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Abstract. Electrical impedance tomography (EIT) is a non-invasive imaging technique that visualizes the dis-

tribution of electrical conductivity within biological tissues. In this paper, we explore the potential of the Adam

optimization algorithm as an innovative approach to reconstructing thoracic conductivity from EIT data. Orig-

inally developed for machine learning and signal processing tasks, the Adam method offers significant promise

for enhancing EIT reconstruction accuracy and spatial resolution. Through comprehensive numerical simulations

conducted on thorax models, we compare the Adam method and the traditional iterative Gauss-Newton method.

The results demonstrate that the Adam method provides superior performance, improving spatial resolution and

accuracy in resolving thoracic conductivity. The method is still under investigation, and further research and vali-

dation are needed to fully establish its effectiveness and reliability. Although preliminary findings are promising,

additional research and clinical trials are required to identify the degree of its benefits and limits in the context of

thoracic imaging. This study contributes to the growing body of research aimed at exploring advanced optimiza-

tion methods to optimize EIT applications in medical imaging. This will result in better diagnostic capabilities and

medical decision making in the field of thoracic health.
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1. INTRODUCTION

Recently, Electrical Impedance Tomography (EIT) has attracted significant attention as a

promising non- invasive medical imaging technique. Its unique capability to visualize and

monitor electrical conductivity variations within the body’s tissues offers valuable insights into

physiological processes and pathological conditions. EIT works by injecting small electrical

currents through electrodes placed on the body’s surface and measuring the resulting voltages

at other electrode positions. By analyzing these voltage measurements, EIT can create real-time

images of the internal conductivity distribution, providing clinicians with dynamic information

without the need for ionizing radiation[1,14,15,16]. The non-invasive and radiation-free nature

of EIT makes it particularly attractive for continuous and repeated imaging of patients, espe-

cially those who may be sensitive to radiation exposure, such as infants and pregnant women.

Furthermore, EIT is relatively cost-effective compared to more complex and expensive imag-

ing modalities like computed tomography (CT) and magnetic resonance imaging (MRI)[2, 3].

Despite these advantages, EIT faces significant challenges, primarily due to the ill-posed and

nonlinear nature of the inverse problem it seeks to solve[4, 5]. The process of reconstructing in-

ternal conductivity from external voltage measurements is inherently underdetermined, leading

to limited spatial resolution and accuracy in the conductivity images. Noise and measurement

errors further exacerbate these issues, hampering the widespread clinical application of EIT[6,

7]. To address these challenges, researchers have turned to optimization techniques to enhance

the accuracy and quality of EIT conductivity reconstructions[8, 9, 10]. The Adam method,

renowned in the fields of machine learning and signal processing, has shown promising results

in optimizing complex, non- linear problems. Its adaptability in adjusting learning rates and

momentum parameters makes it well-suited to handle the ill-conditioned inverse problems en-

countered in EIT[11, 12]. This article aims to investigate the effectiveness of the Adam method

in reconstructing thoracic conductivity from EIT data. To achieve this, we will conduct numer-

ical simulations using sophisticated thorax models to evaluate and compare the performance of

the Adam method against traditional EIT reconstruction methods, such as the Gauss-Newton
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method[13]. The insights gained from these simulations will shed light on the potential of the

Adam method to enhance spatial resolution and accuracy in thoracic electrical imaging, thereby

contributing to the advancement of EIT as a valuable medical imaging tool. The primary ob-

jective of this study is to offer an extensive comprehension of the applicability of the Adam

method within the domain of Electrical Impedance Tomography (EIT) and its potential to en-

hance the precision and efficiency of EIT imaging. Our investigation is structured as follows:

In Section 2, we present a comprehensive overview of the mathematical model of EIT. Moving

forward, Section 3 delves into an in-depth discussion concerning the inverse problem and out-

lines the methodology utilized for the reconstruction of the conductivity distribution. In Section

4, we present the results of numerical simulations conducted to substantiate our assertions. The

ensuing analysis and discourse of our findings are encapsulated within Section 5. This study un-

dertakes a comparative examination between the iterative Gauss-Newton method and the Adam

optimization algorithm, aiming to underscore the relative advantages and implications of both

techniques in the context of EIT.

2. THE THEORY OF EIT

The EIT problem configuration involves a designated region known as Ω, which must be

analyzed with tomography. To facilitate this process, a set of Nel electrodes is strategically

positioned along the boundary ∂Ω. These electrodes serve a dual role: they apply an excitation

current j while measuring the boundary voltage (where n = 1, 2, ..., Nel). The boundary of

interest is indicated by a dashed line, outlining the extent of the domain under investigation.

This domain holds significance as it relates to the reconstruction of the electrical impedance σ

of interest [22]. In a specific excitation measurement mode, the EIT hardware system samples

the body’s boundary voltages, which are then processed in the EIT software system to extract

relevant impedance information. To better comprehend the principle behind this diagram, for-

ward and inverse problems are introduced in the subsequent section. It is critical to note that

electrical impedance can also be expressed using complex admittance [17], where:

γ = σ + iωε(1)



4 SOUMAYA IDAAMAR, MOHAMED LOUZAR, ABDELLAH LAMNII, SOUKAINA BEN RHILA

Here, ω represents the angular frequency, σ denotes the electrical conductivity, and ε rep-

resents the electric permittivity. EIT combines electrical conductivity tomography (ECT) and

electrical permittivity tomography (EPT). However, in certain applications of EIT (e.g., lung

imaging), the real part or the static state ( ω = 0) of the admittance carries more crucial informa-

tion due to additional pathological insights. To simplify the problem, reconstruction typically

focuses on only the real part. Hence, in many literatures, electrical impedance is simplified

to electrical conductivity. This paper also adopts this simplification to facilitate the problem

description.

3. THE FORWARD PROBLEM

The forward problem in electrical impedance tomography (EIT) involves calculating the

boundary voltage U at the measurement electrodes when the spatial distribution of conductivity

σ of the objects and boundary conditions are known. In other words, given the electrical proper-

ties of the medium being studied and the boundary conditions, we aim to determine the resulting

voltage measurements at the electrode positions. This is a crucial step in EIT as it forms the

basis for comparing the measured data with the predicted data obtained from mathematical

models. Solving the forward problem allows us to simulate the expected electrical responses of

the system under different conductivity distributions and conditions, providing valuable insights

for image reconstruction and interpretation in EIT applications. The problem at hand involves

finding a unique solution to the Laplace equation under the Newman and Dirichlet boundary

condition. Specifically, based on Maxwell’s equation, Ohm’s law, and charge conservation, we

obtain the Laplace equation as follows:

∇ · [σ(x)∇U(x)] = 0, x ∈Ω(2)

Where U denotes the electric potential, and Ω represents the domain of interest. The boundary

condition on the electrodes is given by:

σ(x)
∂U(x)

∂n
= j, x ∈ ∂Ω(3)

Where j is the current density at the electrodes, and ∂Ω denotes the boundary of the body

Ω Additionally, the current conservation equation ∇ · j = 0 needs to be satisfied according to



COMPARISON OF METHODS FOR IMAGE RECONSTRUCTION IN EIT 5

Gauss’s theorem and a zero potential condition must be defined.Due to the irregular shape of the

boundary ∂Ω, obtaining an analytical solution to the above differential equation is challenging

[22, 23]. In fact, the relationship among excitation, system reaction, and measurement can be

expressed simply as follows:

U = F(σ(x))| j(4)

Where σ (x) represents the conductivity distribution, U represents the theoretical boundary volt-

age; and F is a nonlinear function mapping from the conductivity distribution space to the

measurement space. There are four main types of EIT solvers based on electrode modeling:

continuum model, gap model, shunt model, and complete model [24, 25]. Regardless of the

specific model used, the relationship between the boundary voltage U and the conductivity dis-

tribution σ is always represented by a nonlinear function F, which is challenging to express

analytically. Consequently, some methods employ Taylor’s formula for linearization approxi-

mation , resulting in the following expression:

U =U0 +∆U ≈ F(σ0)| j|+
∂σ

∂ j
·∆σ

= F(σ0)| j+ J(σ(x)−σ0)(5)

Here, σ0 represents the background materials or inclusions, and J denotes the sensitivity matrix,

often called the Jacobian matrix.The sensitivity matrix maps the conductivity distribution to the

measurement distribution. When the electrode positions and the current injection/measurement

protocol are determined, the sensitivity matrix J can be computed using the finite element

method (FEM). This allows for the accurate reconstruction of the electrical impedance dis-

tribution within the object of interest [19, 20, 21].

4. THE INVERSE PROBLEM

The inverse problem of Electrical Impedance Tomography (EIT) involves determining the

internal distribution of electrical conductivity σ (x) within an object based on measurements

of boundary voltages Un and known boundary conditions. Based on equation (4), we can
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formulate the inverse problem as follows:

σ(x) = F−1(Un)| j(6)

Where Un represents the measurement boundary voltage, possibly with noise distinct from the

forward problem solver U. This equation (6) introduces two significant challenges. Firstly, the

mapping F is nonlinear, making it challenging to deduce the inverse mapping F−1 analytically.

Secondly, the theoretical boundary voltage U, which functions as the forward problem solver,

adheres to an elliptic equation with Cauchy data. This condition renders the problem ill-posed,

implying that even a minor perturbation (noise) in the measurement data Un can significantly

impact the solution σ (x). Recent years, there has been significant interest in developing ad-

vanced algorithms to solve the inverse problem in Electrical Impedance Tomography (EIT). As

a result, the field has seen the emergence of a variety of advanced techniques [26, 27].

4.1. The classic method: Gauss-Newton Approach.

Electrical Impedance Tomography (EIT) is a challenging inverse problem because it is both

nonlinear and ill- posed.To get an approximate solution, this problem is often handled utilizing

minimization techniques. The key concept is to minimize an objective function that measures

the difference between the measured and predicted voltages. The basic idea is to linearize the

relationship between the conductivity distribution and the boundary voltage measurements us-

ing the Jacobian matrix. In each iteration, an update to the conductivity distribution is computed

based on the linearized model, bringing the predicted voltages closer to the measured ones. This

iterative process continues until a convergence criterion is met. The Gauss-Newton method is

widely employed in EIT due to its effectiveness in handling nonlinearities and its ability to pro-

vide relatively rapid convergence to a solution. However, it’s important to note that the method’s

performance can be sensitive to the initial guess of the conductivity distribution and the pres-

ence of noise in the measurements [8, 28]. The primary objective is to determine the optimal

solution σ that minimizes the cost function φ :

φ(σ) =
1
2
‖F(σ(x))−Un‖2(7)
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The problem of EIT can be formulated as an optimization problem .

σ
∗ = argmin(σ)(8)

The Tikhonov regularization technique involves a regularization term added to the cost function.

The purpose of this modification is to improve the stability of the optimization solution.

φ(σ) =
1
2
‖F(σ(x))−Un‖2 +λR(σ)(9)

Input: φ : Objective function of a least square problem

Input: σ0: Initial guess

Input: J(σ): Jacobian matrix with respect to parameter σ

Input: Un: Measured voltages

Input: U: Simulated voltages using σ0

k← 0 (Initialize iteration);

while not converged do

k← k+1 (Calculate conductivity update);

σk+1← σk +(JT J+λLT L)−1JT (Un−U(σk));

end

Output: return σk (Final conductivity estimate)

Algorithm 1: Gauss-Newton Algorithm

The presented Gauss-Newton algorithm aims to solve a least-squares problem, specifically

within the context of Electrical Impedance Tomography (EIT). In this algorithm, the initial con-

ductivity distribution σ0 is iteratively updated to approach the optimal solution. During each

iteration, the Jacobian matrix J(σ ) is employed to model the relationship between conductivity

variations and differences between simulated measurements U and actual measurements Un.

Tikhonov regularization, parameterized by λ , is applied to stabilize the estimation. The iter-

ative process involves solving a system of equations to compute the conductivity update ∆σ

based on differences between simulated and actual measurements. This update is then added to

the current conductivity σk . The algorithm continues these steps until a convergence criterion
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is met, indicating that the conductivity estimation has converged to a stable solution. Ulti-

mately, the algorithm provides the final estimation of the conductivity distribution σk, which

is the optimal approximation based on electrical measurements and successive iterations. This

Gauss-Newton algorithm plays a crucial role in addressing reconstruction challenges in Electri-

cal Impedance Tomography, enabling a realistic and accurate estimation of material conductiv-

ity from observed electrical data.

4.2. The proposed method: Adam optimizer.

The Adaptive Moment Estimation (Adam) optimizer is a widely used optimization algorithm

in the field of machine learning and deep neural networks. Adam combines the advantages

of both the Adagrad and RMSProp optimizers to dynamically adjust learning rates for each

parameter during training. It maintains a running average of both the gradient and the squared

gradient, adapting the learning rate based on the historical information. This approach allows

Adam to converge quickly and efficiently, making it well-suited for tasks with large datasets and

complex models. The algorithm’s adaptive nature makes it particularly effective for handling

sparse gradients and varying magnitudes of parameters. By automatically adjusting learning

rates, Adam optimizes the training process and helps in achieving faster convergence while

reducing the need for manual tuning of hyperparameters.

This algorithm involves hyperparameters such as decay rates for the exponential moving av-

erages of gradients ( β1 and β2), a learning rate α and a small constant ε for numerical stability.

The main objective is to iteratively refine the model parameters σ until the loss function φ

reaches convergence. During each iteration, the algorithm computes the gradient of the loss

function with respect to the current parameters σk. The exponential moving averages of the gra-

dient Mk and squared gradient Vk are updated using decay rates (β1 and β2). Additionally, bias

correction is applied to the moving averages using factors 1−β1 and 1−β2, yielding Vk and

Mk. The model parameters σk are then updated using the moving averages and the learning rate

α) while a small constant ε is introduced to ensure numerical stability. To ensure the effective

optimization of the objective function, the selection of an appropriate learning rate is crucial.

In a preliminary investigation, we evaluated the performance of different optimizers by varying

the learning rate within the range [0; 0.5]. Our findings indicated that selecting a learning rate
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Input: α: Stepsize

Input: b1,b2 ∈ [0,1): Exponential decay rates for moment estimates

Input: φ(σ): Objective function with parameter σ

Input: σ0: Initial guess

m0← 0 (Initialize 1st moment vector);

v0← 0 (Initialize 2nd moment vector);

k← 0 (Initialize step);

while φ not converged do

k← k+1 (Increment step);

gk← ∇φσ (σk−1) (Get gradients);

mk← b1 ·mk−1 +(1−b1) ·gk (Update biased first moment estimate);

vk← b2 · vk−1 +(1−b2) ·g2
k (Update biased second raw moment estimate);

m̂← mk
1−bk

1
(Compute bias-corrected first moment estimate);

v̂← vk
1−bk

2
(Compute bias-corrected second raw moment estimate);

σk← σk−1−α · m̂√
v̂+ε

(Update parameters);

end

Output: return σk (Resulting parameters)

Algorithm 2: ADAM Optimizer

beyond[0.001,0.1] leads to slow convergence or non-convergence during minimization. In our

simulation, we uniformly sampled learning rates from the range [0.001, 0.1], adhering to the

recommended hyperparameter values for momentum (β1 = 0.9) and (β2 = 0.999) as specified

in the existing literature. This description captures the essential steps and considerations when

utilizing the Adam optimization algorithm for efficient gradient descent. [11, 12]

5. NUMERICAL EXPERIMENTS

In our simulation study, we aimed to reconstruct the internal conductivity distribution of

a target object using both the Gauss-Newton method and the Adam optimization algorithm.
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This allowed us to assess the strengths and limitations of each approach in the context of solv-

ing the EIT inverse problem. During this study, we developed a sophisticated thoracic model

for electrical impedance tomography to accurately characterize the distribution of electrical

properties within the human thorax. The model incorporates crucial elements of anatomical

structure, including the lungs, heart, and background domain, aiming to faith- fully represent

physiological reality. The utilization of such a complex model was motivated by the need to

enhance precision and spatial resolution in images derived from electrical impedance tomog-

raphy techniques. We carefully considered the specifics of the thoracic region, incorporating

details of major tissues like the lungs and heart. To achieve this, we employed an experimental

configuration with 16 electrodes strategically placed around the thoracic surface. In order to

optimize current and voltage measurements while covering a broad area of the thoracic region,

this electrode arrangement was chosen. Starting with the Gauss-Newton method, we observed

that its iterative nature led to a gradual refinement of the estimated conductivity distribution.

As the iterations progressed, the differences between observed and predicted boundary voltages

diminished, indicating an improving fit between the model and the actual data. This iterative

refinement approach provided valuable insights into the spatial distribution of conductivity vari-

ations within the object, contributing to enhanced imaging capabilities. To generate simulated

data, we used the Pyeit Python library, which is an open-source software for solving the EIT

forward and inverse problem[29]. The mesh of the thorax is created and customized with anom-

alies to simulate variations in electrical conductivity. The forward simulation is performed to

generate simulated data for subsequent reconstruction.
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FIGURE 1. The reconstruction of the conductivity distribution within the tho-

racic model using the Gauss-Newton method

The choice of the regularization parameter λ in the Gauss-Newton method is a pivotal step

that can significantly influence the performance and quality of results obtained. In our study, we

explored numerous parameters to find the optimal value for λ . Our observations demonstrate

that smaller values of λ yielded superior out- comes in our simulations. Specifically, when set-

ting λ to 10−6 and 10−8, the reconstructed conductivity images exhibited a marked reduction

in artifacts and revealed enhanced resolution of anomalies. This trend suggests that employing

a diminished value for the regularization parameter promotes a more effective reconstruction of

electrical conductivity anomalies within our experimental setup. The selection of optimization

techniques plays a pivotal role in improving the efficacy of electrical impedance tomography

(EIT). In this context, adopting the Adam optimization method emerges as a strategic choice

with compelling advantages. Adam, an adaptive learning-rate optimization algorithm, is able to
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adjust learning rates dynamically for each parameter. This adaptability proves particularly ben-

eficial for EIT, given the inherently complex and non-linear nature of the inverse problem. This

allows for faster convergence and accommodates varia- tions in parameter scales. Furthermore,

its incorporation of both first-moment (mean) and second-moment (uncentered variance) gradi-

ent information enhances the algorithm’s robustness and stability. As a result, the Adam opti-

mization method is capable of addressing the unique intricacies of EIT, resulting in improved

convergence rates and more accurate conductivity reconstructions. Turning our attention to the

Adam optimization algorithm, we found that its adaptive learning rate and momentum mech-

anisms significantly contributed to faster convergence and heightened stability, presenting a

notable departure from the conventional Gauss-Newton method. This distinctive efficiency was

particularly pronounced when confronted with challenges such as noisy or incomplete boundary

voltage measurements. The adaptability inherent in the Adam algorithm, enabling it to dynami-

cally adjust the learning rate for each parameter, facilitated swifter exploration of the parameter

space. This attribute proves particularly advantageous as it holds the potential to aid the op-

timization process in escaping local minima, consequently enabling the algorithm to converge

towards more precise solutions. It is important, however, to acknowledge that the performance

of the Adam algorithm can be influenced by its hyperparameters, such as the learning rate and

momentum coefficients. These hyperparameters necessitate meticulous tuning to harness the

full potential of the algorithm, and suboptimal selections might lead to subpar convergence or

instability. As a corollary, while the Adam optimization method exhibits remarkable potential

for accelerating convergence and enhancing stability in electrical impedance tomography, its

effective imple- mentation demands a nuanced understanding of its hyperparameters and their

interplay to achieve the desired results. It is also crucial to select the learning rate correctly

when solving the minimization problem to obtain accurate and reliable results. Simulations in-

dicate that a learning rate of 0.01 is adequate for good convergence and stable reconstruction of

the electrical conductivity distribution. Inversely, larger values of the learning rate, such as 0.1,

caused oscillations and instability in the reconstructed images. For this reason, it is important

to carefully choose the learning rate and other optimization parameters.
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FIGURE 2. The reconstruction of the conductivity distribution within the tho-

racic model using the Adam optimization method

In conducting a comprehensive comparative analysis between the Gauss-Newton and Adam

optimization methods, several significant insights come to light. Primarily, it is observed that

the Gauss-Newton method often necessitates meticulous parameter adjustments and a finely

calibrated initial estimate to achieve accurate reconstructions. This reliance on precise param-

eterization arises due to the method’s sensitivity to the initial state and the intricate balance

required for parameter tuning. While the Gauss-Newton method exhibits potential in furnishing

high-fidelity reconstructions under optimal conditions, its susceptibility to variations in input

conditions can pose challenges in accommodating deviations from the optimal settings. On a di-

vergent trajectory, the Adam algorithm presents a distinct set of attributes that distinguish it from

its Gauss-Newton counterpart. Most notably, the Adam algorithm demonstrates a notable de-

gree of resilience to- wards variations in parameter configurations and initial estimations. This

intrinsic robustness implies that Adam can potentially yield consistent and reliable out- comes
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even when parameter calibration is less meticulous. This adaptive nature of the algorithm, un-

derpinned by its utilization of an adaptive learning rate and momentum- based optimization

strategy, enables it to traverse parameter spaces more flexibly. It is imperative to acknowledge,

however, that the Adam algorithm tends to require a larger number of iterations compared to

the Gauss-Newton method. This requirement for an increased number of iterations is a trade-

off for its robustness and adaptability. While the Gauss- Newton method may deliver quicker

convergence under well-tuned conditions, the Adam algorithm’s capacity to provide reasonably

accurate reconstructions even in the face of parameter uncertainties and suboptimal initial es-

timates positions it as a favorable choice for scenarios marked by complex datasets or limited

prior information. In summary, the comparative examination between the Gauss-Newton and

Adam methods reveals a balancing act: the Gauss-Newton method demands precise tuning for

optimal outcomes, while the Adam algorithm show- cases greater flexibility in the presence of

parameter un- certainties. The choice between the two methods should factor in the intricacies

of the problem, the availability of preliminary information, and the computational resources,

alongside an understanding of the trade-offs associated with the number of iterations.

6. CONCLUSIONS AND FUTURE WORK

In conclusion, our comparative exploration of the Gauss- Newton and Adam optimiza-

tion methods provides valuable insights into their respective strengths and weaknesses in the

realm of electrical impedance tomography. The careful parameter tuning demanded by the

Gauss-Newton method underscores its potential for high- precision reconstructions under well-

optimized conditions, albeit with sensitivity to variations in initial estimates. On the other hand,

the adaptive nature and robustness of the Adam algorithm hold promise, especially in scenarios

characterized by uncertain data or less refined initial information. Looking ahead, the field of

electrical impedance tomography presents intriguing opportunities for further advancements.

One avenue of research lies in addressing the challenge of random conductivity distributions.

Exploring how optimization methods can cope with such stochastic variations could yield valu-

able insights into enhancing the stability and accuracy of reconstructions, especially in real-

world, noisy environments. Furthermore, the intersection of electrical impedance tomography

with neural networks and machine learning algorithms, including variants like Nadam, Adamax,
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and AMSGrad, holds substantial potential. Integrating these modern optimization techniques

with deep learning frameworks could open up new horizons for accelerating the reconstruc-

tion process, potentially mitigating the dependency on meticulous parameter calibration. This

could further expand the application scope of electrical impedance tomography to scenarios

with complex geome- tries and substantial data sets. As we chart the course for future endeav-

ors, it is evident that the optimization landscape in electrical impedance tomography is rich

with possibilities. By exploring the interplay between advanced optimization algorithms, ma-

chine learning techniques, and the challenges posed by random conductivity distributions, we

can anticipate a progressive evolution in the accuracy, efficiency, and adaptability of electrical

impedance tomography, ultimately contributing to advancements in medical imaging, industrial

monitoring, and beyond.
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