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Abstract: Sleep is commonly associated with physical and mental health status. Monitoring sleep quality from the 

dynamic of sleep stages during the night can be valuable. Data from the wearable device has the potential to be used 

as predictors to predict the sleep stage. Machine learning methods have been proposed to learn patterns within the data 

for the sleep-wake classification. The main challenge is the nature of imbalanced sleep, which means more sleep stages 

will be found in the data than in the wake stages. In this study, we utilized five different supervised methods 

complemented by three strategies to handle the imbalanced data problem. We implemented Random Forest, Support 

Vector Machine, XGBoost, Dense Neural Network (DNN), and Long-Short Term Memory (LSTM), to a publicly 

available dataset that consists of three features captured from a consumer wearable device and the labelled sleep stages. 

Among all the models, the DNN method was found to have the best performance, achieving a 12% higher specificity 

score (predictive capability for minority class) while using all features in the model. This achievement was affected 
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by the implementation of custom class weight and SMOTE oversampling strategy. The class weight parameter avoided 

the model ignoring the minority class by giving more weight for this class in the loss function. The feature engineering 

process seemed to obscure the time-series characteristics within the data. This is why LSTM, as one of the best 

methods for time-series data, failed to perform well in this classification task. Our proposed method therefore can 

provide an insight into constructing more robust ML-based sleep quality prediction pipelines. 

Keywords: classification; data imbalance; machine learning; sleep quality; wearable. 

2020 AMS Subject Classification: 92B25. 

 

1. INTRODUCTION 

Our understanding of sleep patterns is required to maintain the quality of the body in carrying 

out daily activities and avoid chronic health problems. People who have poor sleep quality are 

often recognized to experience irregular sleep-wake patterns. The gold standard for a sleep quality 

analysis is to measure and observe sleep patterns using a polysomnogram (PSG) that also requires 

various psychological parameters [1]. However, a polysomnogram only measures longitudinal 

ambulatory sleep for one to two nights of assessment. Another FDA-approved method such as 

actigraphy also measures longitudinal ambulatory sleep. Actigraphy utilizes a wearable 

accelerometer device to estimate sleep quality based on users’ movement activities. The use of 

actigraphy is convenient for evaluating sleeping habits without the need for complicated sleep 

laboratory equipment [2,3]. However, this method is still expensive compared to other sleep-

tracking technologies, which is the main drawback of actigraphy for use in personalized sleep 

monitoring. In addition, relying on the movement’s observation during sleep, actigraphy is 

considered difficult to accurately determine the time to wake up during the patient's or user's sleep 

period [4–7]. Therefore, the limitations of the system integration between health data recording 

platforms and actigraphy need to be addressed using more sophisticated yet affordable methods to 

evaluate sleep quality accurately. A validation of sleep tracking data to monitor users’ sleep quality 

in some studies indicates the clinical utility of commercial wearable devices for such purposes [8]. 

Commercial wearables that have their algorithmic method for tracking ambulatory sleep have 

advantages such as affordable prices, high availability in the market, and high capabilities for their 

system integration with various health-oriented platforms. However, evaluating commercial sleep 

tracking data problems compared with polysomnograms as the gold standard for measuring 

ambulatory sleep cannot be utilized for medical approval in certain clinical research cases [9,10]. 

The algorithm implemented in this commercial wearable is a company secret and is rarely 
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published for research from the production side, which causes clinical evaluation problems. 

Interestingly, this problem becomes a challenge for researchers to investigate and develop an 

effective and accurate method for measuring longitudinal outpatient sleep, which is implemented 

in commercial wearable devices [11–13]. 

Many studies that use commercial wearable devices to measure sleep quality rely on 

microelectromechanical systems (MEMS) for data acquisition. This accelerometer may gather 

acceleration signal data before the program processes the data [14,15]. On the other hand, 

photoplethysmography (PPG) in wearable devices was also used in some studies to quantify sleep 

quality. PPG uses an optical technique that can also accurately measure heart rhythm through 

changes in blood volume. The FDA has approved the use of PPG in clinical trials for evaluating 

abnormal heart rhythms in wearable commercial devices [16,17]. The use of these two sensor 

technologies makes it easier to predict sleep metrics from signal data. 

The capabilities of commercial wearable devices for sleep quality prediction have been 

suggested in sleep studies. For example, a recent study by Miller et al. demonstrated comparable 

performances of a commercial wearable device with research-grade actigraphy and 

polysomnography to estimate sleep-wake classification and sleep stages [18]. Furthermore, 

machine learning-based methods have shown promising results for more accurate and flexible data 

modelling, including sleep quantification by utilizing multi-modal data from wearable sensors [19]. 

A study by Walch et al. employed acceleration data and heart rate obtained from commercial 

wearable devices to perform machine learning-based sleep stage prediction [20]. They established 

a multi-classification task for categorizing sleep into several sleep stages using various ML models 

and found that Multi Layer Perceptron (MLP) model performed better with the highest accuracy 

for classification tasks by incorporating all feature inputs. 

Further, the robustness of deep learning models for wearable time-series data to accurately 

predict sleep quality has been explored extensively. An earlier study in 2015 employed a Long 

Short Term Memories (LSTM) model to recognize sleep-wake state and offset-onset classification 

using multimodal data (actigraphy and skin-related data from wrist sensors and daily smartphone 

activities) [21]. The proposed method had the highest classification accuracy and F1 scores when 

compared with non-temporal models. Moreover, Sathyanarayana et al. used actigraphy devices to 

measure physical activity data during the awakening time and the sleep time for binary sleep 

efficiency classification [22]. They found that the time-batched version of LSTM achieved the 

highest evaluation AUC score but fares slightly poorer than the CNN model and had the higher F1 
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and accuracy among all models.  

Further, more advanced variants of deep learning architectures and feature engineering have 

been also proposed for sleep prediction tasks. For example, a bidirectional LSTM architecture was 

proposed for sleep stage categorization by learning multi-level features heart rate, and actigraphy 

data [23]. Chen et al. showed that crafting features from HRV and acceleration features learned 

using local feature-based LSTM (LF-LSTM) to build an ensemble learning model can boost the 

performance of sleep-wake classification [24]. Another variant of RNNs such as the CNN-LSTM 

model along with heart rate variability (HRV) and actigraphy data demonstrated accurate scoring 

of sleep quality prediction [25]. Additionally, using a transfer learning strategy, Phan et al. 

proposed a sequence-to-sequence neural network called SeqSleepNet trained on a public dataset 

to predict subject-specific sleep scoring [26], which is a suitable method to deploy in personalized 

wearable devices.  

Inspired by these previous works, we proposed various ML methods to be implemented 

specifically to the sleep dataset from Walch et al. [20]. They highlighted the nature of imbalanced 

data within their dataset that significantly affects the classifiers’ performance, especially for the 

binary classification task (i.e., Wake vs. Sleep). Therefore, we compared multiple ML methods 

with three different approaches for handling imbalanced data problems that were aimed at 

increasing the predictive capability for the minority class (wake class) in the binary classification 

task. 

 

2. METHODS 

2.1. Dataset. In this research, we used a publicly available dataset consisting of consumer wrist-

worn wearable and medical-grade polysomnography (PSG) measurements [20]. Each subject was 

asked to wear an Apple Watch to capture the daily activity data for a week. This one-week session 

was then followed by a one-night sleep observation in the laboratory. Wrist band data collection 

was also still conducted during this observation which includes acceleration and heartbeat. In total, 

31 subjects were confirmed to have good-quality data based on several inclusion and exclusion 

criteria, such as issues in data transmission, and several sleep disorders. 

 In this study, we used the processed features that were provided in the previous study. These 

features are motion count, which was derived from acceleration data, heart rate (HR) measurement 

from Apple Watch, and circadian clock calculated from the 1-week ambulatory data. Motion count 

data was gathered by employing the fluctuation in the acceleration raw data which can be 
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interpreted as a motion. HR was processed by calculating the standard deviation from the average 

of each sample’s heart rate. This approach was taken to remove the individual heart rate bias 

because each person has a unique pattern of heart rate depending on age, gender, and other physical 

characteristics. All these features were aggregated to meet the sleep epoch (30 s) from the PPG 

data. Each sleep epoch was categorized into 5 different classes, 0 for a wake stage, 1-4 for non-

Rapid Eye Movement (REM), and 5 for REM sleep. 

 Sleep stage classification can be considered as outlier detection, due to the imbalance data 

proportion, if we formulate the problem into binary classification. It means that around 90% of the 

sleep epochs were categorized as sleep class (non-REM and REM). This extreme discrepancy 

between the minority (wake) and majority (sleep) classes can be seen in Figure 1. The figure 

depicts a huge difference between the majority class and the other. Ignoring this problem may limit 

the model's performance. 

 

Fig 1. The Proportion of Sleep and Wake Classes in the Dataset. 

 

2.2.  Classification Models. We employed two different types of machine learning (ML) 

methods. The first one is a group of machine learning methods that are commonly used for tabular 

data, while the other group is a series of neural network (NN)-based methods that offer relatively 

complex algorithms. In total, five different supervised classification methods were compared with 

the best model from the previous study [20]. This best model, Multi-Layer Perceptron (MLP), is 

also considered conventional machine learning. Support Vector Machine (SVM), Random Forest 

(RF), and XGBoost (XGB) were among the existing methods that were selected to be implemented 

in this study because of their proven performance in previous classification tasks, especially for 
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tabular data. These three methods offer a non-linear approach to mapping the input data to its 

desired output data. 

On the other hand, NN-based models can be differentiated based on their hidden layer types. 

The first model is developed by stacking multiple dense neural network layers to perform a non-

linear operation on the data. However, a single neuron in each layer merely performs a simple 

linear regression. Each layer was also complemented by an activation function to select which 

information can be passed from one neuron to another neuron. We used Rectified Linear Unit 

(ReLU) as the activation function in all dense layers, except the output layer. This last layer, which 

consists of 2 neurons that represent the number of classes (sleep and wake), was complemented by 

a Softmax function to generate a probability of a sample belonging to a certain class. 

Before training the models, the entire dataset was split into training, validation, and testing 

subsets with the proportions of 60%, 20%, and 20%, respectively. The model trained and validated 

on the training and validation sets was evaluated on the test subset to measure the performance in 

the prediction of the testing set. To keep the data order in each sample, the entire data was manually 

split based on the sample ID. It avoids the data being shuffled which can consequently break the 

temporal information within the data. 

Hyperparameter tuning was done for each model to boost its performance. This tuning was 

applied specifically only to the training subset. RF and XGB have similar tuneable parameters 

since these two methods are based on a decision tree as the main technique for ensemble learning. 

2.3.  Handling Imbalance Data. The main challenge in this classification task was the extreme 

imbalance of data between wake and sleep. The proportion between these two classes is more than 

10% for the whole dataset. The summary visualization of stage proportion in each sample can be 

seen in Figure 1. This data proportion is a normal condition in certain topics such as anomaly 

detection. The imbalance between these two groups causes the typical model to ignore the minority 

group and consider it as noise. Consequently, the model accuracy shows a spectacular result, with 

a clear disparity between specificity and sensitivity. The specificity, in this case, is the count of the 

correct wake predictions, while the sensitivity is the count of the correct sleep predictions. Based 

on this problem formulation, the main objective of this study was to increase the specificity while 

keeping a sensitivity score. We applied two strategies for handling this imbalanced data by adding 

weights for each class and performing under a sampling approach to the training data. 

 In the first approach, the basic intuition was to limit the loss function when calculating the error 

for the majority class. In contrast, it will give a booster to the minority score, so that the model 
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will predict more on the minority group. We applied different class weights for each model. In 

complement to the class weight approach, we also applied a sample-based approach which aimed 

to balance the amount of data between two classes. To achieve this, we applied two strategies 

reducing the amount of sleep class and adding synthetic wake data based on the existing data 

distribution. These strategies were aimed at balancing the proportion of the two classes which can 

avoid the model only focusing on the majority class. This sample-based approach was not applied 

to the RNN model since it contradicts the objective of the model and emphasizes the temporal 

characteristics of the data. In the under-sampling approach, we reduced 50% of the majority class, 

while in the other strategy, we added augmented data into the minority class as much as 50% of 

the total data in the majority class. 

2.4.  Data Evaluation. To measure the performance of each proposed model we calculate five 

scores, namely accuracy, specificity, sensitivity, and balanced accuracy. These scores are based on 

the number of correct and incorrect predictions for each class from the confusion matrix, where 

the formulas for obtaining these scores are given in Table 1. 

Table 1. Evaluation Metrics 

Definition Formula 

Accuracy (TP+TN)/(TP+FP+FN+TN) 

Specificity TN/(TN+FP) 

Sensitivity TP/(TP+FN) 

Balanced Accuracy (Specificity+Sensitivity)/2 

 

 In our imbalanced data scenario, accuracy cannot be the only metric to determine the overall 

performance of the model for both classes. As an illustration, using the dataset in this study, the 

number of data is 25481, 2152, and 23329, for whole data, wake data, and sleep data, respectively. 

If the model predicts all data as sleep class, then it achieves an accuracy of 91.55% (a similar 

accuracy score for the best model in the previous study). On the other hand, the specificity is zero, 

which indicates that the model ignores the minority class. Therefore, we focused on the 

improvement of the specificity score compared to the previous model. At the same time, we also 

tried to maintain a sensitivity score of at least the same score as the previous best model. The 

combination of these two scores can be summarized into one score called the balanced accuracy 

score. 
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Table 2. Model Performance Comparison (Heart Rate and Motion Count) 

Method Variants Accuracy Specificity Sensitivity 
Binary  

accuracy 

MLP Previous study 90% 41% 95% 68.0% 

RF Previous study 90% 39% 95% 67.0% 

RF Standard 94% 23% 99% 61.0% 

cw: {0:4.6, 1:1.1} 91% 41% 95% 68.0% 

cw: {0:1.09, 1:1.1} 

under sampling 

91% 40% 95% 67.5% 

cw: {0:1.09, 1:1.65} 

over sampling 

91% 41% 95% 68.0% 

SVM Standard 93% 28% 98% 63.0% 

cw: {0:3.8, 1:1} 90% 40% 94% 67.0% 

cw: {0:1.8, 1:1}  

under sampling 

90% 41% 94% 67.5% 

cw: {0:.78, 1:1.1}  

over sampling 

90% 41% 94% 67.5% 

XGB Standard 94% 23% 99% 61.0% 

spw: [0.31] 91% 42% 95% 68.5% 

spw: [0.725]  

under sampling 

91% 41% 95% 68.0% 

spw: 1.65  

over sampling 

91% 41% 95% 68.0% 

DNN standard 94% 24% 99% 61.5% 

cw: {0: 5, 1: 1} 91% 39% 95% 67.0% 

cw: {0: 1.16, 1: 1}  

under sampling 

91% 38% 95% 66.5% 

cw: {0: 3.3, 1: 1.1} 

over sampling 

91% 41% 95% 68.0% 

LSTM cw: {0:4, 1:1} 91% 33% 95% 64.0% 

cw = class weight parameter 

spw = scale pos weight parameter 

 

 All the model training was done in Python using SKLearn, XGBoost, and Keras library for RF 

and SVM, XGB, and NN-based models, respectively. The hyperparameter tuning was helped by 

using the grid search function from SKlearn. All the plots were generated using the Matplotlib and 

Seaborn libraries. The computational operations were performed in a LINUX-based portable 

Personal Computer (PC) with an i5 8 cores CPU and GeForce RTX 2060 GPU. 
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3. RESULTS 

Table 3. Model Performance Comparison (Heart Rate, Motion Count, and Circadian Clock). 

Method Variants Accuracy Specificity Sensitivity Binary  

Accuracy 

MLP Previous study 91% 52% 95% 73.5% 

RF Previous study 91% 51% 95% 73.0% 

RF Standard 95% 42% 99% 70.5% 

cw: {0: 4.5, 1: 1} 95% 57% 98% 77.5% 

cw: {0: 3.2, 1: 1} under sampling 93% 60% 96% 78.0% 

cw: {0:1.09, 1:1.65} over 

sampling 

93% 62% 95% 78.5% 

SVM Standard 95% 44% 99% 71.5% 

cw: {0:2, 1:1} 94% 56% 97% 76.5% 

cw: {0: 2.7, 1: 1} under sampling 93% 60% 95% 77.5% 

cw: {0:1, 1:1.7}  

over sampling 

93% 48% 96% 72.0% 

XGB Standard 95% 47% 99% 73.0% 

spw: [0.07] 94% 63% 96% 79.5% 

spw: [0.35] 

under sampling 

93% 64% 95% 79.5% 

spw: [1.8]  

over sampling 

93% 64% 95% 79.5% 

DNN Standard 95% 51% 98% 74.5% 

cw: {0: 2.5, 1: 1} 94% 67% 96% 81.5% 

cw: {0: 3.2, 1: 1.2}  

under sampling 

93% 66% 95% 80.5% 

cw: {0: 1., 1: 1.8}  

over sampling * 

94% 68% 96% 82.0% 

LSTM cw: {0:3.3, 1:1} 93% 48% 96% 72.0% 

cw = class weight parameter 

spw = scale pos weight parameter 

* best proposed model 

 

In total, there were 17 different models, from five methods in this study. Each method consists of 

four variations: (1) standard model, (2) model with custom class weight; (3) model with under-

sampling approach; and (4) model with the oversampling approach. The customized variants were 

not implemented in the LSTM model because of the different input data formats. Each variant 
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model was then applied to two different feature sets. The first set only included heart rate and 

motion count features, while the other set included all features. 

The performances for all models are shown in Table 2 and Table 3. Among all proposed models 

and feature set scenarios, the DNN model complemented by custom class weight and oversampling 

strategy was the best classifier. It achieved an 8.5% balanced accuracy improvement from the best 

model in the previous study, from 73.5% to 82%. More specifically, this model performed well in 

predicting the minority class, which was the main problem in the previous study. The specificity 

score of our best model is 16% higher than the previous best model, while also slightly improving 

the sensitivity by 1%. 

Our best model consists of 6 dense layers with 128 neurons, except for the output layer. In total, 

66,818 parameters were trained in this model for 40 epochs. The full architecture of this model is 

depicted in Figure 2. The model was optimized using an Adadelta optimizer [27], with a static 0.01 

learning rate. Binary cross-entropy was used as the loss function and as the metric evaluation 

during training. The training process only lasted for 80 seconds. 

 

Fig 2. The Best Model Architecture. 

 

In the two features scenario, our XGB model outperformed the previous best model in this 

scenario. The class weight parameter was the only hyperparameter that was applied to the model 

without under-sampling and over-sampling methods. However, the improvement was not quite 

impressive with only a 1% increase in the specificity score. It is seen that in each method, the 

performance was boosted by the application of class weight to handle imbalanced data. However, 

the implementation of under-sampling and over-sampling strategies did not consistently yield 

better performance. 
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4. DISCUSSION 

In this binary classification task, all the models with three inputs successfully outperformed the 

models with the same methods that only used two features [28,29]. This finding is in accordance 

with the previous study outcome. It indicates that the circadian clock feature, which was modelled 

from the ambulatory data from each sample, gave a significant booster to help the models in 

learning the hidden pattern within the data. This feature represents the routine biological cycle of 

each sample and indirectly provides unique information concerning the sample’s sleep habits. By 

only collecting the seven-day ambulatory data before the laboratory observation, this feature could 

complement the other two superficial features to categorize the sleep stages. The method to 

generate this feature by looking at the samples’ daily activity data (especially step count) shows a 

promising strategy to infer the routine cycle of this person. Furthermore, since step count data was 

commonly captured in most consumer wearable devices, this strategy can be implemented easily 

so that the captured data can give more benefits to the users, not only related to the sleep stages 

but also other medical-related information, such as disease or disorders early screening [30]. By 

knowing this information as the basis, we will have enough confidence to infer that a certain 

condition that is different from our circadian clock is something worth paying attention to. In 

general, sleep stage classification can be very useful to be implemented in the medical realm to 

help clinicians understand the health condition of the patient. While consumer wearable devices 

or fitness trackers have been becoming very ubiquitous, an Artificial Intelligence (AI) program is 

needed to automatically learn the data and inform the users and their clinicians regarding any 

health issues. However, it cannot replace clinicians to decide the action to address those issues. 

Our study was aimed towards this goal by building an effective sleep stage classification as the 

starting point. We successfully implemented various advanced ML to recognize hidden patterns 

from the engineered features from wearable-based data in relation to sleep habits. We included a 

complex ML method to reduce the gap from the previous study. This gap is related to the model's 

capability to learn from extremely imbalanced data. In our main referred study, MLP was the best 

model that can classify 91% of sleep epochs into the correct class. However, this high accuracy 

was slightly disappointing in this case since the predictive capability for the minority class (wake 

stage) was quite low, just slightly higher than 50%. 

XGBoost models consistently outperformed other conventional ML models in both feature set 

combinations. RF model could not perform well even though based on a similar basic method to 

the XGB model. This different outcome was the result of a distinct ensemble learning strategy 
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from both methods. Random Forest performs voting mechanisms from several decision trees to 

get the final predicted class. In contrast, XGB uses a slightly more advanced strategy by stacking 

multiple weak decision trees to improve the prediction performance. 

In our best model, assigning class weights and applying the SMOTE oversampling approach 

was found to be effective in addressing the imbalanced data problem when using all features as 

predictors. The same strategy could not achieve similar success when using only two features. This 

result was strong evidence to say that the circadian clock could offer the powerful predictive 

capability to complement heart rate and motion count. Additionally, heart rate and motion count 

were found to have a stronger correlation than between heart rate and circadian clock or motion 

count and circadian clock as illustrated in Figure 3. This correlation may lead to the low 

performance of all models in this feature set scenario. 

 

Fig 3. Pairwise Correlation of All Features. 

 

The LSTM model, as the most common model for time series data, also failed to learn the 

training data. The possibility is that the time series information within the data was disguised as 

the result of the feature engineering process. Despite this low performance, LSTM still can be a 

promising option, if we can use the raw data from the device and formulate it into a neat 

multivariate time series data, then this LSTM model can potentially yield a higher score for both 

specificity and sensitivity, as reflected in some previous works from other domains [31]. An 
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additional variant of the NN-based method, called Convolutional Neural Network (CNN), can also 

be implemented on top of LSTM layers to perform convolution operations among the features over 

the time steps. The combination of CNN and LSTM has been proven to have good predictive 

power in time-series prediction problems [32]. 

 

5. CONCLUSION 

In the present study, we proposed alternative classification models to the previous best model 

for classifying sleep stages. We limited this classification task to a binary problem. Additionally, 

we also focused on addressing the imbalance data problem in this task. In total, there were 17 

variant models from 4 different ML methods that were successfully implemented in two scenarios 

based on the number of features included. Three different strategies for handling imbalanced data 

were also applied to boost the performance of the models. Model performance was measured by 

looking at the specificity and sensitivity scores, which means the capability to correctly classify 

wake and sleep classes, respectively. Among all the models, the XGB model with additional class 

weight assignment was the best in both scenarios. In the 3-features scenario, this model achieved 

a tremendous improvement, by achieving a specificity score of 21% more than the previous best 

model plus a 1% improvement in the sensitivity score. NN-based models, as the most advanced 

ML method, could not achieve a good performance. It was mainly caused by the data used in this 

study that has been engineered from the original raw data from the wearable device. This feature 

engineering process seemed to obscure the temporal information within the data. This study can 

be extended by implementing an NN-based model into raw data to get more benefits from its time 

series characteristics [33–35]. Moreover, it is suggested that the prediction models need to be 

deployed in a robust information health system to realize its implementation for a wide use of sleep 

and mental health research [36]. 
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