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Abstract. Mathematical models are used to study the epidemic diseases to understand the dynamics of disease

spreading. In biomathematics, mathematical modeling is considered as a powerful tool to help in interpreting

the experimental results of biological phenomena involved in the spreading of disease in more precise way. By

using these models, one can estimates the nature of the spread of Hepatitis B virus. So in this paper, we study

dynamical properties of a discrete Hepatitis B virus (HBV) model. More precisely, local dynamical properties at

equilibrium states are examined by basic reproduction number. Furthermore, we also studied rate of convergence,

local and global dynamics at equilibrium states of a discrete HBV model. Finally, theoretical results are confirmed

numerically.
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1. INTRODUCTION

Hepatitis B is a potentially life-threatening liver infection cause by the HBV. Infection with

the hepatitis B virus affects people all over the world. The HBV is a double-stranded DNA virus

from the hepadnavirus family with unique characteristics resembling retroviruses. Direct blood
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transfusion with infected person, other body fluids and contact with contaminated needles of

an infected person are the ways to transmit the HBV. It is a potentially fatal condition that can

results in liver cancer.

It might be beneficial to investigate anti-HBV infection therapy using mathematical models.

In order to understand HBV dynamics, numerous models have been proposed by Pang et al. [1].

The basic infection model, which was developed by Pang et al. [1], is frequently used in order

to study the dynamics of virus infection. In a basic model for HBV and HIV infection, Nowak

& Bangham [2] proposed models that take the impact of cell-mediated immunity into account.

A mathematical model that takes into account lytic as well as nonlytic immune responses was

proposed and studied by Nowak & Bangham [2], quantitatively examined its overall dynamics.

It is noted that dynamics of infection mathematical models have been extensively studied in

recent years by researchers. For instance, Li & Chai [3] have investigated the behavior of HBV

model with the effect of drug-resistant treatment:

ṡ = λ −Ksvs−Krys−αs,

İ = (1−u)Ksvs−αI,

v̇ = NsαI−δv− f (CN)v,

ẇ = uKsvs+Krys−αw,

ẏ = Nrαw−δy−β (u) f (CN)y,

(1)

where s, I,v,w,y respectively denote uninfected hepatocytes, infected hepatocytes with drug

sensitive HBV, hepatocytes infected with drug resistant HBV and drug resistant HBV. λ is the

growth rate of uninfected hepatocytes, death rates of viruses and hepatocytes respectively are

δ and α while the infection rates of drug-resistant HBV on uninfected hepatocytes and drug-

sensitive HBV are Kr and Ks, respectively. Moreover, total number of viruses produced over the

course of a hepatocyte’s life cycle by drug-resistant and drug-sensitive infected hepatocytes are

respectively denoted by Nr and NS, u denotes the mutation rate between drug-sensitive and drug-

resistant hepatocytes, the rate at which medication therapy reduces HBV is expressed as f (CN),

CN stands for a patient’s typical steady-state plasma concentration of nucleoside medications,

and finally β (u) is the drug therapy inhibition rate. Mouofo et al. [4] have first given the
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mathematical formulation and then studied the dynamics of following within-host model of

co-infection with Hepatitis B and D:

ṡ = λ −dss− β (1−η)sv
s+I ,

İ = β (1−η)sv
s+I −aII−δ Iw,

v̇ = k(1− ε)I−dvv,

ẇ = ρIw+ pw−qw2,

(2)

where uninfected liver cells is s, infected liver cells is I, v and w respectively represent number

free virus and CTL cells. The death rates of cells s, I and free virus are ds, aI and dv, respectively

whereas production of cells s is λ . Moreover, contact rate between s and v is β , cells I contain

v at rate kI, cells I are detached at rate δw by CTL immune responses, virus-specific CTL cells

proliferate at rate ρI by contacts with I, η is efficacy of inhibiting new virus infections and

finally, p and q stand for the density-dependent rate of immune cell suppression and immune

cell proliferation, respectively. Volinsky [5] has investigated the dynamics of following HBV

model: 

ṡ = r−ds− (1−η)βvs,

İ = (1−η)βvs−aI− pIy,

v̇ = (1− ε)kI−uv−qvw,

ẇ =−hw+gvw,

ẏ = cIy−by+DG,

(3)

where I, v, w, y and s denotes infected cells, free virus, antibody response, cytotoxic T lym-

phocyte reaction and uninfected cells, respectively, cells s are produced, die and infected by

the virus at rates r, ds and bvs respectively. Moreover, CT Ls kill the cells I at a rate pIy while

growing and die rates are bvs and aI, respectively. Finally, the free viruses v are die, produce

and neutralised at rate uv, kI and qvw by antibodies. For more recent investigation regarding the

dynamics of HBV models, we refer the reader to the work of eminent researchers [6, 7, 8, 9, 10]

and references cited therein.
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Hereafter, mathematical model of viral replication for HBV is formulated. The detailed study

of immune system have been fundamentally understand by the molecular methods. However,

population dynamics of the immune response are studied by mathematical models because ex-

perimental approaches are unable to provide sufficient results for understanding the dynamics

of HBV. We examine the fundamental dynamics of virus-host cell interaction and the effects of

immune responses on viral burden and antigenic diversity. In order to survive and reproduce,

viruses rely on their host cell. The balance of the antiviral immune response’s beneficial and

harmful effects relies on the amount of virus present, the tissues infected and the length of the

infection. The host cell might be harmed directly by the virus or by immunological responses to

the virus (see [11]). However, cytotoxic T lymphocytes (CTLs), which kill virus-infected cells,

play a crucial role in antiviral defence in the majority of viral infections. T cells, Natural killer

cells, antibodies and cytokines are crucial elements of a typical immune response to a virus.

They are thought to be the primary host immunological component that restricts the extent of

viral replication in vivo and consequently establishes virus burden. Now based on Figure 1,

latter we write the model equations that describes how a virus interacts with host cells while

replicating with three variables: free virus particles v, uninfected and infected cells s and I,

respectively. The quantities v, I and s denote the abundance in the blood or tissue of the host

while the system of differential equations describe how v, I and s changes with respect to the

time. On assuming that cells s encounters free virus, and then turned in to cells I. The free virus

particles are infect the cells s at the rate which is proportional to β sv where β is the constant rate

represent the efficiency of this process, including the probability and rate of successful infec-

tion. kI denote the rate in which cells I produce free virus v whereas the cells I die at a rate δ I.

At the rate uv, free virus particles v are eradicate from the system, whereas d, δ and u denote

death rates of cells s, I and free virus v, respectively. So, 1
δ

and 1
u are average life time of cells

I and free virus, respectively. k
δ

is the amount of virus produced from the cell I while τ and

ds are the constant rates at which cells s are produced and then die, respectively. So based on

these presumptions, one has the HBV mathematical model designated by system of differential
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equations (see [2]): 
ṡ = τ−ds−β sv,

İ = β sv−δ I,

v̇ = kI−uv.

(4)

In the context of populations with non-overlapping generations, discrete-time models governed

by difference equations are preferable to continuous ones. Discrete models can also produce

effective computational results for numerical simulations. For instance, HBV model (4) after

discretization, by Euler-forward formula, takes the following form:

st+1−st
h = τ−dst −β stvt ,

It+1−It
h = β stvt −δ It ,

vt+1−vt
h = kIt −uvt ,

(5)

where h is the step size. After simplification, the required discrete HBV model (5) takes the

form: 
st+1 = hτ +(1−hd)st−βhstvt ,

It+1 = (1−δh)It +hβ stvt ,

vt+1 = (1−hu)vt +hkIt .

(6)

So, in this paper our aim is to investigate the dynamical properties of a three-dimensional dis-

crete HBV model, which is depicted in (6). More precisely, our main contributions in this paper

include:

• Investigation of equilibrium states of a discrete HBV model (6).

• Formation of basic reproduction number (BRN).

• Study of local behavior at equilibrium states.

• Study of global dynamics and rate of convergence of a discrete HBV model (6).

• Verification of theoretical results numerically.

The layout of the paper is as follows: In Section 2, we obtained existence of equilibrium states

and basic reproduction number whereas local stability analysis at equilibrium states are inves-

tigated in Section 3. In Section 4, we studied convergence rate of HBV model (6). In Section
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5, we have examined the global dynamics whereas numerical simulation are given in Section 6.

Brief conclusion is given in Section 7.
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FIGURE 1. Flow chart of a model for virus replication

2. EXISTENCE OF EQUILIBRIUM STATES AND BASIC REPRODUCTION NUMBER

We will explore equilibrium states of a discrete HBV model (6) and basic reproduction num-

ber in this section.

Lemma 2.1. For HBV model’s equilibrium states, following statements hold:

(i) ∀ τ,d,β ,δ ,k,u,h, discrete HBV model (6) has disease-free equilibrium state (DFES)

Φ1 =
(

τ

d ,0,0
)
;
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(ii) If β > δud
τk then discrete HBV model (6) has epidemic equilibrium state (EES) Φ2 =(

δu
βk ,

τβk−δud
δkβ

, τβk−δud
δuβ

)
.

Proof. If HBV model (6) has equilibrium state Φ = (s, I,v) then
s = hτ +(1−hd)s−βhsv,

I = (1−δh)I +hβ sv,

v = (1−hu)v+hkI.

(7)

It is noted that algebraic system (7) satisfied obviously if Φ = (s, I,v) =
(

τ

d ,0,0
)
, and so HBV

model (6) has DFES Φ1 =
(

τ

d ,0,0
)

for all model parameters τ , d, β , δ , k, u and h. Now in

order to find EES, we will solve the following system simultaneously:

(8) τ−ds−β sv = 0, β sv−δ I = 0, kI−uv = 0.

From last equation of (8), we get

(9) I =
uv
k
.

On utilizing (9) into second equation of system (8), we get

(10) s =
δu
kβ

.

From first equation of system (8) and (10), we get

(11) v =
τβk−δud

δuβ
.

Finally, from (9) and (11), we get

(12) I =
τβk−δud

δkβ
.

Equations (10), (11) and (12) imply that HBV model (6) has EES Φ2 =
(

δu
βk ,

τβk−δud
δkβ

, τβk−δud
δuβ

)
if β > δud

τk . More importantly, it is noted here that if β > δud
τk , that is, βτk

δud > 1 then HBV

model (6) has EES Φ2 =
(

δu
βk ,

τβk−δud
δkβ

, τβk−δud
δuβ

)
, and so we define R0 := βτk

δud > 1 as a BRN.

On the other hand, we can say that HBV model (6) has EES Φ2 =
(

δu
βk ,

τβk−δud
δkβ

, τβk−δud
δuβ

)
if

R0 > 1. �
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Now linearized form for HBV model (6) at equilibrium state Φ is formulated. So, under

the map ( f ,g,h) 7→ (st+1, It+1,vt+1), one has the following variational matrix J|Φ, which is

evaluated at equilibrium state Φ:

(13) J|Φ :=


1−h(d +βv) 0 −hβ s

hβv 1−δh hβ s

0 kh 1−hu

 ,

where 
f = s+h(τ−ds−β sv),

g = I +h(β sv−δ I),

h = v+h(kI−uv).

(14)

3. LOCAL STABILITY ANALYSIS AT EQUILIBRIUM STATES

In this section, we will study local behavior of HBV model (6) at equilibrium states by

existing theory [12, 13, 14, 15, 16, 17]. For DFES, (13) becomes

(15) J|DFES :=


1−hd 0 −hβτ

d

0 1−δh hβτ

d

0 kh 1−hu

 ,

with

λ1 = 1−dh, λ2,3 =
2−δh−hu±h

√
(u−δ )2 + 4kβτ

d

2
.(16)

Now at DFES, we will give the local behavior as follows.

Theorem 3.1. DFES of HBV model (6) is

(i) a locally asymptotically stable if

(17) 0 < d <
2
h

and
4−2δh−2hu+δuh2

δuh2 <R0 < 1;

(ii) an unstable if

(18) d >
2
h

and 1 <R0 <
4−2δh−2hu+δuh2

δuh2 ;
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(iii) a saddle if

(19) 0 < d <
2
h

and 1 <R0 <
4−2δh−2hu+δuh2

δuh2 ,

or

(20) d >
2
h

and
4−2δh−2hu+δuh2

δuh2 <R0 < 1;

(iv) non-hyperbolic if

(21) d =
2
h
,

or

(22) R0 = 1,

or

(23) R0 =
4−2δh−2hu+δuh2

δuh2 .

Proof. DFES of HBV model (6) is a locally asymptotically stable if |λ1| = |1− dh| < 1 and

|λ2,3|=

∣∣∣∣∣2−δh−hu±h
√

(u−δ )2+ 4kβτ

d
2

∣∣∣∣∣< 1, that is, 0 < d < 2
h and 4−2δh−2hu+δuh2

δuh2 <R0 < 1. There-

fore, DFES is a stable if 0 < d < 2
h and 4−2δh−2hu+δuh2

δuh2 <R0 < 1. Similar calculation shows

that DFES of HBV model (6) is an unstable if d > 2
h and 1 <R0 <

4−2δh−2hu+δuh2

δuh2 , saddle if

0 < d < 2
h and 1 < R0 < 4−2δh−2hu+δuh2

δuh2 or d > 2
h and 4−2δh−2hu+δuh2

δuh2 < R0 < 1, and non-

hyperbolic if d = 2
h or R0 = 1 or R0 =

4−2δh−2hu+δuh2

δuh2 . �

Finally, we will study local behavior at EES of HBV model (6). At EES, (13) gives

(24) J|EES :=


δu−hτβk

δu 0 −hδu
k

hτβk−δuhd
δu 1−δh hδu

k

0 kh 1−hu

 ,

with

(25) P(λ ) = λ
3 +S1λ

2 +S2λ +S3 = 0,
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where 
S1 = −3+δh+hu+ hβτk

δu ,

S2 = −2hu−2hδ − 2hτβk
δu + h2τβk

δ
+ h2τβk

u +3,

S3 = −1+h3τβk−h3δud +δh+hu− h2τβk
u + hτβk

δu −
h2τβk

δ
.

(26)

By Theorem 1.4 of [13], one has the following result

Theorem 3.2. If 
|S1 +S3|< 1+S2,

|S1−3S3|< 3−S2,

S 2
3 +S2−S3S1 < 1,

(27)

then EES of HBV model (6) is a sink where Si(1 = 1,2,3) are depicted in (26).

4. CONVERGENCE RATE OF HBV MODEL (6)

We study convergence rate of HBV model (6) in this section as follows.

Theorem 4.1. If {(st , It ,vt)}∞
t=0 is a positive solution of HBV model (6) such that

lim
t→∞
{(st , It ,vt)}= Φ then

(28) ϖt =


ϖ1

t

ϖ2
t

ϖ3
t

 ,

satisfying 
lim
t→∞

t
√
||ϖt ||=

∣∣λ1,2,3J|Φ
∣∣ ,

lim
t→∞

||ϖt+1||
||ϖt ||

=
∣∣λ1,2,3J|Φ

∣∣ .(29)

Proof. If model (6) has a positive solution {(st , It ,vt)}∞
t=0 such that lim

t→∞
{(st , It ,vt)}= Φ then

st+1− s = (1−hd−hβvt)(st− s)−hβ s(vt− v),

It+1− I = hβvt(st− s)+(1−δh)(It− I)+hβ s(vt− v),

vt+1− v = kh(It− I)+(1−hu)(vt− v).

(30)
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On setting 
ϖ

1
t = st− s,

ϖ
2
t = It− I,

ϖ
3
t = vt− v.

(31)

From (30) and (31), one has
ϖ

1
t+1 = π11ϖ

1
t +π13ϖ

3
t ,

ϖ
2
t+1 = π21ϖ

1
t +π22ϖ

2
t +π23ϖ

3
t ,

ϖ
3
n+1 = π32ϖ

2
t +π33ϖ

3
t ,

(32)

where 

π11 = 1−hd−hβvt ,

π13 =−hβ s,

π21 = hβvt ,

π22 = 1−δh,

π23 = hβ s,

π32 = kh,

π33 = 1−hu.

(33)

From (33), one has 

lim
t→∞

π11 = 1−hd−hβv,

lim
t→∞

π13 =−hβ s,

lim
t→∞

π21 = hβv,

lim
t→∞

π22 = 1−δh,

lim
t→∞

π23 = hβ s,

lim
t→∞

π32 = kh,

lim
t→∞

π33 = 1−hu,

(34)
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that is

π11 = 1−hd−hβv+η11,

π13 =−hβ s+η13,

π21 = hβv+η21,

π22 = 1−δh+η22,

π23 = hβ s+η23,

π32 = kh+η32,

π33 = 1−hu+η33,

(35)

where η11,η13,η21,η22,η23,η32,η33→ 0 as t→∞. From existing literature (see [18]), we have

error system

(36) ϖt+1 = (A+Bt)ϖt ,

where A = J|Φ and Bn =


η11 0 η13

η21 η22 η23

0 η32 η33

. So, the error system becomes

(37)


ϖ1

t+1

ϖ2
t+1

ϖ3
t+1

=


1−h(d +βv) 0 −hβ s

hβv 1−δh hβ s

0 kh 1−hu




ϖ1
t

ϖ2
t

ϖ3
t

 ,

which is same as linearized system of discrete HBV model (6) at Φ. In particular, (37) gives

(38)


ϖ1

t+1

ϖ2
t+1

ϖ3
t+1

=


1−hd 0 −hβτ

d

0 1−δh hβτ

d

0 kh 1−hu




ϖ1
t

ϖ2
t

ϖ3
t

 ,

and

(39)


ϖ1

t+1

ϖ2
t+1

ϖ3
t+1

=


δu−hτβk

δu 0 −hδu
k

hτβk−δuhd
δu 1−δh hδu

k

0 kh 1−hu




ϖ1
t

ϖ2
t

ϖ3
t

 ,

which are similar to the linearized system of discrete HBV model (6) obtained at DFES and

EES, respectively. �
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5. GLOBAL DYNAMICS

In this section, global dynamics at DFES is studied.

Theorem 5.1. DFES of discrete HBV model (6) is a globally stable if

(40) 0 < d <
1
h
,

(41) δ >
1
h
,

(42) u >
1
h
,

and

(43)
h2βτk

d
< 1.

Proof. Recall that if (40) holds then from first equation of HBV model (6), we have

(44) st+1 ≤ hτ +(1−hd)st ,

whose solution is

(45) st+1 ≤ (1−hd)t
(

C1−
hτ

1− (1−hd)

)
+

hτ

1− (1−hd)
,

with common ratio 1−hd, and if 1−hd < 1, which is true obviously, and so from (45) one gets

(46) lim
t→∞

st =
τ

d
.

Now if (41) and (42) hold then from second and third equations of HBV model (6), we have

(47) It+1 ≤ hβ stvt ,

and

(48) vt+1 ≤ hkIt .

Again recall that if the common ratio 1−hd < 1 then from (45) and (47), one gets

(49) It+1 ≤
hβτ

d
vt .

From (49), one gets
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(50) It ≤
hβτ

d
vt−1.

From (48) and (50), one gets

(51) vt+1 ≤
h2βτk

d
vt−1,

with

(52) vt+1 ≤C2

(√
h2βτk

d

)t

+C3

(
−
√

h2βτk
d

)
.

From (48) and (49), one gets

(53) It+1 ≤
h2βτk

d
It−1,

with

(54) It+1 ≤C4

(√
h2βτk

d

)t

+C5

(
−
√

h2βτk
d

)t

.

Now if (43) holds then from (52) and (54), one gets

(55) lim
t→∞

vt = lim
t→∞

It = 0.

Finally, from (46) and (55), one gets the following required conclusion

(56) lim
t→∞

(st , It ,vt) =
(

τ

d
,0,0

)
= DFES.

�

6. NUMERICAL SIMULATIONS

Example 6.1. If τ = 1.0, β = 26.0, δ = 9.5, k = 5.0, u = 9.5, d = 1.5, h = 0.1067

then from (17) one gets 0 < d = 1.5 < 2
h = 18.74414245548266 and 4−2δh−2hu+δuh2

δuh2 =

0.9468606065070032 < R0 = 0.9602954755309326 < 1, which implies that DFES =

(0.6666666666666666,0,0) of HBV model (6) is a sink (See Figure 2a-2c). Furthermore, if

τ = 1.0, β = 26.0, δ = 9.5, k = 5.0, u = 9.5, d = 1.5, h = 0.1067 then from (40), (41), (42)

and (43) one gets 0 < d = 1.5 < 1
h = 9.37207122774133, δ = 9.5 > 1

h = 9.37207122774133,
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u = 9.5 > 1
h = 9.37207122774133 and h2βτk

d = 0.9866904666666666 < 1 hold, and therefore,

DFES = (0.6666666666666666,0,0) of HBV model (6) is a global attractor (See Figure 2d).

Example 6.2. If τ = 0.9, β = 0.9, δ = 0.5, k = 3.2, u = 0.5, d = 3.9, h = 0.9 then from

(18) one gets d = 3.9 > 2
h = 2.2222222222222223 and 1 < R0 = 2.6584615384615393 <

4−2δh−2hu+δuh2

δuh2 = 11.864197530864196, which gives DFES = (0.2307692307692308,0,0) of

HBV model (6) is an unstable (See Figure 3).

Example 6.3. If τ = 3.0, β = 5.0, δ = 0.1, k = 0.7004, u = 1.25, d = 3.2004 h = 0.0125 then

from (26), we get 
S1 = −1.932525,

S2 = 0.8827788750000001,

S3 = 0.04976586318359366.

(57)

Using (57) in to (27), one gets
|S1 +S3|= 1.8827591368164063 < 1+S2 = 1.882778875,

|S1−3S3|= 2.081822589550781 < 3−S2 = 2.117221125,

S 2
3 +S2−S3S1 = 0.9814292908872826 < 1,

(58)

which implies that EES = (0.0356938892061679,28.8576527698458,16.169520000000002)

of HBV model (6) is a sink (See Figure 4).
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(A) (B)

(C)

(D)

FIGURE 2. Dynamics at DFES = (0.6666666666666666,0,0) of discrete HBV

model (6) with (0.1,0,0). (2a) plot of t vs st . (2b) plot of t vs It . (2c) plot of t vs

vt . (2d) Global attractor at DFES = (0.6666666666666666,0,0).

(A)

FIGURE 3. Dynamics at DFES = (0.2307692307692308,0,0) of discrete HBV

model (6) with (0.4,0,0).
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(A) (B)

(C)

FIGURE 4. Dynamics at EES=(0.0356938892061679,28.8576527698458,16.169520000

000002) of discrete HBV model (6) with (0.0006,0.09,0.0007).

7. CONCLUSION

The work is about dynamics at equilibrium states, examine the basic reproduction num-

ber, rate of convergence and global dynamics of a discrete HBV model (6). We have ex-

amined that for all model’s parameters τ,d,β ,δ ,k,u,h, discrete HBV model (6) has DFES

Φ1 =
(

τ

d ,0,0
)
, and EES Φ2 =

(
δu
βk ,

τβk−δud
δkβ

, τβk−δud
δuβ

)
if β > δud

τk . We have also derived the

basic reproduction number R0 := βτk
δud and alternatively, it is examined that HBV model (6)

has EES if R0 > 1. Next local dynamical properties at DFES of HBV model (6) are investi-

gated, and proved that DFES is a sink if 0 < d < 2
h and 4−2δh−2hu+δuh2

δuh2 < R0 < 1, unstable

if d > 2
h and 1 <R0 <

4−2δh−2hu+δuh2

δuh2 , saddle if 0 < d < 2
h and 1 <R0 <

4−2δh−2hu+δuh2

δuh2 or

d > 2
h and 4−2δh−2hu+δuh2

δuh2 <R0 < 1, and finally, non-hyperbolic if d = 2
h or R0 = 1 or R0 =

4−2δh−2hu+δuh2

δuh2 ; and moreover, EES is a sink if |S1 +S3| < 1+S2, |S1−3S3| < 3−S2

and S 2
3 +S2−S3S1 < 1 where Si(1 = 1,2,3) are depicted in (26). Furthermore, rate of
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convergence that converges to DFES and EES are also examined. We also proved that DFES of

discrete HBV model (6) is a globally stable if 0 < d < 1
h , δ > 1

h , u > 1
h and h2βτk

d < 1. At the

end, main findings are illustrated numerically.
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