩ j(t),uΩ j(t),v jΩk(t))dW Ω j(t)

dµΩ j(t) = −[ f T
xΩ j

(t,xΩ j(t),uΩ j(t),v jΩk(t))µΩ j(t)

+∑
3
l=1 glT

xΩ j
(t,xΩ j(t),uΩ j(t),v jΩk(t))νΩl

j(t)

+ f0
x
Ω j
(t,xΩ j(t),uΩ j(t),v jΩk(t))]dt +νΩ j(t)dW Ω j(t),

xΩ j(0) = (SΩ j
0 , IΩ j

0 ,RΩ j
0 )

µΩ j(T ) = 0.

3.2.2. Numerical Results. In Figure 8.3, we try to show the importance of the optimal clo-

sure strategy when it is followed in parallel with the optimal immunization policy discussed

in Figure 8.2. This Figure depicts again the SΩ jIΩ jRΩ j , j = 1,2,3 stochastic dynamics when

immunization plus closure policy are both followed in all regions and meeting the condition

ε1 = ε2 = ε3 = 1 in the three cases e j = 0, j = 1,2,3, e j = 0.1 and e j = 0.2. We can conclude

that the closure control strategy has succeeded more in reducing the number of infected individ-

uals and as we can see for the case e j = 0, j = 1,2,3, IΩ j has increased in just less than 20 days

and decreased towards zero values in almost remaining days. This number does not exceed less

than the one third of its value in case of Figure 8.1. despite a very slightly increase of its value

in this Figure because of the importance given e j. We can see more the effect of travel-blocking

control strategy in reducing IΩ j when we compare simulations between the second and third

plots of Figure 8.2. and this present one. Simultaneously, RΩ j in all three regions increases

exponentially after less than three days to an important value that is very close to initial con-

dition SΩ1
0 but this becomes less important every time every time e j is smaller since there are

individuals who join the susceptible class. In Figure 8.4, we investigate the effectiveness of

both immunization and closure strategies when the degree of importance ε j for different j is

not equal in all regions. As a first example, we suppose that regions Ω1 and Ω2 are not un-

der immunization control ”case (a)”, and we can deduce this has not been sufficient to prevent

the epidemic in all regions. Despite that remark, we can say there is a significant and positive
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FIGURE 3. Control in all regions, i.e. ε1 = ε2 = ε3 = 1. SΩ jIΩ jRΩ j , j = 1,2,3

dynamics with optimal controls with optimal controls uΩ1∗,uΩ2∗ and uΩ3∗ plus

v1Ωk∗,k = 2,3 in cases of e j = 0, 0.1, 0.2. SΩ1
0 = 90000, IΩ1

0 = 1200, SΩ2
0 =

89000, IΩ2
2 = 1100, SΩ3

0 = 88000, IΩ3
0 = 1000, RΩ j

0 = 0 ∀ j = 1,2,3, d1 = 0.06,

γ1 = 0.04, β1 = 0.5, d2 = 0.05, γ2 = 0.03, β2 = 0.4, d3 = 0.04, γ3 = 0.02, β3 =

0.1.

change in this case where e j is supposed to equal 0.2, with a slight reduction of the level of

infection compared to the third case of the first figure, especially when we are close to the end

because of the maximum value 1 taken by v1Ωk∗,k = 2,3 until the last 5 and 2 days respectively.

As for the second example ”case (b)” which means that immunization control has been followed

in all regions except Ω1, the number of removed people has increased significantly in Ω2 and
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FIGURE 4. case (a): immunization control of region Ω3 only; i.e. ε1 = ε2 = 0

and ε3 = 1. case (b): immunization control in all regions except Ω1; i.e. ε1 = 0

and ε2 = ε3 = 1. e j = 0.2, ∀ j. SΩ1
0 = 90000, IΩ1

0 = 1200, SΩ2
0 = 89000, IΩ2

2 =

1100, SΩ3
0 = 88000, IΩ3

0 = 1000, RΩ j
0 = 0 ∀ j = 1,2,3, d1 = 0.06, γ1 = 0.04,

β1 = 0.5, d2 = 0.05, γ2 = 0.03, β2 = 0.4, d3 = 0.04, γ3 = 0.02, β3 = 0.1.

Ω3, while the number of infected people in these two regions is lower the case treated in the

first figure. The main advantage of this last simulation, is that it is showing clearly how the

immunization control strategy has an implicit effect on the number of infected people in region

Ω1 compared to the first case (a) in the same figure. This can not finally be taken as ideal cases

compared to the case when all ε j are supposed to equal 1 as in the previous figure, but this helps

to prove the influence of one region on another.
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4. CONCLUSION

In this paper, we introduced into a stochastic multi-regions SIRS epidemic model which

describes the spread of infection that can affect people again even after their recovery, some

control functions associated to immunization strategies followed in regions dependably on the

value of a boolean variable which takes either 1 or 0 and defined as the degree of importance

given to a region for controlling it. The effectiveness of the immunization policy has been

investigated with additional control strategy which characterizes travel-blocking operations that

aim to restrict the number of people coming from a region with a high-risk of infection. After

all, we concluded that immunization plus closure policies, gave better and promising results

than immunization alone, despite the fluctuations considered and that are related to media,

infodemics and escapes.
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