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Abstract. The applicability of the Atangana-Baleanu derivative in modeling and assessing the dynamics of the

Nipah virus is investigated in this paper. The Atangana-Baleanu derivative, a fractional derivative operator, is used

in the mathematical model of the Nipah virus to add memory effects and non-local behaviour. To do this, we first

use fixed point theory to establish the existence and uniqueness of the solutions for the fractional order model.

Using various fractional order values, we got a number of numerical simulations emphasizing the significance of

the aforementioned derivative. The findings of solving the Nipah virus (NiV) model using the Atangana-Baleanu

derivative provide a better understanding of the dynamics and behaviors of the studied systems.

∗Corresponding author

E-mail address: arinze.luke@fulokoja.edu.ng

Received October 16, 2023
1



2 OZIOKO, MALESELA, ABANG, FADUGBA, OGBUAGU, AJA, MBAH

Keywords: Nipah virus; condom; vaccine; Atangana-Baleanu.

2020 AMS Subject Classification: 00A71, 92B05, 34A05, 92D25.

1. INTRODUCTION

The Nipah virus is a zoonotic pathogen that is a member of the Henipavirus genus and family

Paramyxoviridae. It was first identified during an outbreak of encephalitis (inflammation of the

brain) in Malaysia and Singapore in 1998-1999. The name ”Nipah” is derived from a village in

Malaysia where the outbreak occurred ([31],[27]).

Nipah virus is primarily transmitted to people via direct contact with infected pigs, most

notably fruit bats (specifically, some species of flying foxes) or their infected bodily fluids.

Transmission from person to person has also been observed, typically through intimate contact

with infected people’ respiratory fluids or secretions ([27],[10], [20],[1],[23]).

Nipah virus disease can cause moderate to serious symptoms. They commonly include fever,

headache, muscle soreness, disorientation, and respiratory problems ([16],[8]). In severe cases,

it can progress to encephalitis, characterized by seizures, altered mental status, and coma. Nipah

virus disease has a significant fatality rate, ranging from 40% to 75%.

Nipah epidemics have largely occurred in South and Southeast Asia, most notably in

Bangladesh and India [10]. Such outbreaks are frequently caused by a mix of transmission

from person to person and contact with diseased pigs or their products, such as tainted fruits or

raw date sap from palm trees ([23], [32]. [23],[12]).

Pteropus fruit bats are thought to be the Nipah virus’s natural reservoir hosts. These bats

do not show symptoms of sickness, but the virus is often found in their urine, spit, and stool.

In certain outbreaks, intermediate hosts such as pigs have been implicated in multiplying and

spreading the virus to people ([15],[15], [20]). Because of its ability to cause severe sickness

and epidemics, the Nipah virus remains an important threat to public safety. Ongoing research

and surveillance efforts are focused on understanding the virus, its transmission dynamics, and

developing effective preventive and therapeutic strategies.

The Atangana-Baleanu derivative is a fractional derivative operator that extends the concept

of differentiation to include fractional orders. It was introduced by Dumitru Baleanu and Jean

Roger Atangana in 2016 as a generalization of the classical derivative. The Atangana-Baleanu
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derivative has found applications in various fields, including physics, engineering, and biology.

It is particularly useful for modeling phenomena such as viscoelasticity, anomalous diffusion,

fractal behavior, and population dynamics, where memory effects and non-local behaviors play

a crucial role. In fractional differential equations, researchers use the Atangana-Baleanu deriva-

tive to accurately characterize and evaluate systems having memory effects. It is a mathematical

instrument for investigating the stability, its current state, uniqueness, and attributes of answers

in these systems. The use of the Atangana-Baleanu derivative contributes to a more compre-

hensive understanding of complex dynamics and facilitates the development of more accurate

models for real-world phenomena.

Several writers played a role in the formation of fractional mathematics beginning in 1695,

after L’Hospital asked Leibiz what if the order of a derivative is n = 1/2. The modeling of bi-

ological processes, engineering, physics, finance, and many other fields have shown increased

interest in fractional operators [9]. Despite the fact that the classic fractional Riemann Liou-

ville and Caputo derivatives have various advantages for describing reality as more reliable, the

singularity that results from the strength of their kernels presents several significant process-

ing challenges [18], and [17]. To overcome these concerns, Caputo and Fabrizio presented the

Caputo-Fabrizio (CF) derivative, a novel non-singular fractional derivative that uses an increas-

ing kernel. [17]. Atangana and Baleanu have introduced Atangana-Baleanu (AB) derivatives

with Mittag-Leffler kernel function, which are influenced by the concept of CF derivative [2].

Apart from being a derivative, these operators have been viewed as a filter regulator [3]. Atan-

gana and Alkahtani performed a comprehensive examination of the existence and uniqueness

of Keller-Segel model solutions including the CF derivative [4]. Baggs and Freedman models

with exponential kernels were examined by Atangana and Koca [2]. Singh et al. investigated

the epidemiological model for computer viruses with CF derivatives using Banach fixed point

theory [13]. Yavuz et al [25] solved fractional partial differential equations with an AB deriv-

ative. The traditional model of a contaminated lake system was changed using the notion of

fractional differentiation [28]. Uçar [34] used CF and AB variants to investigate a smoking

model as it relates to determination and education-related activities.
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Therefore, motivated by the applicability of Atangana-Baleanu derivatives, we intend to fur-

ther explore a Nipah Virus model in the perspective of fractional concept in relation to the effects

of the vaccine and condoms. Following is how the remainder of the document is organized: On

the following page, we give some introductory information about fractional order derivatives.

The method described in Section 2 for the Nipah virus. In Section 3, it is established that our

fractional NiV model’s solutions exist and are distinct using fixed point theory. A few number

findings are presented in Section 4 along with a brief commentary on them. The conclusions

are found in section 5 of the research.

1.1. Basic Definitions. In this part, we provide some essential definitions of fractional deriv-

ative.

Definition 1.1. The Sobolev space of order one(1) in (k, l) is defined as [19]:

(1.1) W 1(k, l) = {p ∈ L2(k, l) : p′ ∈ L2(k, l)}

Definition 1.2. Let p ∈W 1(k, l), k < l be a function and α ∈ [0,1]. The Atangana- Baleanu

derivative is Caputo type of order α of p is given by [?]:

(1.2) ABC
k Dα

t [p(t)] =
G(α)

1−α

∫ t

k
p′(x)Eα

[
−α

(t− x)α

1−α

]
dx

where G(α) is a normalization function with G(0) = G(1) = 1 and Eα is the Mittag-Leffler

function

Definition 1.3. Let p ∈W 1(k, l), k < l be a function and α ∈ [0,1]. The Atangana-Baleanu

derivative in Riemann-Liouville type of order α of p is given by [34]:

(1.3) ABR
k Dα

t [p(t)] =
G(α)

1−α

d
dt

∫ t

k
p(x)Eα

[
−α

(t− x)α

1−α

]
dx

Definition 1.4. . The fractional integral is defined by [34]:

(1.4) AB
k Iα

t [p(t)] =
1−α

G(α)
p(t)+

α

G(α)Γ(α)

∫ t

k
p(λ )(t−λ )α−1dλ

Theorem 1.5. For a continuous function p on [k, l]. The inequality given below holds on [k, l]

[34]:

(1.5) ||ABR
0 Dα

t [p(t)]||<
G(α)

1−α
||p(t)||
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where ||p(t)||= Max
k≤t≤l
|p(t)|

Theorem 1.6. The Atangana-Baleanu derivative in Caputo and RL type satisfy Lipschitz con-

dition [34]:

(1.6) ||ABC
0 Dα

t [p(t)]−ABC
0 Dα

t [q(t)]|| ≤W ||P(t)−q(t)||

and

(1.7) ||ABR
0 Dα

t [p(t)]−ABR
0 Dα

t [q(t)]|| ≤W ||P(t)−q(t)|

2. MODEL INFORMATION

From the humans and pigs population, we have Sp(t): the number of pigs who are not yet

infected with the NiV at time t, but may get it if they come into contact with other infected

pigs or eat contaminated fruits, Ep(t): the number of pigs that have come into contact with

the infectious agent or pathogen that causes the Nipah virus, Ip(t): the number of pigs that

are capable of transmitting the virus to others including human, S(t): susceptible with respect

to human beings, Sv(t): the susceptible persons who are vaccinated, Su(t): the susceptible

persons who are not yet vaccinated, Svc(t):the susceptible persons who are vaccinated and use

condoms, Svn(t): the susceptible persons who are vaccinated and do not use condoms, Suc(t):

the susceptible persons who are not yet vaccinated and use condoms, Sun(t): the susceptible

persons who are not yet vaccinated and do not care for condoms, E(t): people that are in

touch with the infectious agent(human and pigs) or pathogen that causes the Nipah virus, I(t):

people that are capable of transmitting the virus to others, C(t): they are people who have been

infected with the virus but do not develop any symptoms of the disease, and still carry and

transmit the virus to others, Ii(t): they are isolated individuals undergoing treatment who are

capable of transmitting the virus to others, It(t): they are not isolated but undergoing treatment

as individuals that are capable of transmitting the virus to others, R(t): they are individuals who

have recovered from the Nipah virus and are capable of contacting the virus again, D(t): the

bodies of those who died due to the virus.

We assume the following: Natural sickness recovery can take place because of powerful

antibodies [7]. Casual touching of the dead bodies will expose the individuals to the virus
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[5]. There is an interaction between the farmer and the infectious pigs [6]. Since they are

continuously watched, medical personnel safeguard themselves against the virus, and infection

can happen in a therapy class, isolated individuals do not aid in the spread of NiV [7]. The

general public has easy access to and can afford condoms, an infected isolation facility, and

vaccinations [6]. After some time, people who have recovered become susceptible to infection

once more [35].

TABLE 2.1. Describe the Variables

parameters Parameter Description

Λp The proportion of new pigs introduced

σ Exposure rate of pigs

ρ The rate at which infected pigs become exposed

Λ Human resource recruitment level

χ1 Rate of vulnerable non-vaccinated peoplee

χ2 Vaccination coverage among vulnerable populations

η1 The fraction of unvaccinated vulnerable people who use condoms

η2 The fraction of unvaccinated vulnerable people who do not use condoms.

τ1 The fraction of vaccinated people who use condoms

τ2 The fraction of vaccinated vulnerable people who do not use condoms

Γ3 Infection force on Snc

Γ4 Infection force on Sun

Γ1 Infection force on Svc

Γ2 Infection force on Svn

κ The rate at which an exposed population becomes infected

θ The proportion of the exposed population who becomes a NiV carrier

ψ1 Rate of isolation of infected people having treatment

ψ2 Treatment rate of infected persons

γ1 Recovery rate from the disease therapy class

γ2 Recovery rate from the infectious isolated undergoing treatment class

γ3 The NiV carrier recovery rate

γ4 The infectious recovery rate

ε Rate of susceptibility among recovered persons

δ1 Illness-related death rate in NiV-Carriers

δ2 Illness-related death rate in infectious population

δ3 Illness-related death rate in infectious isolated people undergoing treatment

δ4 Illness-related death rate in infectious people undergoing treatment

δd Illness-related death rate in infectious pigs

µd The rate at which deceased bodies are disposed of (burial/cremation)

µp Pig mortality rate

µ Natural death rate
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ABC
0 Dα

t [S(t)] = Λ− (χ1 +χ2 +µ)S+ εR(2.1)

ABC
0 Dα

t [Sv(t)] = χ2S− (τ1 + τ2 +µ)Sv(2.2)

ABC
0 Dα

t [Su(t)] = χ1S− (η1 +η2 +µ)Su(2.3)

ABC
0 Dα

t [Svc(t)] = τ1Sv− (Γ1 +µ)Svc(2.4)

ABC
0 Dα

t [Svn(t)] = τ2Sv− (Γ2 +µ)Svn(2.5)

ABC
0 Dα

t [Suc(t)] = η1Su− (Γ3 +µ)Suc(2.6)

ABC
0 Dα

t [Sun(t)] = η2Su− (Γ4 +µ)Sun(2.7)

ABC
0 Dα

t [E(t)] = Γ2Svn +Γ4Sun +Γ3Suc +Γ1Svc− (µ +θ +κ)E(2.8)

ABC
0 Dα

t [C(t)] = θE− (γ3 +µ +δ1)C(2.9)

ABC
0 Dα

t [I(t)] = κ E− (ψ1 +ψ2 +µ +δ2 + γ4)I(2.10)

ABC
0 Dα

t [Iit(t)] = ψ1I− (γ2 +µ +δ3)Iit(2.11)

ABC
0 Dα

t [It(t)] = ψ2I− (γ1 +µ +δ4)It(2.12)

ABC
0 Dα

t [R(t)] = γ2Iit + γ4I + γ1It + γ3C−µR− εR(2.13)

ABC
0 Dα

t [D(t)] = δ4It +δ3Iit +δ1C+δ2I−µdD(2.14)

ABC
0 Dα

t [Sp(t)] = Λp− (σ +µp)Sp(2.15)

ABC
0 Dα

t [Ep(t)] = σSp− (ρ +µp)Ep(2.16)

ABC
0 Dα

t [Ip(t)] = ρEp− (µp +δp)Ip(2.17)

where the force of infections are

Γ1 = β1

(
a1Ip

Np
+

a2C+a3I +a4It +a5D
N

)
, Γ2 = β2

(
b1Ip

Np
+

b2C+b3I +b4It +b5D
N

)

Γ3 = β3

(
q1Ip

Np
+

q2C+q3I +q4It +q5D
N

)
, Γ4 = β4

(
z1Ip

Np
+

z2C+ z3I + z4It + z5D
N

)
,

N is number of human beings, Np is number of pigs. Therefore ai,bi,qi,zi, i = 1,2,3,4,5 are

contact rates, ABC
0 Dα

t is Atangana-Baleanu derivative in Caputo type, and α ∈ [0,1].
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3. EXISTENCE AND UNIQUENESS OF NIV MODEL SOLUTION

The solution of nonlinear equations is a complicated matter in differential calculus [?]. The

fractional order model under examination is nonlinear, accurate solutions to these kind of prob-

lems may be hard to find. Therefor, we analyze the existence and uniqueness of Niv model so-

lution with the use of fixed point theory.

Consider C [k, l]×C [k, l]×C [k, l]×C [k, l]×C [k, l]×C [k, l]×C [k, l]×C [k, l]×C [k, l]×

C [k, l]×C [k, l]×C [k, l]×C [k, l]×C [k, l]×C [k, l]×C [k, l]×C [k, l] such that C [k, l] is a Ba-

nach space of continuous R→R valued functions on the interval [k, l] with the norm defined as

||(S,Su,Sv,Suc,Sun,Svc,Svn,E,C, I, Iit , It ,R,Sp,Ep, Ip)||= ||S||+ ||Su||+ |Sv||+ ||Suc||+ ||Sun||+

||Svc||+ ||Svn||+ ||E||+ ||C||+ ||I||+ ||Iit ||+ ||It ||+ ||R||+ ||Sp||+ ||Ep||+ ||Ip||

where ||S||= sup{|S(t)| : t ∈ [k, l]}, |Su||= sup{|Su(t)| : t ∈ [k, l]}, ||Sv||= sup{|Sv(t)| :

t ∈ [k, l]}, ||Suc|| = sup{|Suc(t)| : t ∈ [k, l]}, ||Sun|| = sup{|Sun(t)| : t ∈ [k, l]}, ||Svc|| =

sup{|Svc(t)| : t ∈ [k, l]}, ||Svn|| = sup{|Svn(t)| : t ∈ [k, l]}, ||E|| = sup{|E(t)| : t ∈

[k, l]}, ||C|| = sup{|C(t)| : t ∈ [k, l]}, ||I|| = sup{|I(t)| : t ∈ [k, l]}, ||Iit || = sup{|Iit(t)| : t ∈

[k, l]}, ||It || = sup{|I(t)| : t ∈ [k, l]}, ||R|| = sup{|R(t)| : t ∈ [k, l]}, ||Sp|| = sup{|Sp(t)| :

t ∈ [k, l]}, ||Ep||= sup{|Ep(t)| : t ∈ [k, l]}, ||Ip||= sup{|Ip(t)| : t ∈ [k, l]}.

We reorganize the model (2.1)– (2.17) in the simple method shown below.

ABC
0 Dα

t [S(t)] =W1(t,S)(3.1)

ABC
0 Dα

t [Sv(t)] =W2(t,Sv(t))(3.2)

ABC
0 Dα

t [Su(t)] =W3(t,Su(t))(3.3)

ABC
0 Dα

t [Svc(t)] =W4(t,Svc(t))(3.4)

ABC
0 Dα

t [Svn(t)] =W5(t,Svn(t))(3.5)

ABC
0 Dα

t [Suc(t)] =W6(t,Suc(t))(3.6)

ABC
0 Dα

t [Sun(t)] =W7(t,Sun(t))(3.7)

ABC
0 Dα

t [E(t)] =W8(t,E(t))(3.8)

ABC
0 Dα

t [C(t)] =W9(t,C(t))(3.9)
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ABC
0 Dα

t [I(t)] =W10(t, I(t))(3.10)

ABC
0 Dα

t [Iit(t)] =W11(t, Iit(t))(3.11)

ABC
0 Dα

t [It(t)] =W12(t, It(t))(3.12)

ABC
0 Dα

t [R(t)] =W13(t,R(t))(3.13)

ABC
0 Dα

t [D(t)] =W14(t,D(t))(3.14)

ABC
0 Dα

t [Sp(t)] =W15(t,Sp(t))(3.15)

ABC
0 Dα

t [Ep(t)] =W16(t,Ep(t))(3.16)

ABC
0 Dα

t [Ip(t)] =W17(t, Ip(t))(3.17)

such that Wi, i = 1,2, ...,17 are the kernels

Applying fractional integral [11] to the equation (2.1)– (2.17), we have

S(t)−S(0) =
1−α

G(α)
W1(t,S)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W1(ν ,S)dν(3.18)

Sv(t)−Sv(0) =
1−α

G(α)
W2(t,Sv)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W2(ν ,Sv)dν(3.19)

Su(t)−Su(0) =
1−α

G(α)
W3(t,Su)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W3(ν ,Su)dν(3.20)

Svc(t)−Svc(0) =
1−α

G(α)
W4(t,Svc)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W4(ν ,Svc)dν(3.21)

Svn(t)−Svn(0) =
1−α

G(α)
W5(t,Svn)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W5(ν ,Svn)dν(3.22)

Suc(t)−Suc(0) =
1−α

G(α)
W6(t,Suc)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W6(ν ,Suc)dν(3.23)

Sun(t)−Sun(0) =
1−α

G(α)
W7(t,Sun)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W7(ν ,Sun)dν(3.24)

E(t)−E(0) =
1−α

G(α)
W8(t,E)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W8(ν ,E)dν(3.25)

C(t)−C(0) =
1−α

G(α)
W9(t,C)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W9(ν ,C)dν(3.26)

I(t)− I(0) =
1−α

G(α)
W10(t, I)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W10(ν , I)dν(3.27)

Iit(t)− Iit(0) =
1−α

G(α)
W11(t, Iit)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W11(ν , Iit)dν(3.28)
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It(t)− It(0) =
1−α

G(α)
W12(t, It)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W12(ν , It)dν(3.29)

R(t)−R(0) =
1−α

G(α)
W13(t,R)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W13(ν ,R)dν(3.30)

D(t)−D(0) =
1−α

G(α)
W14(t,D)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W14(ν ,D)dν(3.31)

Sp(t)−Sp(0) =
1−α

G(α)
W15(t,Sp)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W15(ν ,Sp)dν(3.32)

Ep(t)−Ep(0) =
1−α

G(α)
W16(t,Ep)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W16(ν ,Ep)dν(3.33)

Ip(t)− Ip(0) =
1−α

G(α)
W17(t, Ip)+

α

G(α)Γ(α)

∫ t

0
(t−ν)α−1W17(ν , Ip)dν(3.34)

Theorem 3.1. If 0 ≤ ξ̄i < 1, then the kernels Wi, i = 1,2, ...,17 fulfill the Lipschitz condition

and contraction such that

(3.35)

||W1(t,S)−W1(t,S∗)|| ≤ ξ̄1||S(t)−S∗(t)||, ..., ||W17(t, Ip)−W17(t, Ip∗)|| ≤ ξ̄17||Ip(t)− Ip∗(t)||

Proof. Given two functions S and S∗, we have

||W1(t,S)−W1(t,S∗)|| = ||Λ− (χ1 +χ2 +µ)S+ εR− [Λ− (χ1 +χ2 +µ)S∗+ εR]||

≤ (χ1 +χ2 +µ)||S−S∗||

= ξ̄1||S−S∗||(3.36)

where ξ̄1 = (χ1 +χ2 +µ). Therefore

||W1(t,S)−W1(t,S∗)|| ≤ ξ̄1||S−S∗||

Hence, the Lipschitz condition satisfied for W1 and 0 ≤ χ1 + χ2 + µ < 1 implies W1 is also

contraction.

Similarly, it can be demonstrated that the other kernels satisfy the Lipschitz condition and

contraction. However, observe that

S(t)+Su(t)+Sv(t)+Suc(t)+Sun(t)+Svc(t)+Svn(t)+E(t)+C(t)+ I(t)

+ Iit(t)+ It(t)+R(t)≤ Λ

µ
=⇒C(t)≤ Λ

µ
, I(t)≤ Λ

µ
, Iit(t)≤

Λ

µ
, It(t)≤

Λ

µ
, . . . ,R(t)≤ Λ

µ
as t ≥ 0.
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Without loss of generality, ξ̄2 = (τ1 + τ2 + µ), ξ̄2 = (η1 + η2 + µ), ξ̄4 =

β1

(
a1Λp

Npµp
+

(a2 +a3 +a4 +a5)Λ

Nµ

)
+ µ, ξ̄5 = β2

(
b1Λp

Npµp
+

(b2 +b3 +b4 +b5)Λ

Nµ

)
+ µ, ξ̄6 =

β3

(
q1Λp

Npµp
+

(q2 +q3 +q4 +q5)Λ

Nµ

)
+ µ, ξ̄7 = β4

(
z1Λp

Npµp
+

(z2 + z3 + z4 + z5)Λ

Nµ

)
+ µ, ξ̄8 =

(µ + θ + κ), ξ̄9 = (γ3 + µ + δ1), ξ̄10 = (ψ1 + ψ2 + µ + δ2 + γ4), ξ̄11 = γ2 + µ + δ3, ξ̄12 =

γ1 +µ +δ4, ξ̄13 = µ + ε, ξ̄14 = µd, ξ̄15 = σ +µp, ξ̄16 = ρ +µp, ξ̄17 = δp +µp.

Therefore the kernels Wi, i = 1,2, ...,17 fulfill the Lipschitz condition and 0≤ ξ̄i < 1 implies

Wi, i = 1,2, ...,17 are contraction. �

We define the system (3.18)– (3.34) in the following recursive form:

S(n)(t) =
1−α

G(α)
W1(t,S(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W1(ν ,S(n−1))dν(3.37)

Sv(n)(t) =
1−α

G(α)
W2(t,Sv(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W2(ν ,Sv(n−1))dν(3.38)

Su(n)(t) =
1−α

G(α)
W3(t,Su(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W3(ν ,Su(n−1))dν(3.39)

Svc(n)(t) =
1−α

G(α)
W4(t,Svc(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W4(ν ,Svc(n−1))dν(3.40)

Svn(n)(t) =
1−α

G(α)
W5(t,Svn(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W5(ν ,Svn(n−1))dν(3.41)

Suc(n)(t) =
1−α

G(α)
W6(t,Suc(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W6(ν ,Suc(n−1))dν(3.42)

Sun(n)(t) =
1−α

G(α)
W7(t,Sun(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W7(ν ,Sun(n−1))dν(3.43)

E(n)(t) =
1−α

G(α)
W8(t,E(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W8(ν ,E(n−1))dν(3.44)

C(n)(t) =
1−α

G(α)
W9(t,C(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W9(ν ,C(n−1))dν(3.45)

I(n)(t) =
1−α

G(α)
W10(t, I(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W10(ν , I(n−1))dν(3.46)

Iit(n)(t) =
1−α

G(α)
W11(t, Iit(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W11(ν , Iit(n−1))dν(3.47)

It(n)(t) =
1−α

G(α)
W12(t, It(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W12(ν , It(n−1))dν(3.48)

R(n)(t) =
1−α

G(α)
W13(t,R(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W13(ν ,R(n−1))dν(3.49)



12 OZIOKO, MALESELA, ABANG, FADUGBA, OGBUAGU, AJA, MBAH

D(n)(t) =
1−α

G(α)
W14(t,D(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W14(ν ,D(n−1))dν(3.50)

Sp(n)(t) =
1−α

G(α)
W15(t,Sp(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W15(ν ,Sp(n−1))dν(3.51)

Ep(n)(t) =
1−α

G(α)
W16(t,Ep(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W16(ν ,Ep(n−1))dν(3.52)

Ip(n)(t) =
1−α

G(α)
W17(t, Ip(n−1))+

α

G(α)Γ(α)

∫ t
0(t−ν)α−1W17(ν , Ip(n−1))dν(3.53)

with the initial conditions:

S0 = S(0), Su0 = Su(0), Sv0 = Sv(0), Suc0 = Suc(0), Sun0 = Sun(0), Svc0 = Svc(0), Svn0 =

Svn(0), E0 = E(0),C0 =C(0), I0 = I(0), Iit0 = Iit(0), It0 = It(0), R0 = R(0), Sp0 = Sp(0), Ep0 =

Ep(0), Ip0 = Ip(0)

Next, we look at the difference in the successive terms as follows:

Ψ1n(t) = Sn(t)−S(n−1)(t) =
1−α

G(α)
[W1(t,S(n−1))−W1(t,S(n−2))]

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W1(ν ,S(n−1))−W1(ν ,S(n−2))]dν(3.54)

Ψ2n(t) = Sv(n)(t)−Sv(n−1)(t) =
1−α

G(α)
[W2(t,Sv(n−1))−W2(t,Sv(n−2))](3.55)

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W2(ν ,Sv(n−1))−W2(ν ,Sv(n−2))]dν(3.56)

Ψ3n(t) = Su(n)(t)−Su(n−1)(t) =
1−α

G(α)
[W3(t,Su(n−1))−W3(t,Su(n−2))](3.57)

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W3(ν ,Su(n−1))−W3(ν ,Su(n−2))]dν(3.58)

Ψ4n(t) = Svc(n)(t)−Svc(n−1)(t) =
1−α

G(α)
[W4(t,Svc(n−1))−W4(t,Svc(n−2))](3.59)

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W4(ν ,Svc(n−1))−W4(ν ,Svc(n−1))]dν(3.60)

Ψ5n(t) = Svn(n)(t)−Svn(n−1)(t) =
1−α

G(α)
[W5(t,Svn(n−1))−W5(t,Svn(n−2))](3.61)

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W5(ν ,Svn(n−1))−W5(ν ,Svn(n−2))]dν(3.62)

Ψ6n(t) = Suc(n)(t)−Suc(n−1)(t) =
1−α

G(α)
[W6(t,Suc(n−1))−W6(t,Suc(n−2))](3.63)
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+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W6(ν ,Suc(n−1))−W6(ν ,Suc(n−2))]dν(3.64)

Ψ7n(t) = Sun(n)(t)−Sun(n−1)(t) =
1−α

G(α)
[W7(t,Sun(n−1))−W7(t,Sun(n−2))](3.65)

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W7(ν ,Sun(n−1))−W7(ν ,Sun(n−2))]dν(3.66)

Ψ8n(t) = E(n)(t)−E(n−1)(t) =
1−α

G(α)
[W8(t,E(n−1))−W8(t,E(n−2))](3.67)

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W8(ν ,E(n−1))−W8(ν ,E(n−2))]dν(3.68)

Ψ9n(t) = C(n)(t)−C(n−1)(t) =
1−α

G(α)
[W9(t,C(n−1))−W9(t,C(n−2))](3.69)

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W9(ν ,C(n−1))−W9(ν ,C(n−2))]dν(3.70)

Ψ10n(t) = I(n)(t)− I(n−1)(t) =
1−α

G(α)
[W10(t, I(n−1))−W10(t, I(n−2))](3.71)

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W10(ν , I(n−1))−W10(ν , I(n−2))dν(3.72)

Ψ11n(t) = Iit(n)(t)− Iit(n−1)(t) =
1−α

G(α)
[W11(t, Iit(n−1))−W11(t, Iit(n−2))](3.73)

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W11(ν , Iit(n−1))−W11(ν , Iit(n−2))]dν(3.74)

Ψ12n(t) = It(n)(t)− It(n−1)(t) =
1−α

G(α)
[W12(t, It(n−1))−W12(t, It(n−2))](3.75)

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W12(ν , It(n−1))−W12(ν , It(n−2))]dν(3.76)

Ψ13n(t) = R(n)(t)−R(n−1)(t) =
1−α

G(α)
[W13(t,R(n−1))−W13(t,R(n−2))](3.77)

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W13(ν ,R(n−1))−W13(ν ,R(n−2))]dν(3.78)

Ψ14n(t) = D(n)(t)−D(n−1)(t) =
1−α

G(α)
[W14(t,D(n−1))−W14(t,D(n−2))](3.79)

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W14(ν ,D(n−1))−W14(ν ,D(n−2))]dν(3.80)

Ψ15n(t) = Sp(n)(t)−Sp(n−1)(t) =
1−α

G(α)
[W15(t,Sp(n−1))−W15(t,Sp(n−2))](3.81)

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W15(ν ,Sp(n−1))−W15(ν ,Sp(n−2))]dν(3.82)
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Ψ16n(t) = Ep(n)(t)−Ep(n−1)(t) =
1−α

G(α)
[W16(t,Ep(n−1))−W16(t,Ep(n−2))](3.83)

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W16(ν ,Ep(n−1))−W16(ν ,Ep(n−2))]dν(3.84)

Ψ17n(t) = Ip(n)(t)− Ip(n−1)(t) =
1−α

G(α)
[W17(t, Ip(n−1))−W17(t, Ip(n−2))](3.85)

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W17(ν , Ip(n−1))−W17(ν , Ip(n−1))]dν(3.86)

So that,

S(n)(t) = ∑
n
k=1 Ψ1k, Sv(n)(t) = ∑

n
k=1 Ψ2k, Su(n)(t) = ∑

n
k=1 Ψ3k, Svc(n)(t) =

∑
n
k=1 Ψ4k, Svn(n)(t) = ∑

n
k=1 Ψ5k, Suc(n)(t) = ∑

n
k=1 Ψ6k, Sun(n)(t) = ∑

n
k=1 Ψ7k

E(n)(t) = ∑
n
k=1 Ψ8k, C(n)(t) = ∑

n
k=1 Ψ9k, I(n)(t) = ∑

n
k=1 Ψ10k, Iit(n)(t) =

∑
n
k=1 Ψ11k, It(n)(t) = ∑

n
k=1 Ψ12k, R(n)(t) = ∑

n
k=1 Ψ13k, D(n)(t) = ∑

n
k=1 Ψ14k, Sp(n)(t) =

∑
n
k=1 Ψ15k, Ep(n)(t) = ∑

n
k=1 Ψ16k, Ip(n)(t) = ∑

n
k=1 Ψ17k,

Taking norm of both sides of equations (3.54)–(3.86), applying triangular inequality and

Lipschitz condition, we have

‖Ψ1n(t) ‖ = ‖ Sn(t)−S(n−1)(t) ‖(3.87)

≤ 1−α

G(α)
‖ [W1(t,S(n−1))−W1(t,S(n−2))] ‖

+
α

G(α)Γ(α)
‖
∫ t

0
(t−ν)α−1[W1(ν ,S(n−1))−W1(ν ,S(n−2))]dν ‖(3.88)

≤ 1−α

G(α)
ξ̄1 ‖ S(n−1)−S(n−2) ‖

+
α

G(α)Γ(α)
ξ̄1

∫ t

0
(t−ν)α−1 ‖ S(n−1))−S(n−2) ‖ dν(3.89)

=
1−α

G(α)
ξ̄1 ‖Ψ1(n−1)(t) ‖

+
α

G(α)Γ(α)
ξ̄1

∫ t

0
(t−ν)α−1 ‖Ψ1(n−1)(t) ‖ dν(3.90)

=

[
1−α

G(α)
ξ̄1 +

tα

G(α)Γ(α)
ξ̄1

]
‖Ψ1(n−1)(t) ‖(3.91)

‖Ψ2n(t) ‖ = ‖ Sv(n)(t)−Sv(n−1)(t) ‖(3.92)

≤ 1−α

G(α)
‖ [W2(t,Sv(n−1))−W2(t,Sv(n−2))] ‖
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+
α

G(α)Γ(α)
‖
∫ t

0
(t−ν)α−1[W2(ν ,Sv(n−1))−W2(ν ,Sv(n−2))]dν ‖(3.93)

≤ 1−α

G(α)
ξ̄2 ‖ Sv(n−1)−Sv(n−2) ‖

+
α

G(α)Γ(α)
ξ̄2

∫ t

0
(t−ν)α−1 ‖ Sv(n−1))−Sv(n−2) ‖ dν(3.94)

=
1−α

G(α)
ξ̄2 ‖Ψ2(n−1)(t) ‖

+
α

G(α)Γ(α)
ξ̄2

∫ t

0
(t−ν)α−1 ‖Ψ2(n−1)(t) ‖ dν(3.95)

=

[
1−α

G(α)
ξ̄2 +

tα

G(α)Γ(α)
ξ̄2

]
‖Ψ2(n−1)(t) ‖(3.96)

Finally, we have

(3.97) ‖Ψ1n(t) ‖≤
[

1−α

G(α)
ξ̄1 +

tα

G(α)Γ(α)
ξ̄1

]
‖Ψ1(n−1)(t) ‖

(3.98) ‖Ψ2n(t) ‖≤
[

1−α

G(α)
ξ̄2 +

tα

G(α)Γ(α)
ξ̄2

]
‖Ψ2(n−1)(t) ‖

With the same procedure from (3.88)–(3.96), we reduced the remaining expressions to the

form:

‖Ψ3n(t) ‖ ≤
[

1−α

G(α)
ξ̄3 +

tα

G(α)Γ(α)
ξ̄3

]
‖Ψ3(n−1)(t) ‖(3.99)

‖Ψ4n(t) ‖ ≤
[

1−α

G(α)
ξ̄4 +

tα

G(α)Γ(α)
ξ̄4

]
‖Ψ4(n−1)(t) ‖(3.100)

‖Ψ5n(t) ‖ ≤
[

1−α

G(α)
ξ̄5 +

tα

G(α)Γ(α)
ξ̄5

]
‖Ψ5(n−1)(t) ‖(3.101)

‖Ψ6n(t) ‖ ≤
[

1−α

G(α)
ξ̄6 +

tα

G(α)Γ(α)
ξ̄6

]
‖Ψ6(n−1)(t) ‖(3.102)

‖Ψ7n(t) ‖ ≤
[

1−α

G(α)
ξ̄7 +

tα

G(α)Γ(α)
ξ̄7

]
‖Ψ7(n−1)(t) ‖(3.103)

‖Ψ8n(t) ‖ ≤
[

1−α

G(α)
ξ̄8 +

tα

G(α)Γ(α)
ξ̄8

]
‖Ψ8(n−1)(t) ‖(3.104)

‖Ψ9n(t) ‖ ≤
[

1−α

G(α)
ξ̄9 +

tα

G(α)Γ(α)
ξ̄9

]
‖Ψ9(n−1)(t) ‖(3.105)
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‖Ψ10n(t) ‖ ≤
[

1−α

G(α)
ξ̄10 +

tα

G(α)Γ(α)
ξ̄10

]
‖Ψ10(n−1)(t) ‖(3.106)

‖Ψ11n(t) ‖ ≤
[

1−α

G(α)
ξ̄11 +

tα

G(α)Γ(α)
ξ̄11

]
‖Ψ11(n−1)(t) ‖(3.107)

‖Ψ12n(t) ‖ ≤
[

1−α

G(α)
ξ̄12 +

tα

G(α)Γ(α)
ξ̄12

]
‖Ψ12(n−1)(t) ‖(3.108)

‖Ψ13n(t) ‖ ≤
[

1−α

G(α)
ξ̄13 +

tα

G(α)Γ(α)
ξ̄13

]
‖Ψ13(n−1)(t) ‖(3.109)

‖Ψ14n(t) ‖ ≤
[

1−α

G(α)
ξ̄14 +

tα

G(α)Γ(α)
ξ̄14

]
‖Ψ14(n−1)(t) ‖(3.110)

‖Ψ15n(t) ‖ ≤
[

1−α

G(α)
ξ̄15 +

tα

G(α)Γ(α)
ξ̄15

]
‖Ψ15(n−1)(t) ‖(3.111)

‖Ψ16n(t) ‖ ≤
[

1−α

G(α)
ξ̄16 +

tα

G(α)Γ(α)
ξ̄16

]
‖Ψ16(n−1)(t) ‖(3.112)

‖Ψ17n(t) ‖ ≤
[

1−α

G(α)
ξ̄17 +

tα

G(α)Γ(α)
ξ̄17

]
‖Ψ17(n−1)(t) ‖(3.113)

Theorem 3.2. If we can determine t0 that satisfies the equation

(3.114)
1−α

G(α)
ξ̄i +

tα
0

G(α)Γ(α)
ξ̄i < 1

for i = 1,2,3, ...,17, the fractional model provided as (2.1)–(2.17) has a unique solution.

Proof. Given t0 satisfying
1−α

G(α)
ξ̄i+

tα
0

G(α)Γ(α)
ξ̄i < 1, we show that the fractional model (2.1)–

(2.17) has solution and the solution is unique. It is obvious (Theorem 3.1 ) that

S,Sv,Su,Svc,Svn,Suc,Sun,E,C, I, Iit , It ,R,D,Sp,Ep, Ip satisfied Lipschitz condition and they

are also bounded functions. Therefor, from equation (3.99)–(3.113) we have the successive

relations [34]:

‖Ψ1n(t) ‖ ≤
[

1−α

G(α)
ξ̄1 +

tα

G(α)Γ(α)
ξ̄1

]n

‖ S(n)(0) ‖(3.115)

‖Ψ2n(t) ‖ ≤
[

1−α

G(α)
ξ̄2 +

tα

G(α)Γ(α)
ξ̄2

]n

‖ Sv(n)(0) ‖(3.116)

‖Ψ3n(t) ‖ ≤
[

1−α

G(α)
ξ̄3 +

tα

G(α)Γ(α)
ξ̄3

]n

‖ Su(n)(0) ‖(3.117)

‖Ψ4n(t) ‖ ≤
[

1−α

G(α)
ξ̄4 +

tα

G(α)Γ(α)
ξ̄4

]n

‖ Svc(n)(0) ‖(3.118)
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‖Ψ5n(t) ‖ ≤
[

1−α

G(α)
ξ̄5 +

tα

G(α)Γ(α)
ξ̄5

]n

‖ Svn(n)(0) ‖(3.119)

‖Ψ6n(t) ‖ ≤
[

1−α

G(α)
ξ̄6 +

tα

G(α)Γ(α)
ξ̄6

]n

‖ Suc(n)(0) ‖(3.120)

‖Ψ7n(t) ‖ ≤
[

1−α

G(α)
ξ̄7 +

tα

G(α)Γ(α)
ξ̄7

]n

‖ Sun(n)(0) ‖(3.121)

‖Ψ8n(t) ‖ ≤
[

1−α

G(α)
ξ̄8 +

tα

G(α)Γ(α)
ξ̄8

]n

‖ E(n)(0) ‖(3.122)

‖Ψ9n(t) ‖ ≤
[

1−α

G(α)
ξ̄9 +

tα

G(α)Γ(α)
ξ̄9

]n

‖C(n)(0) ‖(3.123)

‖Ψ10n(t) ‖ ≤
[

1−α

G(α)
ξ̄10 +

tα

G(α)Γ(α)
ξ̄10

]n

‖ I(n)(0) ‖(3.124)

‖Ψ11n(t) ‖ ≤
[

1−α

G(α)
ξ̄11 +

tα

G(α)Γ(α)
ξ̄11

]n

‖ Iit(n)(0) ‖(3.125)

‖Ψ12n(t) ‖ ≤
[

1−α

G(α)
ξ̄12 +

tα

G(α)Γ(α)
ξ̄12

]n

‖ It(n)(0) ‖(3.126)

‖Ψ13n(t) ‖ ≤
[

1−α

G(α)
ξ̄13 +

tα

G(α)Γ(α)
ξ̄13

]n

‖ R(n)(0) ‖(3.127)

‖Ψ14n(t) ‖ ≤
[

1−α

G(α)
ξ̄14 +

tα

G(α)Γ(α)
ξ̄14

]n

‖ D(n)(0)) ‖(3.128)

‖Ψ15n(t) ‖ ≤
[

1−α

G(α)
ξ̄15 +

tα

G(α)Γ(α)
ξ̄15

]n

‖ Sp(n)(0) ‖(3.129)

‖Ψ16n(t) ‖ ≤
[

1−α

G(α)
ξ̄16 +

tα

G(α)Γ(α)
ξ̄16

]n

‖ Ep(n)(0) ‖(3.130)

‖Ψ17n(t) ‖ ≤
[

1−α

G(α)
ξ̄17 +

tα

G(α)Γ(α)
ξ̄17

]n

‖ Ip(n)(0) ‖(3.131)

This establishes the Existence and continuity of the aforementioned solutions.In order to

demonstrate that the functions are solutions of equation (2.1)–(2.17), let’s say that

S(t)−S(0) = S(n)(t)− ϑ̄1n(t)(3.132)

Sv(t)−Sv(0) = Sv(n)(t)− ϑ̄2n(t)(3.133)

Su(t)−Su(0) = Su(n)(t)− ϑ̄3n(t)(3.134)

Svc(t)−Svc(0) = Svc(n)(t)− ϑ̄4n(t)(3.135)
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Svn(t)−Svn(0) = Svn(n)(t)− ϑ̄5n(t)(3.136)

Suc(t)−Suc(0) = Suc(n)(t)− ϑ̄6n(t)(3.137)

Sun(t)−Sun(0) = Sun(n)(t)− ϑ̄7n(t)(3.138)

E(t)−E(0) = E(n)(t)− ϑ̄8n(t)(3.139)

C(t)−C(0) = C(n)(t)− ϑ̄9n(t)(3.140)

I(t)− I(0) = I(n)(t)− ϑ̄10n(t)(3.141)

Iit(t)− Iit(0) = Iit(n)(t)− ϑ̄11n(t)(3.142)

It(t)− It(0) = It(n)(t)− ϑ̄12n(t)(3.143)

R(t)−R(0) = R(n)(t)− ϑ̄13n(t)(3.144)

D(t)−D(0) = D(n)(t)− ϑ̄14n(t)(3.145)

Sp(t)−Sp(0) = Sp(n)(t)− ϑ̄15n(t)(3.146)

Ep(t)−Ep(0) = Ep(n)(t)− ϑ̄16n(t)(3.147)

Ip(t)− Ip(0) = Ip(n)(t)− ϑ̄17n(t)(3.148)

At random, observe that

‖ ϑ̄8n(t) ‖ = ‖ 1−α

G(α)
[W1(t,E)−W1(t,E(n−1))]

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1[W1(ν ,E)−W1(ν ,E(n−1))]dν ‖(3.149)

≤ 1−α

G(α)
‖ [W1(t,E)−W1(t,E(n−1))] ‖

+
α

G(α)Γ(α)

∫ t

0
(t−ν)α−1 ‖ [W1(ν ,E)−W1(ν ,E(n−1))]dν ‖(3.150)

≤ 1−α

G(α)
ξ̄8 ‖ E−E(n−1) ‖

+
α

G(α)Γ(α)
ξ̄8

∫ t

0
(t−ν)α−1 ‖ E−E(n−1) ‖ dν(3.151)

=

[
1−α

G(α)
ξ̄8 +

tα

G(α)Γ(α)
ξ̄8

]
‖ E−E(n−1) ‖(3.152)
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when we continue recursively at t0, we have

(3.153) ‖ ϑ̄8n(t) ‖≤
[

1−α

G(α)
+

tα
0

G(α)Γ(α)

]n+1

ξ̄
n+1
8

Λ

µ

Observe that N ≤ Λ

µ
and Np ≤

Λp

µp
. Therefore without loss of generality, we have

‖ ϑ̄1n(t) ‖ ≤
[

1−α

G(α)
+

tα
0

G(α)Γ(α)

]n+1

ξ̄
n+1
1

Λ

µ

:

.

‖ ϑ̄14n(t) ‖ ≤
[

1−α

G(α)
+

tα
0

G(α)Γ(α)

]n+1

ξ̄
n+1
15

Λ

µ

‖ ϑ̄15n(t) ‖ ≤
[

1−α

G(α)
+

tα
0

G(α)Γ(α)

]n+1

ξ̄
n+1
15

Λp

µp

:

.

‖ ϑ̄17n(t) ‖ ≤
[

1−α

G(α)
+

tα
0

G(α)Γ(α)

]n+1

ξ̄
n+1
17

Λp

µp

Taking the limit as n → ∞, we have ‖ ϑ̄in ‖→ 0, i = 1,2, ...,17 which implies that the

fractional model (2.1)–(2.17) has solution

Next, we show that the solution is unique: suppose there is another solution to the model say

S∗,Sv∗,Su∗,Suc∗,Sun∗,Svc∗,Svn∗,E∗,C∗, I∗, Iit∗, It∗,R∗,D∗,Sp∗,Ep∗, Ip∗, then we have

D(t)−D∗(t) =
1−α

G(α)
[W14(t,D)−W14(t,D∗)]

+
α

G(α)Γ(α)
×
∫ t

0
(t−ν)α−1[W14(ν ,D)−W14(ν ,D∗)]dν(3.154)

Since all the kernel satisfied Lipschitz condition, applying norm on the both side we have

‖ D(t)−D∗(t) ‖ ≤
1−α

G(α)
ξ̄14 ‖ D−D∗ ‖

+
α

G(α)Γ(α)
ξ̄14 ‖ D−D∗ ‖(3.155)

and
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‖ D(t)−D∗(t) ‖
[

1− 1−α

G(α)
ξ̄14−

α

G(α)Γ(α)
ξ̄14

]
≤ 0

Therefor
[

1− 1−α

G(α)
ξ̄14−

α

G(α)Γ(α)
ξ̄14

]
> 0 since α ∈ [0,1] and ξ̄i ∈ [0,1) for i =

1,2, ...,17. This implies

‖ D(t)−D∗(t) ‖= 0

so that

D(t) = D∗(t)

Adopting the same approach, we obtain the following; S = S∗,Sv = Sv∗,Su = Su∗,Suc =

Suc∗,Sun = Sun∗,Svc = Svc∗,Svn = Svn∗,E = E∗,C = C∗, I = I∗, Iit = Iit∗, It = It∗,R = R∗,Sp =

Sp∗,Ep = Ep∗, Ip = Ip∗ �

4. DISCUSSION AND SIMULATIONS OF THE MODEL

In this part, numerical simulations of model (2.1)–(2.17) for the data presented in Table 4.1

are performed. We run numerical simulations on our model (2.1)–(2.17) using Python software

to see the influence of fractional order α changes in the model (2.1)–(2.17) with the initial

values and parameters ([6], [22]).
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Parameter Value Source

χ1 0.33 Estimated

χ2 0.62 Estimated

θ 0.486 Estimated

κ 0.715 Estimated

τ1 0.008 Estimated

τ2 0.019 Estimated

η1 0.45 Estimated

η2 0.39 Estimated

ψ1 0.825 Estimated

ψ2 0.342 Estimated

γ1 0.8 Inferred from [22]

γ2 0.5 Inferred from [22]

γ3 0.09 Inferred from [22]

γ4 0.1 [22]

β1 0.1134 Inferred from [22]

β2 0.3969 Inferred from [22]

β3 0.4455 Inferred from [22]

β4 0.7209 Inferred from [22]

δ1 0.02 Inferred from [22]

ρ 0.56 Estimated

σ 0.75 Estimated

TABLE 4.1. Description of

the parameter

Parameter Value Source

δ2 0.15 [22]

δ3 0.0171 Inferred from [22]

δ4 0.2 Inferred from [22]

a1 0.58 Inferred from [22]

a2 0.513 Inferred from [22]

a3 0.486 Inferred from [22]

a4 0.513 Inferred from [22]

a5 0.000288 Inferred from [22]

b1 0.69 Inferred from [22]

b2 0.522 Inferred from [22]

b3 0.513 Inferred from [22]

b4 0.504 Inferred from [22]

b5 0.000324 Inferred from [22]

q1 0.75 Inferred from [22]

q2 0.4617 Inferred from [22]

q3 0.531 Inferred from [22]

q4 0.513 Inferred from [22]

q5 0.000648 Inferred from [22]

ε 0.03 Estimated

z2 0.4374 Inferred from [22]

z3 0.504 Inferred from [22]

z4 0.513 Inferred from [22]

z5 0.000648 Inferred from [22]

µp 0.00081 Estimated

µ 0.0003421 [5]

TABLE 4.2. Description of

the parameter
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(A) Susceptible individuals S (B) Susceptible vaccinated Sv

and unvaccinated Su

FIGURE 4.1. The Susceptible Population

For different fractional orders α , Figure (4.1) shows how susceptible individuals behave over

time. We see that the number of susceptible people declines with time for all values of frac-

tional order α , but it never reaches zero because of population recruitment. Yet when the value

of the fractional order α rises, the proportion of susceptible people falls off more quickly over

time. The susceptible population, both vaccinated and unvaccinated, is shown in Figure (4.1b).

Due to the introduction of the vaccine, the susceptible population was marginally altered as

increased but remained steady while responding to the virus. On the other hand, because to

the lack of vaccine administration, the susceptible unvaccinated population dramatically shrank

and eventually disappeared. Hence, the immune system was compromised. The number of sus-

ceptible people who have received vaccinations, on the other hand, rises over time as the value

of fractional order α rises, whereas the number of susceptible people who have not received

vaccinations falls with time. This suggests that the fractional order derivatives of the dynamical

variables are more useful for estimating the proportion of susceptible, susceptible vaccinated,

and susceptible unvaccinated people.
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(A) Susceptible vaccinated: con-

doms Svc and without condoms

Svn

(B) Susceptible unvaccinated:

condoms Suc and without con-

doms Sun

FIGURE 4.2. Susceptible vaccination and unvaccination with and without

condom Population

The relationship between susceptible vaccine individuals using condoms and susceptible vac-

cine individual not using condoms, as well as time for various fractional orders, is shown in

Figure (4.2a). The graph showed how vaccination with a condom outperformed vaccination

without a condom, which fluctuates a lot. When the fraction order is average, we saw both rises

and normalized after a while. This suggests that even though both are immunized, sticking to

condom use will be a helpful technique to stop the Nipah virus from spreading. The behavior

of susceptible unvaccinated individuals using condom and susceptible unvaccinated individuals

not using condoms over time for various fractional orders α is shown in Figure (4.2b). When the

virus was first discovered, they surged, but as more individuals became exposed to it, they began

to decline quickly. The number of susceptible unvaccinated individuals using condoms did not

really decline at the same pace as the susceptible unvaccinated individuals not using condoms,

according to our Figure(4.2b). Also, it implies that condom usage is necessary whether or not

you have had a vaccination. As the fractional order goes up, both go down.
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(A) Exposed individuals E (B) Nipah virus carries and In-

fectious individual

(C) infectious undergoing

treatmentIt and infectious

isolated undergoing treatment Iit

FIGURE 4.3. Exposed individuals,Nipah Virus Carriers(Asymptomatic) and the

Infectious Population

Figure (4.3) depicts the temporal behavior of the fractional orders α of the number of exposed

persons, carriers of the Nipah virus, and infected individuals. When humans were exposed to

the virus quickly at first, the exposed population rapidly climbed, peaked, and then gradually

decreased. The infectious I, infectious undergoing treatmentIt , infectious isolated undergoing

treatment Iit and Nipah virus caries C populations all grew before they reduced, but Nipah virus

caries population increased the most since it exhibits no symptoms and infects more members

of the community as a result. The infectious undergoing treatment’s population also increased

and later decreased with time but the infectious isolated-treated population increased the most
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because more infectious people are going for isolation with treatment and few infectious people

are going for hospitals for treatment. We observed that when the value of the fractional order

α is small, the proportion of exposed individuals, Nipah virus carriers,infectious, infectious

undergoing treatment,and infectious isolated undergoing treatment individuals falls slowly over

time. This demonstrates that the Nipah virus carrier has to be taken seriously and that the

asymptomatic population needs to be tested more often in order to identify and isolate them

from the population.

(A) Recovered individuals and

the dead bodies compartment

(B) Susceptible pigs

(C) Exposed pigs (D) Infectious pigs

FIGURE 4.4. Recovered Population, Dead Bodies Population and Pigs Popula-

tion

Figure (4.4a) illustrates the behavior of recovered people and the population of deceased

bodies over time. The graph clearly shows that for all values of α , the number of recovered

persons rises with time and eventually stays constant. It may also be inferred that the effect
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of vaccinations causes an increase in the number of recovered people. After some time, the

population that had recovered reached its apex, and the population of dead bodies had almost

completely disappeared. Figure (4.4b)-(4.4d) depicts the behavior of the pig population over

time at various fractional order levels. The number of susceptible pigs declines as more pigs

become exposed and sick. First growing and then declining but never reaching zero was the

number of infected and exposed pigs. The exposed and infected pigs grow slowly and eventually

diminish slowly while the susceptible pigs decrease slowly when the fractional order is tiny.

5. CONCLUSION

A derivative of AB made up of a Mittag-Leffler kernel has been described by Atangana and

Baleanu. We introduce the fractional with vaccination and condoms linked with the model for

the first time by the idea of Atangana and Baleanu derivatives in order to see further appli-

cations of these fractional derivatives and better investigate Nipah virus dynamics. As with

the fixed point approach, our goal is to provide the prerequisites for the models’ existence and

uniqueness as solutions. To comprehend the efficacy of the fractional order α as well as vaccine

and condoms, numerical calculations for these fractional models have been carried out. These

simulations show that, depending on the various fractional orders, increasing vaccination and

condom use result in a reduction in the Nipah virus’s ability to propagate. The description of

the Nipah virus’s mechanics in light of vaccines and condoms is where we believe the current

research will be most helpful.

Finally, the utilization of the Atangana-Baleanu derivative in solving differential equations

with memory effects and non-local behaviors offers significant advantages in understanding

and modeling complex systems. By incorporating this fractional derivative operator, we can

capture the long-term memory effects and non-local behaviors exhibited by various real-world

phenomena more accurately. Through the application of the Atangana-Baleanu derivative, we

have gained deeper insights into the dynamics and behaviors of systems that cannot be ade-

quately described by classical differential equations. The inclusion of memory effects in the

modeling process has allowed us to achieve a more comprehensive and accurate representation

of the underlying dynamics.



THE MATHEMATICAL NIPAH VIRUS MODEL WITH ATANGANA-BALEANU DERIVATIVE 27

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.

REFERENCES

[1] A.K.A. Kumar, A.S.A. Kumar, Deadly Nipah outbreak in Kerala: Lessons learned for the future, Indian J.

Crit. Care Med. 22 (2018), 475–476. https://doi.org/10.4103/ijccm.ijccm 282 18.

[2] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and

application to heat transfer model, preprint, (2016). http://arxiv.org/abs/1602.03408.

[3] A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional

order, Chaos Solitons Fractals. 89 (2016), 447–454. https://doi.org/10.1016/j.chaos.2016.02.012.

[4] A. Atangana, B. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular

kernel, Entropy. 17 (2015), 4439–4453. https://doi.org/10.3390/e17064439.

[5] A.D. Zewdie, S. Gakkhar, A mathematical model for Nipah virus infection, J. Appl. Math. 2020 (2020),

6050834. https://doi.org/10.1155/2020/6050834.

[6] A.L. Ozioko, R.O. Aja, S.I.S. Abang, et al. The dynamics of Nipah virus (NiV) transmission and analysis, J.

Math. Computer Sci. 31 (2023), 367–391. https://doi.org/10.22436/jmcs.031.04.03.

[7] B.I. Omede, P.O. Ameh, A. Omame, et al. Modelling the transmission dynamics of Nipah virus with optimal

control, preprint, (2020). http://arxiv.org/abs/2010.04111.

[8] E. Mahmoud, N. Mohamed, Nipah virus new emerging zoonotic disease, Sohag Med. J. 23 (2019), 115–118.

https://doi.org/10.21608/smj.2019.41360.

[9] E. Bonyah, A. Atangana, M.A. Khan, Modeling the spread of computer virus via Caputo fractional derivative

and the beta-derivative, Asia Pac. J. Comput. Eng. 4 (2017), 1. https://doi.org/10.1186/s40540-016-0019-1.

[10] J. Dhillon, A. Banerjee, Controlling Nipah virus encephalitis in Bangladesh: Policy options, J. Public Health

Policy. 36 (2015), 270–282. https://doi.org/10.1057/jphp.2015.13.

[11] J. Losada, J.J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ.

Appl. 1 (2015), 87–92.

[12] J.M. Hughes, M.E. Wilson, S.P. Luby, et al. Transmission of human infection with Nipah virus, Clin. Infect.

Dis. 49 (2009), 1743–1748. https://doi.org/10.1086/647951.

[13] J. Singh, D. Kumar, Z. Hammouch, et al. A fractional epidemiological model for computer viruses pertaining

to a new fractional derivative, Appl. Math. Comput. 316 (2018), 504–515. https://doi.org/10.1016/j.amc.20

17.08.048.

[14] J. Sultana, C. N. Podder, Mathematical analysis of Nipah virus infections using optimal control theory, J.

Appl. Math. Phys. 04 (2016), 1099–1111. https://doi.org/10.4236/jamp.2016.46114.

https://doi.org/10.4103/ijccm.ijccm_282_18
http://arxiv.org/abs/1602.03408
https://doi.org/10.1016/j.chaos.2016.02.012
https://doi.org/10.3390/e17064439
https://doi.org/10.1155/2020/6050834
https://doi.org/10.22436/jmcs.031.04.03
http://arxiv.org/abs/2010.04111
https://doi.org/10.21608/smj.2019.41360
https://doi.org/10.1186/s40540-016-0019-1
https://doi.org/10.1057/jphp.2015.13
https://doi.org/10.1086/647951
https://doi.org/10.1016/j.amc.2017.08.048
https://doi.org/10.1016/j.amc.2017.08.048
https://doi.org/10.4236/jamp.2016.46114


28 OZIOKO, MALESELA, ABANG, FADUGBA, OGBUAGU, AJA, MBAH

[15] K.A. Bishop, C.C. Broder, Hendra and Nipah viruses: lethal zoonotic paramyxoviruses, in: W.M. Scheld,

S.M. Hammer, J.M. Hughes (Eds.), Emerging Infections 8, ASM Press, Washington, 2014: pp. 155–187.

https://doi.org/10.1128/9781555815592.ch9.

[16] K.B. Chua, Nipah virus outbreak in Malaysia, J. Clin. Virol. 26 (2003), 265–275. https://doi.org/10.1016/s1

386-6532(02)00268-8.

[17] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, eds., Fractional calulus: models and numerical methods,

World Scientific, Singapore, 2012.

[18] K.B. Oldham, J. Spanier, The fractional calculus: theory and applications of differentiation and integration

to arbitrary order, Academic press, New York, 1974.

[19] M. Caputo, Linear models of dissipation whose Q is almost frequency independent–II, Geophys. J. Int. 13

(1967), 529–539. https://doi.org/10.1111/j.1365-246x.1967.tb02303.x.

[20] M. Giangaspero, Nipah virus, Trop. Med. Surg. 01 (2013), 4. https://doi.org/10.4172/2329-9088.1000129.

[21] M.H.A. Biswas, M.M. Haque, G. Duvvuru, A mathematical model for understanding the spread of nipah

fever epidemic in Bangladesh, in: 2015 International Conference on Industrial Engineering and Operations

Management (IEOM), IEEE, Dubai, 2015: pp. 1–8. https://doi.org/10.1109/IEOM.2015.7093861.

[22] M.H.A. Biswas, Optimal control of Nipah virus (NiV) infections: a Bangladesh scenario, J. Pure Appl. Math.:

Adv. Appl. 12 (2014), 77–104.

[23] H.M.S. Sazzad, M.J. Hossain, E.S. Gurley, et al. Nipah virus infection outbreak with nosocomial and corpse-

to-human transmission, Bangladesh, Emerg. Infect. Dis. 19 (2013), 210–217. https://doi.org/10.3201/eid190

2.120971.

[24] M.K. Mondal, M. Hanif, M.H.A. Biswas, A mathematical analysis for controlling the spread of Nipah virus

infection, Int. J. Model. Simul. 37 (2017), 185–197. https://doi.org/10.1080/02286203.2017.1320820.

[25] M. Yavuz, N. Ozdemir, H.M. Baskonus, Solutions of partial differential equations using the fractional opera-

tor involving Mittag-Leffler kernel, Eur. Phys. J. Plus. 133 (2018), 215. https://doi.org/10.1140/epjp/i2018-1

2051-9.

[26] M. Yavuz, N. Sene, Approximate solutions of the model describing fluid flow using generalized ρ-Laplace

transform method and heat balance integral method, Axioms. 9 (2020), 123. https://doi.org/10.3390/axioms

9040123.

[27] N.M. Amal, M.S. Lye, T.G. Ksiazek, et al. Risk factors for Nipah virus transmission, Port Dickson, Negeri

Sembilan, Malaysia: results from a hospital-based case-control study, Southeast Asian J. Trop. Med. Public

Health. 31 (2000), 301–306.
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