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Abstract. The dynamics of dengue disease with reinfection and three control techniques are proposed in this

research. The epidemic model includes a saturated incident function in virus transmission among humans. The

vertical transmission of the virus in vectors and a reinfection scenario in the human population are added to the

proposed dengue epidemic model. In relation to the basic reproduction number R0, the existence and stability of

the equilibrium points of the proposed epidemic model are studied. The equilibrium states of the epidemic model

are examined for both local and global stability. For the basic reproduction number R0, a sensitivity analysis is

carried out in relation to various parameters. Bifurcation analysis is performed for the proposed model, and the

bifurcation parameter is identified. In the proposed dengue epidemic model, we introduce three time-dependent

controls: protection control, treatment control, and insecticide spray control. In the proposed model, a control

problem is identified and analytically solved. The conditions for the optimal control strategies for the control

problem are derived using Pontryagin’s maximal principle. In order to demonstrate the effectiveness of the control

measures, numerical simulations are used. Finally, suggestions for preventing the spread of the dengue virus are

presented.
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1. INTRODUCTION

Humans who are bitten by dengue infected mosquitoes contract the dengue virus. Aedes ae-

gypti mosquitoes and, to a lesser extent, Ae. albopictus mosquitoes are primarily responsible for

the disease’s transmission. Dengue virus is the name of the virus that causes dengue (DENV).

There are four different DENV serotypes, and there can be a maximum of four infections caused

by each virus. Severe dengue is the primary cause of illness and death in many Asian and Latin

American nations. It needs to be managed by health professionals. A specific treatment is not

available for dengue or severe dengue. Death rates from severe dengue are reduced to about 1%

when disease progression is identified early and patients have access to quality medical care.

Dengue is a tropical and subtropical disease that mostly affects urban and semi-urban regions.

About half of the world’s population is now at risk due to the rapid increase in dengue inci-

dence worldwide.Although it’s estimated that between 100 and 400 million illnesses happen

each year, more than 80% of them are typically mild and asymptomatic. For the prevention and

management of dengue, effective vector control techniques are crucial. Long-term community

involvement can significantly enhance vector control efforts. DENV can cause a severe flu-like

illness, but most people who get it only feel moderately sick. This can occasionally progress

to severe dengue, a potentially fatal consequence [1]. In various tropical regions of the world,

dengue fever, a viral disease spread by mosquitoes, has returned in a significant way because

the disease’s severe form results in a lot of illness and death [2]. In the realm of epidemiologi-

cal research, understanding and modeling the dynamics of infectious diseases is of paramount

importance. The global burden of diseases like dengue fever necessitates the development of

intricate models that can provide insights into the factors driving their spread. This comprehen-

sive review delves into a myriad of dengue epidemic models and their variants, each designed

to capture specific aspects of the disease’s behavior and transmission patterns.

These models span a spectrum of complexities, taking into account various factors that in-

fluence dengue transmission dynamics. Notable among them are the models that tackle general

dengue epidemics [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], which form the
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foundation for understanding the overall spread of the disease. Going beyond the basics, re-

searchers have explored dengue models with relapse [21], examining the potential for recurrent

infections.

A significant branch of research involves optimizing control strategies, leading to dengue

models with optimal control [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. These models aim to

identify interventions that could effectively curb the disease’s impact. Additionally, researchers

have examined the influence of pulse and periodic behaviors on dengue dynamics [33], adding

an element of temporal variability to the models.

The evolution of dengue doesn’t unfold in isolation, and the interaction between different

strains adds complexity to the scenario. Multi-strain dengue models [34, 35, 36, 37, 38, 39,

40, 41] consider the coexistence and competition among multiple dengue strains. Temperature

and climate effects are also crucial factors affecting dengue transmission, and models have been

developed to incorporate these [42, 43, 44].

Innovative approaches to disease control are explored in dengue models with Wolbachia bac-

terium controls [45, 46, 47, 48], seeking to harness biological methods to limit transmission.

Furthermore, dengue models accommodating seasonal variations in vector population [49, 50]

provide insights into the disease’s behavior under changing ecological conditions.

Given the pressing need for effective preventive measures, dengue models with vaccine strate-

gies [51, 52] delve into understanding the potential impact of vaccination campaigns. The dy-

namics of sequential transmission [53] and the influence of age of infection [54] on disease

outcomes have also been analyzed.

Considering the interplay between dengue and the immune system, models exploring sec-

ondary dengue infections [55, 56] and reinfections with the same serotype [57] contribute to a

deeper comprehension of immunity patterns. Moreover, the role of treatment in controlling the

disease has been examined in certain models [58]. Real-world factors, such as human move-

ments, have a substantial impact on disease spread. Dengue models accounting for human

mobility [59] provide insights into how population movements can influence transmission dy-

namics. The influence of age structure [60, 61] have also been investigated to understand their
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implications on dengue transmission.

Vertical Transmission in existing Dengue models:

In recent years, several research papers have focused on the mathematical modeling of ver-

tical transmission of dengue transmission among vectors, providing insights into the role of

this mode of transmission in dengue dynamics [62, 63]. Several studies have focused on the

role of vertical transmission, which occurs when the virus is transmitted from infected female

mosquitoes to their offspring. Vertical transmission refers to the transmission of a pathogen

from an infected female mosquito to her offspring [64]. In the case of dengue, vertical trans-

mission can occur in Aedes mosquitoes, such as Aedes aegypti and Aedes albopictus. Infected

female mosquitoes can pass the dengue virus to their eggs, resulting in infected larvae and sub-

sequent infected adult mosquitoes. This mechanism of transmission has significant implications

for the persistence and spread of dengue within mosquito populations.

Dengue Transmission: Research Gaps and Analysis:

Research on modeling and analysing a dengue transmission model incorporating vertical

transmission, non-monotonic incident function, bifurcation, optimal control, sensitivity, and nu-

merical analysis is severely limited. Despite the significance of these factors in understanding

and controlling the spread of dengue, there remains a scarcity of comprehensive studies encom-

passing all these aspects. Vertical transmission, which involves the dengue virus transmission

from infected mother mosquitoes to their offspring, has been identified as a crucial factor in

dengue dynamics. Additionally, incorporating non-monotonic incident functions [65] accounts

for the nonlinear relationship between the mosquito population and the transmission rate. Bi-

furcation analysis aids in identifying critical thresholds and transitions in the system’s behavior.

Optimal control strategies enable the development of effective interventions to mitigate dengue

transmission [66]. Sensitivity and numerical analysis provide insights into the robustness and

accuracy of the model [67]. Given the limited research in this area, further investigations are

necessary to enhance our understanding of dengue dynamics and facilitate the development of

targeted control measures. In this comprehensive review, we embark on a journey through a

multitude of dengue epidemic models and their diverse adaptations. Each model represents a
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unique perspective on understanding the complex interplay of factors governing dengue trans-

mission, offering valuable insights for public health interventions and policies moving forward.

Analyzing the dynamics of dengue virus transmission and developing the most effective preven-

tative measures are the main goals of this research. The model incorporates a non-monotonic

incident function for disease transmission among the susceptible host population. In the model,

vertical virus transmission among vectors is studied. The reinfection of the human population

after its recovery is well studied. The vector population is subdivided into adult and egg pop-

ulations. Following a study of the model’s dynamical analysis, a model with optimum control

taking into account the effective controls for the eradication of the dengue virus is investigated.

We offer a brief literature overview of the numerous mathematical models that relate to the

spread of the dengue virus among humans in this section. The remainder of the paper is struc-

tured as follows: In section (2), the model’s formulation and a description of its various param-

eters are covered. The fundamental characteristics of the model are described in Section (3). In

Section (4), the model’s stationary points, existence, and fundamental reproduction number are

presented. Section (5) discusses the stability analysis of the system at the equilibrium points.

Sections (6) and (7), respectively, present the model’s sensitivity and bifurcation analyses. The

optimal control analysis of the control problem is covered in Section (8). The numerical analysis

is covered in Section (9). Finally, Section (10) summarises all the research results.

2. CONCEPTUALIZATION OF DENGUE REINFECTION MODEL

A deterministic mathematical model with the vertical transmission in vectors with reinfec-

tion is formulated with a transfer diagram given in figure (1). The saturated incident function

in human transmission is used while formulating the model. ρ(1−c1)α1Im measures the infec-

tion force of the disease and 1
1+kIm

measures the inhibition effect from the behavioral change

of the susceptible individuals when their number increases. The function ρ(1−c1)α1Im
1+kIm

tends to a

saturation level when Im, the infected vector population at any time t gets large [68, 69]. The

four classes that make up the entire human population are: the susceptible human class (Sh(t)),

the exposed human class (Eh(t)), the infected human class (Ih(t)), and the recovered human

class (Rh(t)). The entire adult mosquito population is classified into three classes: suscepti-

ble mosquitoes class (Sm(t)), exposed mosquitoes class (Em(t)), and infected mosquitoes class
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(Im(t)). Infected eggs class (Ie(t) and susceptible eggs class (Se(t)) comprise the two classes

that make up the total population of mosquito eggs. The life stages of a mosquito say egg,

larva, and pupa are termed in this model as egg population. The following assumptions gov-

ern the development of the mathematical model: (i) It is considered that the recruitment rate

of mosquito egg population and susceptible humans are constant. (ii) For both human and

mosquito populations, the natural death rates are taken into account. (iii) When infected adult

mosquitoes bite susceptible humans, a horizontal virus infection from the infected mosquitoes

to the susceptible human occurs. The transmission coefficient is ρ(1−c1)α1ImSh
1+kIm

. (iv) When the

susceptible adult mosquitoes bite the infected person, the infected human transmits the virus

horizontally to the susceptible adult mosquitoes, and the transmission coefficient is provided

by ρ(1− c1)α2IhSm. (v) The humans recovered from dengue disease can be susceptible to the

same serotype dengue virus [70], and the transmission coefficient is given by δRh. Tables (1),

(3), and (2) provide descriptions of the various state variables, control variables, and system

parameters, respectively.

dSh
dt = Ω− ρ(1−c1)α1ImSh

1+kIm
−µSh +δRh

dEh
dt = ρ(1−c1)α1ImSh

1+kIm
− (β1 +µ)Eh

dIh
dt = β1Eh− (γ +d +µ +bc2) Ih

dRh
dt = (γ +bc2) Ih− (δ +µ)Rh

dSm
dt = φSe−ρ(1− c1)α2IhSm− (ξ + pc3)Sm

dEm
dt = ρ(1− c1)α2IhSm− (β2 +ξ + pc3)Em

dIm
dt = β2Em +φ Ie− (ξ + pc3) Im

dSe
dt = Ψ−θπIm− (φ + pc3)Se

dIe
dt = θπIm− (φ + pc3) Ie

(1)

The preliminary condition is

(2) Sh > 0,Eh ≥ 0, Ih ≥ 0,Rh ≥ 0,Sm > 0,Em ≥ 0, Im ≥ 0,Se > 0, Ie ≥ 0.
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TABLE 1. Description of the state variables of the model-(1) of dengue trans-

mission.

State variable Description of populations at a time t.
Sh(t) Number of the susceptible human population.

Eh(t) Number of the exposed human population.

Ih(t) Number of dengue virus-infected human population.

Rh(t) Number of recovered human population from the dengue infection.

Sm(t) Number of susceptible mosquito population.

Em(t) Number of exposed mosquito population.

Im(t) Number of dengue virus-infected mosquito population.

Se(t) Number of susceptible egg population.

Ie(t) Number of infected egg population.

TABLE 2. An overview of the parameters of the dengue transmission model-(1).

Parameter Description
Ω Human population recruitment rate.

α1, α2 Rate of disease transmission within human and mosquito populations, respectively.

β1, β2 Progression rate from exposed to infected human and mosquito population, respectively.

µ , ξ Natural death rate for human and mosquito population, respectively.

δ The rate at which the recovered humans become susceptible.

d The disease induced mortality rate of humans.

k Saturation factor.

γ The natural recovery rate of humans.

b, p Effectiveness of the control c2 and c3, respectively.

φ The development rate of Aedes Aegypti mosquitoes.

θ The total number of Aedes Aegypti mosquitoes eggs laid per mosquito in lifetime.

π The vertical transmission rate of Aedes Aegypti mosquitoes.

Ψ Recruitment rate of Aedes Aegypti mosquitoes eggs per day.

TABLE 3. Description of three control parameters of the system (1)

Control Parameter Description
c1 Protection controls like the use of bednets, mosquito repellent creams, etc.

c2 Treatment control for humans infected with either of the serotype viruses.

c3 Insecticide spray control against mosquitoes.
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The effective biting rate of female Aedes Aegypti mosquitoes is ρ=χζ η , where χ is the

number of bites per human in a given amount of time, ζ is the proportion of infected bites that

resulted in infection, and η is the ratio of mosquito counts to human numbers.

FIGURE 1. Dengue virus transmission diagram has three populations, namely

the human population, the adult Aedes aegypti mosquito population, and the egg

population.

3. PRIMARY CHARACTERISTICS OF PROPOSED DENGUE REINFECTION MODEL

The positivity and uniform boundedness of the system(1) solution with initial condition (2)

are examined in this part, along with the determination of the positively invariant region for the

system (1) solutions.

3.1. Non-negativity property in solutions of Dengue reinfection model.

The non-negativity characteristic of solutions of the model (1) is shown in this subsection.

Theorem 1. For each t > 0, the solution trajectories of the system (1) with the preliminaries

conditions (2) are non-negative.

Proof. Let us assume that f1 = β1 + µ, f2 = γ + d + µ + bc2, f3 = γ + bc2, f4 = δ + µ, f5 =

ξ + pc3, f6 = β2 + ξ + pc3, f7 = φ + pc3. From the first equation of the system (1) us-

ing the preliminary condition Sh(0) > 0, we get Ṡh = Ω−
(

ρ(1−c1)α1ImSh
1+kIm

+µSh

)
+ δRh >

−
(

ρ(1−c1)α1Im
1+kIm

+µ

)
Sh and hence dSh

Sh
>−

(
ρ(1−c1)α1Im

1+kIm
+µ

)
dt. After integrating, we get
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Sh(t) > Sh(0)e
−
∫ t

0

[
ρ(1−c1)α1Im

1+kIm +µ

]
dt

> 0 for t > 0. Using the second equation of system (1),

we get Ėh =
ρ(1−c1)α1ImSh

1+kIm
− f1Eh ≥ − f1Eh and dEh

Eh
≥ − f1dt. Hence Eh(t) ≥ Eh(0)e−

∫ t
0 f1dt =

Eh(0)e− f1t ≥ 0 for all t > 0. Similarly from other equations of the system (1) with preliminary

condition (2), we get Ih(t) ≥ Ih(0)e−
∫ t

0 f2dt = Ih(0)e− f2t , Rh(t) ≥ Rh(0)e−
∫ t

0 f4dt = Rh(0)e− f4t ,

Sm(t) ≥ Sm(0)e−
∫ t

0(ρ(1−c1)α2Im+ f5)dt > 0, Em(t) ≥ Em(0)e− f6t ≥ 0, Im(t) ≥ Im(0)e− f5t ≥ 0,

Se > Se(0)e− f7t > 0, Ie(t) ≥ Ie(0)e− f7t ≥ 0. Hence solutions of the system (1) with prelimi-

nary conditions (2) are non-negative for t > 0. �

3.2. Uniform boundedness of the solutions of Dengue reinfection model.

Theorem 2. All solutions of the system (1) with preliminary conditions (2) are uniformly

bounded in the region Θ = {(Sh,Eh, Ih,Rh,Sm,Em, Im,Se, Ie) ∈ R9
+|0 < N(t)≤ Ω+Ψ

m }.

Proof. Let Nh(t), Nm(t), and Ne(t) represent the total humans, adult Aedes Aegypti mosquitoes,

Aedes Aegypti egg population respectively. Suppose N(t) represents the entire population at

any time t. Hence

(3)

dN
dt

= Ṡh + Ėh + İh + Ṙh + Ṡm + Ėm + İm + Ṡe + İe

= Ω−µ(Sh +Eh + Ih +Rh)−dIh−ξ (Sm +Em + Im)− pc3(Sm +Em + Im)+Ψ− pc3(Se + Ie)

= Ω+Ψ−µNh−dIh−ξ Nm− pc3Nm− pc3Ne

For m = min(µ,ξ ), we get

(4)

dN
dt

+mN = Ω+Ψ−µNh−dIh−ξ Nm− pc3Nm− pc3Ne +m(Nh +Nm +Ne)

≤Ω+Ψ− (µ−m)Nh− (ξ −m)Nm

≤Ω+Ψ

Hence

(5)
dN
dt

+mN ≤Ω+Ψ

By applying the theory of Differential inequality,

(6) 0 < N(t)≤ Ω+Ψ

m
(1− e−mt)+N(0)e−mt



10 R.P. KUMAR, G.S. MAHAPATRA, R.D. PARSHAD, P.K. SANTRA

as t→ ∞, we get

(7) 0 < N(t)≤ Ω+Ψ

m

Thus every solution of the system (1) with preliminary conditions (2) which initiate in R9
+ are

uniformly bounded and are restricted inside Θ = {(Sh,Eh, Ih,Rh,Sm,Em, Im,Se, Ie) ∈ R9
+ : 0 <

N(t)≤ Ω+Ψ

m ,m = min(µ,ξ )} �

4. STATIONARY POINTS AND THEIR EXISTENCE OF THE DENGUE MODEL

The system (1) has two equilibrium points, which are as follows: a disease-free equilibrium

(DFE) Q0 and a unique endemic equilibrium (EE) Q1:

(1) The disease-free equilibrium (DFE) point is Q0 = (S0
h,E

0
h , I

0
h ,R

0
h,S

0
m,E

0
m, I

0
m,S

0
e , I

0
e ),

where S0
h =

Ω

µ
> 0, E0

h = 0, I0
h = 0, R0

h = 0, S0
m = φΨ

f5 f7
> 0, E0

m = 0, I0
m = 0, S0

e =
Ψ

f7
> 0,

I0
e = 0.

(2) The endemic equilibrium (EE) point is Q1 = (S∗h,E
∗
h , I
∗
h ,R
∗
h,S
∗
m,E

∗
m, I
∗
m,S
∗
e , I
∗
e ), where

S∗h =
f1 f2 f5 f6(1+kIm)( f5 f7−πθπ)

(1−c1)2α1α2β1ρ2( f6πθφ− f5 f6 f7−πβ2θφ)Im+β2φΨ
> 0,

I∗h = f5 f6( f5 f7−πθφ)Im
(1−c1)α2ρ( f6πθφ− f5 f6 f7−πβ2θφ)Im+β2φΨ

> 0,

E∗h = f2 f5 f6( f5 f7−πθφ)Im
(1−c1)α2β1ρ( f6πθφ− f5 f6 f7−πβ2θφ)Im+β2φΨ

> 0,

R∗h =
f3 f5 f6( f5 f7−πθφ)Im

(1−c1) f4α2ρ( f6πθφ− f5 f6 f7−πβ2θφ)Im+β2φΨ
> 0, S∗m = ( f6πθφ− f5 f6 f7−πβ2θφ)Im+β2φΨ

f5 f7β2
>

0, E∗m = ( f5 f7−θπφ)Im
f7β2

> 0, S∗e =
Ψ−πθ Im

f7
> 0, I∗e = πθ Im

f7
> 0.

Here f1 = β1 + µ, f2 = γ + d + µ + bc2, f3 = γ + bc2, f4 = δ + µ, f5 = ξ + pc3, f6 =

β2 +ξ + pc3, f7 = φ + pc3. We assume that f5 f7−πθφ > 0.

Obviously, ( f6πθφ − f5 f6 f7−πβ2θφ) Im+β2φΨ > 0 if and only if 0 < Im < A, where,

A = β2φΨ

f6( f5 f7−πθφ)+πβ2θφ
> 0. Hence S∗h > 0,E∗h > 0, I∗h > 0,R∗h > 0,S∗m > 0,E∗m > 0,S∗e >

0, I∗e > 0 if and only if f5 f7− πθφ > 0 and 0 < Im < A. Substituting the values of

S∗h,E
∗
h , I
∗
h ,R
∗
h,S
∗
m,E

∗
m,S
∗
e , I
∗
e in the first equation of the system (1), a quadratic equation is

obtained in I∗m given by

(8) A1I∗2m +A2I∗m +A3 = 0
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where

(9)

A1 = f5 f6k( f1 f2 f4kµ +(1− c1)α1( f1 f2 f4− f3β1δ )ρ)( f5 f7−πθφ)

+(1− c1)
2 f4kα1α2β1ρ

2( f5 f6 f7 +π(− f6 +β2)θφ)Ω

A2 = f5 f6(2 f1 f2 f4kµ +(1− c1)α1( f1 f2 f4− f3β1δ )ρ)( f5 f7−πθφ)

+(1− c1)
2 f4α1α2β1ρ

2( f5 f6 f7−φ (π( f6−β2)θ + kβ2Ψ))Ω

A3 = f1 f2 f4 f5 f6µ( f5 f7−πθφ)− (1− c1)
2 f4α1α2β1β2ρ

2
φΨΩ

= f1 f2 f4 f5 f6µ( f5 f7−πθφ)
[
1−R2

0
]

where

(10) R0 =

√
(1− c1)2ρ2α1α2β1β2φΨΩ

f1 f2 f5 f6µ( f5 f7−πθφ)

called basic reproduction number (BRN) for the Dengue system (1) derived in the next

section. Since 0 < Im < A, we get A1 > 0 and A3 < 0 if and only if R0 > 1. Hence by the

Descarte’s rule of sign, equation (8) has exactly only a positive root. Hence Q1 exists if

R0 > 1 in the region ϒ = {(Sh,Eh, Ih,Rh,Sm,Em, Im,Se, Ie) ∈ R9
+ : 0 < N(t)≤ Ω+Ψ

m ,0 <

Im < min(A, Ω+Ψ

m ),m = min(µ,ξ )}

The BRN is the average number of secondary infections caused by a single infection. It’s one of

the most important threshold values for numerically representing the spread of a virus infection.

At Q = (Sh,Eh, Ih,Rh,Sm,Em, Im,Se, Ie) ∈ ϒ, the Jacobian matrix is given by J(Q), where

(11)

J(Q) =



−ρ(1−c1)α1Im
1+kIm

−µ 0 0 δ 0 0 −ρ(1−c1)α1Sh
(1+kIm)2 0 0

ρ(1−c1)α1Im
1+kIm

− f1 0 0 0 0 ρ(1−c1)α1Sh
(1+kIm)2 0 0

0 β1 − f2 0 0 0 0 0 0

0 0 f3 − f4 0 0 0 0 0

0 0 −ρ(1− c1)α2Sm 0 −(ρ(1− c1)α2Ih + f5) 0 0 φ 0

0 0 ρ(1− c1)α2Sm 0 ρ(1− c1)α2Ih − f6 0 0 0

0 0 0 0 0 β2 − f5 0 φ

0 0 0 0 0 0 −θπ − f7 0

0 0 0 0 0 0 θπ 0 − f7


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The asymptotic stability of Q0 corresponds to eigenvalues of the characteristic equation of

J(Q0) being of negative real parts, as confirmed by the computation of Basic reproduction

number using the next-generation matrix approach. Let us assume x(t) = (Eh, Ih,Em, Im, Ie)
T

and hence the system (1) is expressed as

(12) ˙x(t) = F −V

where F (x) =



ρ(1−c1)α1ImSh
1+kIm

0

ρ(1− c1)α2IhSm

0

0


and V (x) =



f1Eh

−β1Eh + f2Ih

f6Em

−β2Em−φ Ie + f5Im

−θπIm + f7Ie


.

The Jacobian matrices of above matrices at Q0 are as follows.

F =



0 0 0 (1−c1)α1ρΩ

µ
0

0 0 0 0 0

0 (1−c1)α2ρφΨ

f5 f7
0 0 0

0 0 0 0 0

0 0 0 0 0


and V =



f1 0 0 0 0

−β1 f2 0 0 0

0 0 f6 0 0

0 0 −β2 f5 −φ

0 0 0 −πθ f7


.

The next-generation matrix for system (1)is given by

F V−1 =



0 0 (1−c1) f7α1β2ρΩ

f6µ( f5 f7−πθφ)
(1−c1) f7α1ρΩ

µ( f5 f7−πθφ)
(1−c1)α1ρΩφ

µ( f5 f7−πθφ)

0 0 0 0 0
(1−c1)α2β1ρφΨ

f1 f2 f5 f7
(1−c1)α2ρφΨ

f2 f5 f7
0 0 0

0 0 0 0 0

0 0 0 0 0


.

ρ (FV−1), the spectral radius of FV−1 is the BRN given by:

(13) R0 =

√
(1− c1)2ρ2α1α2β1β2ΨφΩ

f1 f2 f5 f6µ( f5 f7−φπθ)

5. STABILITY ANALYSIS OF THE DENGUE REINFECTION MODEL

This section performs a stability analysis on the endemic equilibrium (EE) point Q1 and the

disease free equilibrium (DFE) point Q0 and numerically verified in the numerical section. The

Hurwitz-Routh criterion and Lasallae’s invariance principle are used in the stabilty analysis.
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5.1. Local stability analysis of DFE. This subsection discusses about the local stability anal-

ysis of DFE. The Hurwitz-Routh criteria is used to define the conditions for the local asymptotic

stability of the system (1) around the point Q0.

Theorem 3. If R0 < 1 and some few additional conditions are met, the disease-free equilibrium

point Q0 is locally asymptotically stable in Θ.

Proof. The Jacobian matrix at Q0 is J(Q0) given by:

(14) J(Q0) =



−µ 0 0 δ 0 0 −ρ(1−c1)α1Ω

µ
0 0

0 − f1 0 0 0 0 ρ(1−c1)α1Ω

µ
0 0

0 β1 − f2 0 0 0 0 0 0

0 0 f3 − f4 0 0 0 0 0

0 0 −ρ(1−c1)α2φΨ

f5 f7
0 − f5 0 0 φ 0

0 0 ρ(1−c1)α2φΨ

f5 f7
0 0 − f6 0 0 0

0 0 0 0 0 β2 − f5 0 φ

0 0 0 0 0 0 −θπ − f7 0

0 0 0 0 0 0 θπ 0 − f7


The determinantal equation of J(Q0) is given by

(15) |J(Q0)−λ I|= 0

simplifying equation (15), we get ( f4 +λ )( f5 +λ )( f7 +λ )(λ +µ)P(λ ) = 0, where

(16) P(λ ) = λ
5 +B1λ

4 +B2λ
3 +B3λ

2 +B4λ +B5

(17)

B1 = f1 + f2 + f5 + f6 + f7

B2 = f5 f6 +( f5 + f6) f7 + f2( f5 + f6 + f7)+ f1( f2 + f5 + f6 + f7)−πθφ

B3 = f2 f5 f6 + f2 f5 f7 + f2 f6 f7 + f5 f6 f7− ( f2 + f6)πθφ + f1( f5 f6 +( f5 + f6) f7

+ f2( f5 + f6 + f7)−πθφ)

B4 = f2 f6( f5 f7−πθφ)+ f1( f2 f5 f6 + f2 f5 f7 + f2 f6 f7 + f5 f6 f7− ( f2 + f6)πθφ)

− ((1− c1)
2α1α2β1β2ρ2φ ΨΩ)

f5 f7µ
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(18)
B5 = f1 f2 f6( f5 f7−πθφ)− ((1− c1)

2α1α2β1β2ρ2φΨΩ)

f5µ

= f1 f2 f6( f5 f7−πθφ)
(
1−R2

0
)

Obviously B1 > 0 and B5 > 0 if and only if R2
0 < 1. The Hurwitz- Routh criteria states that

the polynomial P(λ ) = 0 with real coefficients have all roots negative or roots with negative

real parts if and only if Bi > 0, i = 1,2,3,4,5, B1B2B3 > B2
3 +B2

1B4 and (B1B4−B5)(B1B2B3−

B2
3−B2

1B4)> B5(B1B2−B3)
2 +B1B2

5. Therefore, if R0 < 1 and the aforementioned conditions

are met, the DFE point Q0 is locally asymptotically stable; otherwise, it is unstable. �

5.2. Global stability analysis of DFE. Using the conditions of the Castillo-Chavez technique

[71], we analyse the global asymptotic stability (GAS) of Q0 based on the value of R0 in this

section. The feasible region Θ1 = {(Sh,Eh, Ih,Rh,Sm,Em, Im,Se, Ie) ∈Θ : Sh ≤ S0
h,Sm ≤ S0

m,Se ≤

S0
e} is used to demonstrate the GAS of Q0. First, the positively invariant property of the region

Θ1 is established. It is obvious that Θ1 ⊆Θ

Theorem 4. The region Θ1 = {(Sh,Eh, Ih,Rh,Sm,Em, Im,Se, Ie)∈Θ : Sh ≤ S0
h,Sm ≤ S0

m,Se ≤ S0
e}

is a positively invariant set for the Dengue system (1)

Proof. From Dengue system (1), we obtain

(19)
Ṡh = Ω− ρ(1− c1)α1ImSh

1+ kIm
−µSh +δRh

≤Ω−µSh +δRh

Here Ṡh ≤Ω−µSh +δRh for all values of Rh(t)≥ 0. Hence

(20) Ṡh ≤Ω−µSh

If Sh(0) ∈Θ1, then Sh(0)≤ S0
h. Hence

(21) Sh(t)≤−(S0
h−Sh(0))e−µt +

Ω

µ
≤ Ω

µ
= S0

h
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In Θ1, Se ≤ S0
e . Hence using dSm

dt = φSe−ρ(1− c1)α2IhSm− (ξ + pc3)Sm, we get,

(22)

Ṡm = φSe−ρ(1− c1)α2IhSm− f5Sm

≤ φSe− f5Sm

≤ φS0
e− f5Sm

After simplification, we get,

(23)
Sm(t)≤−

(
φS0

e
f5
−Sm(0)

)
e− f5t +

φS0
e

f5
=−

(
S0

m−Sm(0)
)

e− f5t +S0
m

≤ S0
m

Hence , Sh ≤ S0
h, Sm ≤ S0

m ∀t ≥ 0 if the preliminary conditions (Sh(0),Sm(0),Se(0)) ∈ Θ1. The

region Θ1 is thus a positively invariant set that draws all of the system (1) solutions in R9
+. �

Theorem 5. The DEF point Q0 in Θ1 is GAS If R0 < 1.

Proof. The system (1) is expressed by

(24) Ẋ = K(X , I), İ = L(X , I)

Where, in this instance, dot indicates differentiation with respect to t, X = (Sh,Sm,Se,Rh)
T ,

I = (Eh,Em, Ih, Im, Ie)
T ,

K(X , I) =


Ω− ρ(1−c1)α1ImSh

1+kIm
−µSh +δRh

φSe−ρ(1− c1)α2IhSm− f5Sm

Ψ−θπIm− f7Se

f3Ih− f4Rh

 ,L(X , I) =



ρ(1−c1)α1ImSh
1+kIm

− f1Eh

ρ(1− c1)α2IhSm− f6Em

β1Eh− f2Ih

β2Em +φ Ie− f5Im

θπIm− f7Ie


Further more

D =



− f1 0 0 ρ(1−c1)α1Ω

µ
0

0 − f6
ρ(1−c1)α2φΨ

f5 f7
0 0

β1 0 − f2 0 0

0 β2 0 − f5 φ

0 0 0 θπ − f7


, L̂(X , I) =



ρ(1− c1)α1

(
S0

h−
Sh

1+kIm

)
Im

ρ(1− c1)α2
(
S0

m−Sm
)

Ih

0

0

0


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K(X , I)

∣∣∣∣∣
I=0

=


Ω−µSh +δRh

φSe− f5Sm

Ψ− f7Se

− f4Rh

 ,L(X , I)

∣∣∣∣∣
I=0

=



0

0

0

0

0


, where D = LI(X∗,0), L(X , I) = DI− L̂(X , I)

Solving the system dX
dt =K(X ,0), we get dRh

dt =− f4Rh, dSh
dt =Ω−µSh+δRh, dSm

dt = φSe− f5Sm

and dSe
dt = Ψ− f7Se and after simplifying, we get lim

t→∞
Rh(t) = 0, lim

t→∞
Se(t) = S0

e , and lim
t→∞

Sh(t) =

S0
h respectively. The solutions of dX

dt = K(X ,0) does not always depend on the initial conditions

Sh(0), Sm(0), Se(0) and Rh(0). As a result, for the solution (Sh(t), Sm(t), Se(t) Rh(t)) of dX
dt =

K(X ,0), the asymptotic nature is independent of the conditions (2) in Θ1, assuring that the

equilibrium point X∗ = (S0
h,S

0
m,S

0
e ,R

0
h) is globally asymptotically stable and as a result, the first

condition of the Castillo-Chavez approach [71] is met. Further in Θ1, Sh ≤ S0
h,Sm ≤ S0

m,Se ≤ S0
e

and hence in the region Θ1,

(25) ρ(1− c1)α1

(
S0

h−
Sh

1+ kIm

)
Im ≥ ρ(1− c1)α1

(
S0

h−Sh
)

Im ≥ 0

(26) ρ(1− c1)α2
(
S0

m−Sm
)

Ih ≥ 0

Hence L̂(X , I)≥ 0, which satisfies the condition-2 of Castillo-Chavez method [71]. As a result,

Q0 is GAS in Θ1 if R0 < 1. �

5.3. Endemic equilibrium. In this section, we examine the local asymptotic stability (LAS)

and global asymptotic stability (GAS) of Q1.

5.3.1. Local asymptotic stability of endemic equilibrium.

Theorem 6. If R0 > 1 and all of the conditions in the proof are satisfied, the EE point Q1 of the

system (1) is LAS in ϒ⊆Θ.
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Proof.

(27)

J(Q1) =



−ρ(1−c1)α1I∗m
1+kI∗m

−µ 0 0 δ 0 0 −ρ(1−c1)α1S∗h
(1+kI∗m)2 0 0

ρ(1−c1)α1I∗m
1+kI∗m

− f1 0 0 0 0 ρ(1−c1)α1S∗h
(1+kI∗m)2 0 0

0 β1 − f2 0 0 0 0 0 0

0 0 f3 − f4 0 0 0 0 0

0 0 −ρ(1− c1)α2S∗m 0 −(ρ(1− c1)α2I∗h + f5) 0 0 φ 0

0 0 ρ(1− c1)α2S∗m 0 ρ(1− c1)α2I∗h − f6 0 0 0

0 0 0 0 0 β2 − f5 0 φ

0 0 0 0 0 0 −θπ − f7 0

0 0 0 0 0 0 θπ 0 − f7


The characteristic polynomial of (27 ) is given by

(28) |J(Q1)−λ I|= 0

The polynomial in λ is

(29) (λ + f7)P(λ ) = 0

where

(30) P(λ ) = λ
8 +b1λ

7 +b2λ
6 +b3λ

5 +b4λ
4 +b5λ

3 +b6λ
2 +b7λ +b8

One latent roots of (29) is λ =− f7 < 0. The remaining latent roots of (29) are analysed using

the polynomial equation P(λ )

The coefficients of (30) are as follows:

b1 =−a1−a4 + f1 + f2 + f4 + f5 + f6 + f7(31)

b2 = f1 f2 + f1 f4 + f2 f4 + f1 f5 + f2 f5 + f4 f5 + f1 f6 + f2 f6 + f4 f6 + f5 f6 +a1(a4− f1− f2− f4(32)

− f5− f6− f7)+( f1 + f2 + f4 + f5 + f6) f7−a4( f1 + f2 + f4 + f5 + f6 + f7)−πθφ

(33)
b3 = f1 f2 f4 + f1 f2 f5 + f1 f4 f5 + f2 f4 f5 + f1 f2 f6 + f1 f4 f6 + f2 f4 f6 + f1 f5 f6 + f2 f5 f6 +

f4 f5 f6 + f1 f2 f7 + f1 f4 f7 + f2 f4 f7 + f1 f5 f7 + f2 f5 f7 + f4 f5 f7 + f1 f6 f7 + f2 f6 f7 +
f4 f6 f7+ f5 f6 f7− f1πθφ− f2πθφ− f4πθφ− f6πθφ−a4( f4 f5+ f4 f6+ f5 f6+( f4+
f5 + f6) f7 + f2( f4 + f5 + f6 + f7) + f1( f2 + f4 + f5 + f6 + f7)− πθφ)− a1( f2 f4 +
f2 f5+ f4 f5+ f2 f6+ f4 f6+ f5 f6+( f2+ f4+ f5+ f6) f7+ f1( f2+ f4+ f5+ f6+ f7)−
a4( f1 + f2 + f4 + f5 + f6 + f7)−πθφ)
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(34)
b4 = f1 f2 f4 f5+ f1 f2 f4 f6+ f1 f2 f5 f6+ f1 f4 f5 f6+ f2 f4 f5 f6−a4( f2 f4 f5+ f4 f5 f6+ f2( f4+

f5) f6+ f1( f4 f5+( f4+ f5) f6+ f2( f4+ f5+ f6)))+ f1 f2 f4 f7+ f1 f2 f5 f7+ f1 f4 f5 f7+
f2 f4 f5 f7 + f1 f2 f6 f7 + f1 f4 f6 f7 + f2 f4 f6 f7 + f1 f5 f6 f7 + f2 f5 f6 f7 + f4 f5 f6 f7 −
a4( f4 f5 + ( f4 + f5) f6 + f2( f4 + f5 + f6) + f1( f2 + f4 + f5 + f6)) f7 − a2a3β1β2 +
f3β1δ µ + a4π( f1 + f2 + f4 + f6 − β2)θφ − π( f4 f6 + f2( f4 + f6) + f1( f2 + f4 +
f6)+ f5β2)θφ +a1(− f2 f4 f5− f2 f4 f6− f2 f5 f6− f4 f5 f6− f2 f4 f7− f2 f5 f7− f4 f5 f7−
f2 f6 f7 − f4 f6 f7 − f5 f6 f7 + f3β1δ + ( f2 + f4 + f6)πθφ − f1( f5 f6 + ( f5 + f6) f7 +
f4( f5 + f6 + f7)+ f2( f4 + f5 + f6 + f7)−πθφ)+a4( f4 f5 + f4 f6 + f5 f6 +( f4 + f5 +
f6) f7 + f2( f4 + f5 + f6 + f7)+ f1( f2 + f4 + f5 + f6 + f7)−πθφ))

(35)
b5 = f1 f2 f4 f5 f6 + f1 f2 f4 f5 f7 + f1 f2 f4 f6 f7 + f1 f2 f5 f6 f7 + f1 f4 f5 f6 f7 + f2 f4 f5 f6 f7 −

a2a3 f4β1β2 − a2a3 f5β1β2 − a2a3 f7β1β2 − a2a3β1β2µ + f3 f5β1δ µ + f3 f6β1δ µ +
f3 f7β1δ µ−a4( f2 f4 f5 f6+( f2 f4 f5+ f4 f5 f6+ f2( f4+ f5) f6) f7+ f1( f4 f5 f6+ f5 f6 f7+
f4( f5 + f6) f7 + f2( f5 f6 + ( f5 + f6) f7 + f4( f5 + f6 + f7))) + f3β1δ µ) + a4π( f2 f4 +
f2 f6 + f4 f6 + f1( f2 + f4 + f6−β2)− ( f2 + f4)β2)θφ −π( f1 f2 f4 + f1 f2 f6 + f1 f4 f6 +
f2 f4 f6 +( f1 + f2 + f4) f5β2)θφ + a1(− f2 f4 f5 f6− f2 f4 f5 f7− f2 f4 f6 f7− f2 f5 f6 f7−
f4 f5 f6 f7− f1( f4 f5 f6 + f5 f6 f7 + f4( f5 + f6) f7 + f2( f5 f6 +( f5 + f6) f7 + f4( f5 + f6 +
f7)))+ f3 f5β1δ + f3 f6β1δ + f3 f7β1δ + f1( f2+ f4+ f6)πθφ +π( f4 f6+ f2( f4+ f6)+
f5β2)θφ + a4( f4 f5 f6 + f4 f5 f7 + f4 f6 f7 + f5 f6 f7 − f3β1δ − π( f4 + f6 − β2)θφ +
f2( f6 f7+ f5( f6+ f7)+ f4( f5+ f6+ f7)−πθφ)+ f1( f5 f6+( f5+ f6) f7+ f4( f5+ f6+
f7)+ f2( f4 + f5 + f6 + f7)−πθφ)))

(36)
b6 = f1 f2 f4 f5 f6 f7−a4( f1 f2 f4 f5 f6+ f2 f4 f5 f6 f7+ f1( f2 f4 f5+ f4 f5 f6+ f2( f4+ f5) f6) f7)−

a2a3 f4 f5β1β2 − a2a3 f4 f7β1β2 − a2a3 f5 f7β1β2 − a2a3 f4β1β2µ − a2a3 f5β1β2µ −
a2a3 f7β1β2µ+ f3 f5 f6β1δ µ+ f3 f5 f7β1δ µ+ f3 f6 f7β1δ µ−a4 f3( f5+ f6+ f7)β1δ µ+
a4π( f2 f4( f6 − β2) + f1( f2 f4 + f2 f6 + f4 f6 − ( f2 + f4)β2))θφ − πθ( f1 f2 f4 f6 +
f2 f4 f5β2+ f1( f2+ f4) f5β2+ f3β1δ µ)φ +a1(− f2 f4 f5 f6 f7− f1( f2 f4 f5 f6+( f2 f4 f5+
f4 f5 f6 + f2( f4 + f5) f6) f7) + f3 f5 f6β1δ + f3 f5 f7β1δ + f3 f6 f7β1δ + f1π( f4 f6 +
f2( f4 + f6) + f5β2)θφ + π( f2 f4 f6 + ( f2 + f4) f5β2 − f3β1δ )θφ + a4( f2 f4 f5 f6 +
f2 f4 f5 f7+ f2 f4 f6 f7+ f2 f5 f6 f7+ f4 f5 f6 f7− f3 f5β1δ− f3 f6β1δ− f3 f7β1δ−π( f2 f4+
f2 f6 + f4 f6− ( f2 + f4)β2)θφ + f1( f4 f5 f6 + f4 f5 f7 + f4 f6 f7 + f5 f6 f7− π( f4 + f6−
β2)θφ + f2( f5 f6 +( f5 + f6) f7 + f4( f5 + f6 + f7)−πθφ))))

(37)
b7 = f3 f5 f6 f7β1δ µ − a2a3β1β2( f4 f5 f7 + f5 f7µ + f4( f5 + f7)µ) − πθ( f1 f2 f4 f5β2 +

f3 f6β1δ µ)φ + a4(− f3β1δ µ( f6 f7 + f5( f6 + f7)− πθφ)− f1 f2 f4( f5 f6 f7 + π(− f6 +
β2)θφ))+a1( f5 f6 f7(− f1 f2 f4+ f3β1δ )+π( f1 f2 f4 f6+ f2 f4 f5β2+ f1( f2+ f4) f5β2−
f3 f6β1δ )θφ + a4(− f3β1δ ( f6 f7 + f5( f6 + f7) − πθφ) + f2 f4( f5 f6 f7 + π(− f6 +
β2)θφ)+ f1( f2 f4 f5 f6+ f2 f4 f5 f7+ f2 f4 f6 f7+ f2 f5 f6 f7+ f4 f5 f6 f7−π( f2 f4+ f2 f6+
f4 f6− ( f2 + f4)β2)θφ)))
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(38)
b8 = a1( f1 f2 f4− f3β1δ )(a4 f5 f6 f7+π(−a4 f6+(a4+ f5)β2)θφ)+β1µ(− f5 f7(a2a3 f4β2+

a4 f3 f6δ )+ f3π(a4 f6− (a4 + f5)β2)δθφ)

Where a1 =−µ− (1−c1)I∗mα1ρ

1+I∗mk , a2 =−
(1−c1)S∗hα1ρ

(1+I∗mk)2 , a3 =
(1−c1)I∗mα1ρ

1+I∗mk , a4 =−(1− c1)S∗mα2ρ and

a5 = − f5− (1− c1)I∗h α2ρ . In accordance with the Hurwitz-Routh criterion, the polynomial

(30) has eight roots that are all either negative or have roots that have negative real parts if and

only if the determinants of all Hurwitz matrices H j, j = 1,2,3, ...,8 are positive.

The Hurwitz matrices are defined follows:

(39) H1 = (b1),H2 =

b1 1

b3 b2

 ,H3 =


b1 1 0

b3 b2 b1

b5 b4 b3

 and Hn =



b1 1 0 0 . . . 0

b3 b2 b1 1 . . . 0

b5 b4 b3 b2 . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . bn


But the EE point Q1 exists in ϒ if R0 > 1 and hence Q1 is LAS in ϒ if R0 > 1 along with the

conditions detH j > 0, j = 1,2,3, ...,8 are satisfied.

�

5.3.2. Global asymptotic stability of endemic equilibrium. This section analyses the global

asymptotic stability (GAS) of the endemic equilibrium (EE) point Q1.

Theorem 7. If R0 > 1,the EE point Q1 is GAS in ϒ ⊆ Θ , if (−1)n|Di| > 0, i = 1,2,3, ...,9,

where the expression for Di is mentioned in the proof.

Proof. Let’s construct a suitable Lyapunov function. L(Sh,Eh, Ih,Rh,Sm,Em, Im,Se, Ie) as fol-

lows:

(40)
L =

(
Sh−S∗h +S∗h log

(
S∗h
Sh

))
+
(

Eh−E∗h +E∗h log
(

E∗h
Eh

))
+
(

Ih− I∗h + I∗h log
(

I∗h
Ih

))
+(

Rh−R∗h +R∗h log
(

R∗h
Rh

))
+
(

Sm−S∗m +S∗m log
(

S∗m
Sm

))
+
(

Em−E∗m +E∗m log
(

E∗m
Em

))
+(

Im− I∗m + I∗m log
(

I∗m
Im

))
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Using the EE point Q1 in L̇, we get,

(41)

dL
dt

=
(

Sh−S∗h
Sh

)
dSh
dt +

(
Eh−E∗h

Eh

)
dEh
dt +

(
Ih−I∗h

Ih

)
dIh
dt +

(
Rh−R∗h

Rh

)
dRh
dt +

(
Sm−S∗m

Sm

)
dSm
dt +(

Em−E∗m
Em

)
dEm
dt +

(
Im−I∗m

Im

)
dIm
dt +

(
Se−S∗e

Se

)
dSe
dt +

(
Ie−I∗e

Ie

)
dIe
dt

Using Q1 in the system (1), we get, Ω− ρ(1−c1)α1I∗mS∗h
1+kI∗m

−µS∗h +δR∗h = 0, ρ(1−c1)α1I∗mS∗h
1+kI∗m

− f1E∗h =

0, β1E∗h − f2I∗h = 0, f3I∗h − f4R∗h = 0, φS∗e −ρ(1− c1)α2I∗h S∗m− f5S∗m = 0, ρ(1− c1)α2I∗h S∗m−

f6E∗m = 0, β2E∗m +φ I∗e − f5I∗m = 0, Ψ−θπI∗m− f7S∗e = 0, θπI∗m− f7I∗e = 0. Hence(
Sh−S∗h

Sh

)
dSh

dt
=−

(
Ω+δR∗h

ShS∗h

)
(Sh−S∗h)

2− ρ(1−c1)α1
(1+kIm)(1+kI∗m)

(Im− I∗m)(Sh−S∗h)+
δ

Sh
(Sh−S∗h)(Rh−R∗h)

(
Eh−E∗h

Eh

)
dEh

dt
= ρ(1−c1)α1Im

Eh(1+kIm)
(Sh−S∗h)(Eh−E∗h)+

ρ(1−c1)α1S∗h
Eh(1+kIm)(1+kI∗m)

(Eh−E∗h)(Im− I∗m)

(
Ih− I∗h

Ih

)
dIh

dt
=− f2

Ih
(Ih− I∗h )

2 + β1
Ih
(Eh−E∗h)(Ih− I∗h )

(
Rh−R∗h

Rh

)
dRh

dt
=− f4

Rh
(Rh−R∗h)

2 + f3
Rh
(Ih− I∗h )(Rh−R∗h)

(
Sm−S∗m

Sm

)
dSm

dt
= ρ(1−c1)α2(Ih+ f5)

Sm
(Sm−S∗m)

2 + φ

Sm
(Sm−S∗m)(Se−S∗e)−

ρ(1−c1)α2
Sm

(Sm−S∗m)(Ih− I∗h )

(
Em−E∗m

Em

)
dEm

dt
=− f6

Em
(Em−E∗m)

2 + ρ(1−c1)α2Ih
Em

(Sm−S∗m)(Em−E∗m)

+
ρ(1−c1)α2S∗m

Em
(Em−E∗m)(Ih− I∗h )

(
Im− I∗m

Im

)
dIm

dt
=− f5

Im
(Im− I∗m)

2 + β2
Im
(Em−E∗m)(Im− I∗m)+

φ

Im
(Im− I∗m)(Ie− I∗e )

(
Se−S∗e

Se

)
dSe

dt
=− f7

Se
(Se−S∗e)

2− θπ

Se
(Im− I∗m)(Se−S∗e)

(
Ie− I∗e

Ie

)
dIe

dt
=− f7

Ie
(Ie− I∗e )

2 + θπ

Ie
(Im− I∗m)(Ie− I∗e )
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Now, we express L̇ = Y T MY , where

Y T =
(

Sh−S∗h Eh−E∗h Ih− I∗h Rh−R∗h Sm−S∗m Em−E∗m Im− I∗m Se−S∗e Ie− I∗e
)

and M = (mi j), 1 ≤ i, j ≤ 9 is a real and symmetric matrix and m11 = −
(

Ω+δR∗h
ShS∗h

)
, m22 = 0,

m33 = − f2
Ih

, m44 = − f4
Rh

, m55 = ρ(1−c1)α2(Ih+ f5)
Sm

, m66 = − f6
Em

, m77 = − f5
Im

, m88 = − f7
Se

,

m99 = − f7
Ie

, m12 = m21 = ρ(1−c1)α1Im
2(1+kIm)Eh

, m13 = m31 = 0, m14 = m41 = δ

2Sh
, m15 = m51 = 0 ,

m16 =m61 = 0, m17 =m71 = 0, m18 =m81 = 0, m19 =m91 = 0, m23 =m32 =
β1
2Ih

, m24 =m42 = 0,

m25 = m52 = 0, m26 = m562 = 0, m28 = m82 = 0, m29 = m92 = 0, m27 = m72 =
ρ(1−c1)α1S∗h

2(1+kIm)(1+kI∗m)Eh
,

m34 = m43 = f3
2Rh

, m35 = m53 = −ρ(1−c1)α2
2Sm

, m36 = m63 =
ρ(1−c1)α2S∗m

2Em
, m37 = m73 = 0,

m38 = m83 = 0, m39 = m93 = 0, m45 = m54 = 0, m46 = m64 = 0, m47 = m74 = 0,

m48 = m84 = 0,m49 = m94 = 0, m56 = m65 = ρ(1−c1)α2Ih
2Em

, m58 = m85 = φ

2Sm
, m57 = m75 = 0,

m59 = m95 = 0, m67 = m76 = β2
2I−m , m68 = m86 = 0, m69 = m96 = 0, m78 = m87 = − φπ

2Se
,

m79 = m97 =
φ Ie+φπIm

2ImIe
, m89 = m98 = 0. Here the EE point Q1 is GAS, if L̇ < 0 which is same

stating that the real quadratic form Y T MY is negative definite. The real symmetric matrix

M must be negative definite for the negativity of the real quadratic form Y T MY as per the

Frobenius theorem . Hence the following condition to be satisfied.

If Di =


m11 m12 m13 . . . m1i

m21 m22 m23 . . . m2i
... . . .

... . . .
...

m91 m92 m93 . . . m9i

, then (−1)n|Di|> 0, i = 1,2,3, ...,9.

�

6. SENSITIVITY ANALYSIS

Sensitivity analysis was carried out on the system (1) to see how various variables impacted

the spread of dengue fever in the host population. In this analysis, the variables that sig-

nificantly affect the system’s Basic Reproduction Number (1) are identified. By analysing

the characteristics in connection to the basic reproduction number, the health authorities can

more effectively control the spread of the disease. The design of experiments, data as-

similation, and the simplification of complicated non-linear models are all aided by sensi-

tivity analysis. The normalised forward sensitivity index of R0 that depends differentiably
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on a parameter m is defined as Γ
R0
m = ∂R0

∂m
m
R0

. Here R0 =
√

(1−c1)2ρ2α1α2β1β2ΨφΩ

f1 f2 f5 f6µ( f5 f7−φπθ) , where,

f1 = β1+µ, f2 = γ+d+µ+bc2, f3 = γ+bc2, f4 = δ +µ, f5 = ξ + pc3, f6 = β2+ξ + pc3, f7 =

φ + pc3. The sensitivity index of R0, which is dependent on a number of characteristics

of system (1) , is as follows: Γ
R0
ρ = 1 > 0, Γ

R0
Ω

= 0.5 > 0, Γ
R0
Ψ

= 0.5 > 0, Γ
R0
α1 = 0.5 > 0,

Γ
R0
α2 = 0.5> 0, Γ

R0
β1

= 0.034
0.068+β1

> 0, Γ
R0
β2

= 0.036365
0.07273+β2

> 0, Γ
R0
µ =−0.00391879+(0.189485+1.5µ)µ

(0.061+µ)(0.128485+µ) < 0,

Γ
R0
ξ

= (ξ (0.0000573353+(−0.0662083−1.5ξ )ξ ))
(0.00273+ξ )(0.06773+ξ ) (−0.00425168+ξ )

, Γ
R0
δ

= 0, Γ
R0
d = − 0.5d

0.131485+d < 0, Γ
R0
k = 0, Γ

R0
γ =

− 0.5γ

0.135485+γ
< 0, Γ

R0
b = − 0.5b

5.54286+b < 0, Γ
R0
p = − p(166.561+p(166.12+(43.4231+2p)p))

219.758+p(333.123+p(166.12+p(28.9487+p))) < 0,

Γ
R0
φ

= 0.00151046
0.00302092+φ

> 0, Γ
R0
θ

= 0.5
1.07298−θ

> 0, Γ
R0
π = 0.5π

0.708374−π
, Γ

R0
c1 =− c1

1−c1
< 0,

Γ
R0
c2 =− 0.0355c2

0.194+0.071c2
< 0, Γ

R0
c3 =− c3(28.8054+c3(51.565+(24.1929+2c3)c3))

21.1744+c3(57.6108+c3(51.565+c3(16.1286+c3)))
< 0. A most sensi-

tive parameter’s slight variation will result in a significant quantitative variation. To ensure that

a small variation in a least sensitive parameter does not result in a big variation, it is important

to accurately estimate it. This way, estimating such least sensitive parameters need not require

much effort. Table (4) displays the sensitivity indices of the dengue reinfection model (1) in re-

lation to BRN as well as the baseline value of the parameters considered for sensitivity analysis

(R0). With sensitivity index 1, which shows that an increase (decrease) in the effective mosquito

biting rate, ρ by 10% will be immediately followed by an increase (decrease) in R0 by 10%,

it is obvious that mosquito biting is the most sensitive parameter. Similarly, a 10% increase

(decrease) in the parameters Ω, Ψ, α1 and α2 will be followed immediately by a 5% increase

(decrease) in the R0 value. The parameters p, b, c1, c2, and c3 are significant in the context

of epidemiology among those with a negative sensitivity index. The sensitivity index of the

parameter p, the effectiveness of the control c3, is -0.3 for p = 0.5. According to figure(5)(B),

for instance, an increase in the efficiency of the control c3, let’s say p, by 10% would result in a

relative decrease in R0 value of 3%. Figures (2), (3), (4), (5), (6), (7), (8) shows the sensitivity

indices of R0 relative to various parameters of the system (1).
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FIGURE 2. Sensitivity index of R0 relative to progression rates: (A) Humans

exposed to infected, β1, (B) Vectors exposed to infected, β2.
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FIGURE 3. The sensitivity index of R0 relative to (A) The natural mortality of

the human population, µ , (B) The natural death rate of the vector population, ξ .
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FIGURE 4. The sensitivity index of R0 relative to (A) The natural recovery rate

of humans from the dengue disease, γ , (B) The disease induced death rate of the

humans, d.
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FIGURE 5. The sensitivity index of R0 relative to (A) The effectiveness of the

control c2,(B) The effectiveness of the control c3.
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FIGURE 6. Sensitivity index of R0 relative to: (A) Development rate of Aedes

aeypti mosquitoes, φ , (B) Number of Aedes Aegypti mosquito eggs laid per day,

θ .
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FIGURE 7. Sensitivity index of R0 relative to: (A) Vertical transmission rate of

Aedes Aeypti mosquitoes, π , (B) Protection control c1.
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FIGURE 8. The sensitivity index of R0 relative to (A) The treatment control c2

for the humans infected with either of the serotype viruses, (B) The Insecticide

spray control c3 against mosquitoes .

Parameters values Sensitivity index Sign of sensitivity index

ρ 0.331795 Γ
R0
ρ = 1 +

Ω 0.677 Γ
R0
Ω

= 0.5 +

Ψ 0.8 Γ
R0
Ψ

= 0.5 +

α1 0.059 Γ
R0
α1 = 0.5 +

α2 0.051 Γ
R0
α2 = 0.5 +

β1 0.061 Γ
R0
β1

= 0.034
0.068+β1

+

β2 0.065 Γ
R0
β2

= 0.036365
0.07273+β2

+

µ 0.068 Γ
R0
µ =−0.00391879+(0.189485+1.5µ)µ

(0.061+µ)(0.128485+µ) -

ξ 0.07 Γ
R0
ξ

= (ξ (0.0000573353+(−0.0662083−1.5ξ )ξ ))
(0.00273+ξ )(0.06773+ξ )(−0.00425168+ξ )

-

γ 0.061 Γ
R0
γ =− 0.5γ

0.135485+γ
-

d 0.065 Γ
R0
d =− 0.5d

0.131485+d -

δ 0.08 Γ
R0
δ

= 0 neutral

k 1 Γ
R0
k = 0 neutral

b 0.071 Γ
R0
b =− 0.5b

5.54286+b -

p 0.07 Γ
R0
p =− p(166.561+p(166.12+(43.4231+2p)p))

219.758+p(333.123+p(166.12+p(28.9487+p))) -

φ 0.854 Γ
R0
φ

= 0.00151046
0.00302092+φ

+

θ 0.103 Γ
R0
θ

= 0.5
1.07298−θ

+

π 0.068 Γ
R0
π = 0.5π

0.708374−π
+ / -

c1 0.025 Γ
R0
c1 =− c1

1−c1
-

c2 0.035 Γ
R0
c2 =− 0.0355c2

0.194+0.071c2
-

c3 0.039 Γ
R0
c3 =− c3(28.8054+c3(51.565+(24.1929+2c3)c3))

21.1744+c3(57.6108+c3(51.565+c3(16.1286+c3)))
-

TABLE 4. The sensitivity indices of R0 relative to various parameters of the

system (1) with assumed parameter values as given in the table
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7. ANALYSIS OF BIFURCATION IN DENGUE REINFECTION MODEL

To analyse the bifurcation character of system (1), the Castilla-Chavez and Song [72] tech-

nique is applied.

Theorem 8. When a < 0, the system (1) experiences forward bifurcation at α1 = α∗1 (i.e. at

R0 = 1), and the proof provides the expressions for α∗1 and a.

Proof. Let Sh = x1, Eh = x2, Ih = x3, Rh = x4, Sm = x5, Em = x6, Im = x7, Se = x8, and Ie = x9

and the transformed system is

(42)

ẋ1 = Ω− ρ(1− c1)α1x7x1

1+ kx7
−µx1 +δx4

ẋ2 =
ρ(1− c1)α1x7x1

1+ kx7
− (β1 +µ)x2

ẋ3 = β1x2− (γ +d +µ +bc2)x3

ẋ4 = (γ +bc2)x3− (δ +µ)x4

ẋ5 = φx8−ρ(1− c1)α2x3x5− (ξ + pc3)x5

ẋ6 = ρ(1− c1)α2x3x5− (β2 +ξ + pc3)x6

ẋ7 = β2x6 +φx9− (ξ + pc3)x7

ẋ8 = Ψ−θπx7− (φ + pc3)x8

ẋ9 = θπx7− (φ + pc3)x9

Human disease transmission rate (α1) is taken into account as a bifurcation parameter with the

constraint R0 = 1. Hence

(43)

α
∗
1 =

µ(β1 +µ)(bc2 +d + γ +µ)(c3 p+ξ )(c3 p+β2 +ξ )(c2
3 p2 + c3 pξ + c3 pφ −πθφ +ξ φ)

(1−2c1 + c2
1)α2β1β2ρ2φψΩ

DFE of the transformed system (42) is Q0 = (x0
1,x

0
2,x

0
3,x

0
4,x

0
5,x

0
6,x

0
7,x

0
8,x

0
9), where x0

1 =
Ω

µ
> 0,

x0
2 = 0, x0

3 = 0, x0
4 = 0, x0

5 =
φΨ

f5 f7
> 0, x0

6 = 0, x0
7 = 0, x0

8 =
Ψ

f7
> 0, and x0

9 = 0. The linearization

matrix of the transformed system (42) at Q0 is denoted as J(Q0) at equation (14). One zero

eigenvalue exists in the system’s jacobian at α1 = α∗1 (R0 = 1), but all other eigenvalues have
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a negative real part. As a result, using the central manifold theory, the dynamics of the trans-

formed system (42) near to α1 = α∗1 (R0 = 1) are studied. According to the central manifold

hypothesis [72], the following calculations are necessary.

The right eigenvector for J(Q0) when R0 = 1 is W = (w1,w2,w3,w4,w5,w6,w7,w8,w9)
T

computed using J(Q0) ·W = 0 and hence

w1 =
ρΩ(−1+c1)w7α1( f1 f2 f4−δ f3β1)

µ2 f1 f2 f4
,w2 =

ρΩ(1−c1)w7α1
µ f1

,w3 =
ρΩ(1−c1)w7α1β1

µ f1 f2
,

w4 =
ρΩ(1−c1) f3w7α1β1

µ f1 f2 f4
,

w8 =−πθw7
f7

,w9 =
πθw7

f7
,w5 =−

φw7(πθ µ f1 f2 f5+ρ2ψΩα1α2β1−2ρ2ψΩc1α1α2β1+ρ2ψΩc2
1α1α2β1)

µ f1 f2 f 2
5 f7

,

w6 =
−πθφw7+ f5 f7w7

f7β2

The left eigenvector of jacobian matrix J(Q0) when R0 = 1 is V =(v1,v2,v3,v4,v5,v6,v7,v8,v9)

computed using V.J(Q0) = 0 and hence we get, vi = 0 for i = 1,4,5,8, v2 = µ(πθφv7− f5 f7v7)
ρΩ(−1+c1) f7α1

,

v3 =
(µ f1(πθφv7− f5 f7v7)
ρΩ(−1+c1) f7α1β1

, v6 =
v7β2

f6
, v9 =

φv7
f7

. Then, v7 is computed using the condition V.W = 1

and hence

(44)

v7 =
f1 f2 f6 f 2

7
πθφ f1 f2 f6w7−πθφ f1 f2 f7w7−πθφ f1 f6 f7w7−πθφ f2 f6 f7w7+ f1 f2 f5 f 2

7 w7+ f1 f2 f6 f 2
7 w7+ f1 f5 f6 f 2

7 w7+ f2 f5 f6 f 2
7 w7

The bifurcation coefficients are given by

(45)

a =
9

∑
k,i, j=1

vkwiw j
∂ 2Fk(Q0,α

∗
1 )

∂xi∂x j

b =
9

∑
k,i, j=1

vkwi
∂ 2Fk(Q0,α

∗
1 )

∂xi∂α1

The following expressions give the bifurcation coefficients a and b after simplifica-

tion, we get a = A1
A2
,b = B1

B2
where A1 = 2 f7w7(µ f1 f2 f 2

5 f6(−πθφ + f5 f7)(2µ f1 f2 f4 +

ρ(−1 + c1)α1(− f1 f2 f4 + δ f3β1)) + ρ2φΩ(−1 + c1)
2 f4α1α2β1](πθ µ f1 f2 f5 + ρ2ψΩ(−1 +

c1)
2α1α2β1)β2, A2 = µ2 f1 f2 f4 f 2

5 (( f2 f5 f6+ f1( f2 f5+( f2+ f5) f6)) f 2
7 +πθΦ( f1 f2 f6−( f2 f6+

f1( f2 + f6)) f7)), B1 = f1 f2 f6 f7 ( f5 f7− πθφ), B2 = (( f2 f5 f6 + f1( f2 f5 + ( f2 + f5) f6)) f 2
7 +

πθφ( f1 f2 f6− ( f2 f6 + f1( f2 + f6)) f7))α1 As a result, when a < 0, the system (42) at R0 = 1

experiences forward bifurcation. In forward bifurcation, when R0 > 1, a stable endemic

equilibrium coexists with an unstable disease-free equilibrium point. Using the parame-

ter values from table (5), we get R0 = 8.94728, α∗1 = 0.000206111, a = −0.0169782w7,

b = 20.437, W = (w1,w2,w3,w4,w5,w6,w7,w8,w9)
T , V = (v1,v2v3,v4,v5,v6,v7,v8,v9), where
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w1 = −0.0497201w7, w2 = 0.0219654w7, w3 = 0.00593772w7, w4 = 0.00316881w7, w5 =

−1.03352w7, w6 = 0.0335247w7, w8 =−0.282452w7, w9 = 0.282452w7, v1 = 0, v2 =
0.883732

w7
,

v3 = 1.2534
w7

, v4 = 0, v5 = 0, v6 = 0.421353
w7

, v7 = 0.7615
w7

, v8 = 0, v9 = 0.699305
w7

. Here a =

−0.0169782w7 < 0 and b = 20.437 > 0. Hence there exists a forward bifurcation at α1 =

α∗1 = 0.000206111 which is represented in figure (9)(A)- (9)(C) relative to the infected com-

partments of the system (1). The significance of the forward bifurcation at R0 = 1 is that, even

though EE and DFE coexist when R0 > 1, the DFE is unstable and the EE is stable, indicating

that the disease will likely remain within the host population in the long term. �
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FIGURE 9. Bifurcation plot of the infected populations (A) Ih , (B) Im, (C) Ie

against the bifurcation parameter α1 using the values from table (5)

8. CONTROL PROBLEM WITH OPTIMAL SOLUTIONS

This section examines a system (1) related optimal control problem with three controls.

The three control variables used in this optimal control problem are c1(t), c2(t), and c3(t),

where c1(t) denotes a protection control, such as the usage of bed nets or creams to ward off

mosquitoes, and c2(t) indicates treatment control for people who have either of the serotype
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viruses, whereas c3(t) stands for the insecticide spray control that eliminates mosquitoes. Re-

ducing the number of infected individuals, infected vectors, and infected eggs, and the cost

of implementing the control strategies are the key goals of this control problem. The control

problem with three controls is listed below.

dSh
dt = Ω− ρ(1−c1(t))α1ImSh

1+kIm
−µSh +δRh

dEh
dt = ρ(1−c1(t))α1ImSh

1+kIm
− (β1 +µ)Eh

dIh
dt = β1Eh− (γ +d +µ +bc2(t)) Ih

dRh
dt = (γ +bc2(t)) Ih− (δ +µ)Rh

dSm
dt = φSe−ρ(1− c1(t))α2IhSm− (ξ + pc3(t))Sm

dEm
dt = ρ(1− c1(t))α2IhSm− (β2 +ξ + pc3(t))Em

dIm
dt = β2Em +φ Ie− (ξ + pc3(t)) Im

dSe
dt = Ψ−θπIm− (φ + pc3(t))Se

dIe
dt = θπIm− (φ + pc3(t)) Ie

(46)

with preliminary condition(2) and the objective functional [73, 74] is defined as

J(c1(t),c2(t),c3(t)) =
∫ te

0

[
W1Eh(t)+W2Ih(t)+W3Em(t)+W4Im(t)+W5Ie(t)+

W6

2
c2

1(t)

+
W7

2
c2

2(t)+
W8

2
c2

3(t)
]
dt

(47)

Here, W1, W2, W3, W4 and W5 represent the corresponding per capita losses caused by the pres-

ence of the exposed human population, infected human population, exposed mosquito popula-

tion, infected mosquito population, and infected egg populations respectively. The constants

W6, W7 and W8, respectively, represent the costs involved in the effort to implement protec-

tion controls, such as the use of bed nets, mosquito repellent creams, and other similar mea-

sures, treatment controls for people infected with either of the serotype viruses and insecticide

spray controls that kill mosquitoes. The time interval is assumed to be [0, te]. The problem is

to find the optimal control functions c∗1(t), c∗2(t) and c∗3(t) such that the objective functional

J(c1(t),c2(t),c3(t)) is minimized, i.e., J(c∗1(t),c
∗
2(t),c

∗
3(t)) = min{J(c1,c2,c3);(c1,c2,c3) ∈
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Uc}, where the control set Uc is defined as

Uc = {(c1,c2,c3);0≤ ci≤ 1, i= 1,2,3; ci is Lebesgue measurable function on [0,1]; t ∈ [0, te]}.

8.1. Existence of the optimal controls. This subsection demonstrates the existence of an

optimum control (c∗1(t),c
∗
2(t),c

∗
3(t)) that minimises the objective functional J subject to the

new system (46) with initial conditions (2)).

Theorem 9. The optimal control (c∗1(t),c
∗
2(t),c

∗
3(t)) exists for the control system (46) with ini-

tial conditions (2) such that J(c∗1(t),c
∗
2(t),c

∗
3(t)) = min{J(c1,c2,c3);(c1,c2,c3) ∈Uc}, with the

control set Uc = {(c1,c2,c3);0 ≤ ci ≤ 1, i = 1,2,3; t ∈ [0, te]} and ci is Lebesgue measurable

function on [0,1].

Proof. Since the control system (46) has bounded coefficients, the set of control variables and

the accompanying state variables are not empty [75]. The control set Uc is thus by definition

closed and convex. Since the state solutions are bounded, the right side of the control system

(46) is similarly bounded. Hence, the integrand of the objective functional is convex on Uc.

Since the state variables are bounded, there exists constants l1 > 0, l2 > 0 and p > 1 such that

W1Eh(t)+W2Ih(t)+W3Em(t)+W4Im(t)+W5Ie(t)+
W6
2 c2

1(t)+
W7
2 c2

2(t)+
W8
2 c2

3(t) ≥ l1(|c1|2 +

|c2|2 + |c3|2)
p
2 − l2.

Hence by the properties satisfied as above [75], there exist an optimal control (c∗1(t),c
∗
2(t),c

∗
3(t))

which minimizes the objective functional J. �

8.2. Characterization. The necessary conditions for the optimal control variables c∗1(t),c
∗
2(t),

and c∗3(t) is derived using the Pontryagin’s Maximum Principle [30, 25].

Theorem 10. For the control system (46), there are optimal control variables

(c∗1(t),c
∗
2(t),c

∗
3(t)), and corresponding solutions (S∗h,E

∗
h , I
∗
h ,R
∗
h,S
∗
m,E

∗
m, I
∗
m,S
∗
e , I
∗
e ) whose objec-

tive functional J over Uc is minimised. The existence of continuous functions λi(t) is related to

the explicit optimum control variables.

Proof. The Hamiltonian is defined as
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(48)

H =

(
W1Eh(t)+W2Ih(t)+W3Em(t)+W4Im(t)+W5Ie(t)+

W6

2
c2

1(t)+
W7

2
c2

2(t)+
W8

2
c2

3(t)
)

+λ1

(
Ω− ρ(1− c1(t))α1ImSh

1+ kIm
−µSh +δRh

)
+λ2

(
ρ(1− c1(t))α1ImSh

1+ kIm
− (β1 +µ)Eh

)
+λ3 (β1Eh− (γ +d +µ +bc2(t)) Ih)

+λ4 ((γ +bc2(t)) Ih− (δ +µ)Rh)+λ5(φSe−ρ(1− c1(t))α2IhSm− (ξ + pc3(t))Sm)

+λ6 (ρ(1− c1(t))α2IhSm− (β2 +ξ + pc3(t))Em)+λ7 (β2Em +φ Ie− (ξ + pc3(t)) Im)

+λ8 (Ψ−θπIm− (φ + pc3(t))Se)+λ9 (θπIm− (φ + pc3(t)) Ie)

where the adjoint functions λi(t), i = 1 to 9 to be determined.

Using, dλ1
dt = − ∂H

∂Sh
, dλ2

dt = − ∂H
∂Eh

, dλ3
dt = −∂H

∂ Ih
, dλ4

dt = − ∂H
∂Rh

, dλ5
dt = − ∂H

∂Sm
, dλ6

dt = − ∂H
∂Em

and
dλ7
dt =− ∂H

∂ Im
, dλ8

dt =− ∂H
∂Se

, dλ9
dt =−∂H

∂ Ie
, the adjoint system is given by

(49)

λ̇1 =
(1+ Imk)λ1µ +(−1+ c1(t))Imα1(−λ1 +λ2)ρ

1+ Imk

λ̇2 =−W1 +β1(λ2−λ3)+λ2µ

λ̇3 =−W2 +dλ3 + γλ3 +bc2(t)(λ3−λ4)− γλ4 +λ3 µ− (−1+ c1(t))Smα2(λ5−λ6)ρ

λ̇4 =−δλ1−λ4(−δ −µ)

λ̇5 =−(1− c1(t))Ihα2λ6ρ−λ5(−c3(t)p−ξ − (1− c1(t))Ihα2ρ)

λ̇6 =−W3−β2λ7−λ6(−c3(t)p−β2−ξ )

λ̇7 =
−(1+ Imk)2(W4 +πθ(−λ8 +λ9)−λ7(c3(t)p+ ξ ))− (−1+ c1(t))Shα1(λ1−λ2)ρ

(1+ Imk)2

λ̇8 =−λ8(−c3(t)p−φ)−λ5φ

λ̇9 =−W5−λ9(−c3(t)p−φ)−λ7φ

with the conditions for transversality provided by λi(t f ) = 0 for i = 1 to

9. Using the optimality conditions ∂H
∂c1

= 0, ∂H
∂c2

= 0, ∂H
∂c3

= 0, we get,

c∗1 =
(ImShα1(−λ1+λ2)+IhSmα2(−λ5+λ6)+IhImkSmα2(−λ5+λ6))ρ]

(1+Imk)W6
,
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c∗2 =
bIh(λ3−λ4)

W7
, c∗3 =

p(Smλ5+Emλ6+Imλ7+Seλ8+Ieλ9)
W8

. Since 0≤ ci ≤ 1, we get,

(50)

c∗1 = min{max{0, (ImShα1(−λ1 +λ2)+ IhSmα2(−λ5 +λ6)+ IhImkSmα2(−λ5 +λ6))ρ]

(1+ Imk)W6
},1}

c∗2 = min{max{0, bIh(λ3−λ4)

W7
},1}

c∗3 = min{max{0, p(Smλ5 +Emλ6 + Imλ7 +Seλ8 + Ieλ9)

W8
},1}

Using (46), (49) and (50), the optimality system is given by

Ṡh = Ω− ρ(1− c∗1(t))α1ImSh

1+ kIm
−µSh +δRh, Ėh =

ρ(1− c∗1(t))α1ImSh

1+ kIm
− (β1 +µ)Eh,

İh = β1Eh− (γ +d +µ +bc∗2(t)) Ih, Ṙh = (γ +bc∗2(t)) Ih− (δ +µ)Rh

Ṡm = φSe−ρ(1− c∗1(t))α2IhSm− (ξ + pc∗3(t))Sm, Ėm = ρ(1− c∗1(t))α2IhSm− (β2 +ξ + pc∗3(t))Em

İm = β2Em +φ Ie− (ξ + pc∗3(t)) Im, Ṡe = Ψ−θπIm− (φ + pc∗3(t))Se, İe = θπIm− (φ + pc∗3(t)) Ie

λ̇1 =
(1+ Imk)λ1µ +(1− c∗1(t))Imα1(λ1−λ2)ρ

1+ Imk
, λ̇2 = β1(λ2−λ3)+λ2µ−W1

λ̇3 = dλ3 + γλ3 +bc∗2(t)(λ3−λ4)+λ3 µ +(1− c∗1(t))Smα2(λ5−λ6)ρ−W2− γλ4

λ̇4 = λ4(δ +µ)−δλ1, λ̇5 = λ5(c∗3(t)p+ξ +(1− c∗1(t))Ihα2ρ)− (1− c∗1(t))Ihα2λ6ρ

λ̇6 = λ6(c∗3(t)p+β2 +ξ )−W3−β2λ7, λ̇8 = λ8(c∗3(t)p+φ)−λ5φ , λ̇9 = λ9(c∗3(t)p+φ)−λ7φ −W5

λ̇7 =
(1+ Imk)2(πθ(λ8−λ9)+λ7(c∗3(t)p+ ξ )−W4)+(1− c∗1(t))Shα1(λ1−λ2)ρ

(1+ Imk)2

subject to the conditions (2) and λi(t f ) = 0 for i = 1 to 9. �

9. NUMERICAL ANALYSIS AND SIMULATION

9.1. Numerical analysis of stability theorems. In this section, simulation tests were per-

formed to confirm the conclusions reached through analysis. Simulations have been performed

on the proposed dengue model (1) to show local and global stability of the computed equilib-

rium points. For R0 < 1 and R0 > 1, the parameter values are chosen from table(5) and table(6),

respectively.
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FIGURE 10. (A) The LAS of Q0 of the dengue system (1) for R0 < 1, (B) GAS of

Q0 shown in (Sh− Sm− Se) space for R0 < 1, (C) The 3 D view of the convergence of

the Infected human population (Ih), Infected vectors population (Im) and infected egg

population (Ie) towards Q0 when R0 < 1, (D) The 3 D view of the convergence of the

Infected human population (Ih), Recovered human population (Rh) and infected vector

population (Im) towards Q0 when R0 < 1 , (E) The 3 D view of the convergence of

susceptible human population (Sh), susceptible vectors population (Sm) and susceptible

egg population (Se) towards Q0 when R0 < 1, (F) The 3 D view of the convergence of

susceptible vector population (Sm), Infected vectors population (Im) and infected egg

population (Ie) towards Q0 when R0 < 1



34 R.P. KUMAR, G.S. MAHAPATRA, R.D. PARSHAD, P.K. SANTRA

0 1000 2000 3000 4000 5000 6000 7000

Time t

0

20

40

60

80

100

120

140

160

P
o

p
u

la
ti

o
n

s

S
h

E
h

I
h

R
h

S
m

E
m

I
m

S
e

I
e

X 6897.37

Y 152.472

X 6962.38

Y 32.2316

X 6497.86

Y 10.033

X 6644.83

Y 35.5209

(A) (B)

(C) (D)

(E) (F)

FIGURE 11. (A) The LAS of Q1 of the dengue system (1) for R0 > 1, (B) GAS of

Q1 shown in (Sh− Sm− Se) space for R0 > 1, (C) The 3 D view of the convergence of

the Infected human population (Ih), Infected vectors population (Im) and infected egg

population (Ie) towards Q1 when R0 > 1, (D) The 3 D view of the convergence of the

Infected human population (Ih), Recovered human population (Rh) and infected vector

population (Im) towards Q1 when R0 > 1 , (E) The 3 D view of the convergence of

susceptible human population (Sh), susceptible vectors population (Sm) and susceptible

egg population (Se) towards Q1 when R0 > 1, (F) The 3 D view of the convergence of

susceptible vector population (Sm), Infected vectors population (Im) and infected egg

population (Ie) towards Q1 when R0 > 1
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The DFE point Q0(S0
h,E

0
h , I

0
h ,R

0
h,S

0
m,E

0
m, I

0
m,S

0
e , I

0
e ) whose stability both global and local

has been numerically simulated and depicted in figure (10). The DFE point is found to be

Q0(156.25, 0, 0, 0, 68.9434, 0, 0, 20.3169, 0) and R0 = 0.894728 < 1 using table (5). For

initial conditions of state variables near the equilibrium point Q0 in Θ, it is seen from the figure

(10)(A) that lim
t→∞

Sh(t)= S0
h = 156.25, lim

t→∞
Eh(t)=E0

h = 0, lim
t→∞

Ih(t)= I0
h = 0, lim

t→∞
Rh(t)=R0

h = 0,

lim
t→∞

Sm(t) = S0
m = 68.9434, lim

t→∞
Em(t) = E0

m = 0, lim
t→∞

Im(t) = I0
m = 0, lim

t→∞
Se(t) = S0

e = 20.3169,

lim
t→∞

Ie(t) = I0
e = 0 when ever the initial conditions are chosen in Θ. The necessary and sufficient

condition in theorem (3), namely B1 = 1.70659 > 0, B2 = 1.03521 > 0, B3 = 0.262404 > 0,

B4 = 0.0237132 > 0, B5 = 0.0000198898 > 0, B1B2B3 − B2
3 − B2

1B4 = 0.325664 > 0 and

(B1B4−B5)(B1B2B3−B2
3−B2

1B4)−B5(B1B2−B3)
2−B1B2

5 = 0.0131277 > 0 are satisfied.

Hence Q0 is LAS in Θ as per the theorem (3). According to figure (10)(B), the solution for

the initial conditions on the state variables Sh(t) , Sm(t) and Se(t) in Θ1 is (Sh(t),Sm(t),Se(t))

→ (S0
h,S

0
m,S

0
e) = (156.25,68.9434,20.3169) as t → ∞. With the initial conditions in Θ1, this

convergence may be confirmed for all feasible ordered triples out of the nine state variables. As

per theorem (5), Q0 is GAS in Θ1 when R0 > 1.

From figure (10)(C), it is noticed that the populations Ih(t),Im(t) and Ie con-

verges to I0
h = 0, I0

m = 0 and I0
e = 0 respectively as t → ∞ whenever the ini-

tial points of state variables belongs to Θ1. From the figures (10)(D), (10)(E),

(10)(F), it is seen that the state variables (Ih(t),Rh(t), Im(t)) → (I0
h (t),R

0
h(t), I

0
m(t)) =

(0,0,0), (Sh(t),Sm(t),Se(t)) → (S0
h(t),S

0
m(t),S

0
e(t)) = (156.25,68.9434,68.9434) and

(Sm(t), Im(t), Ie(t))→ (S0
m(t), I

0
m(t), I

0
e (t)) = (68.9434,0,0) as t→∞ respectively whenever the

initial populations belong to Θ1.

The global and local stability of the EE point Q1(S∗h,E
∗
h , I
∗
h ,R
∗
h,S
∗
m,E

∗
m, I
∗
m,S
∗
e , I
∗
e ) has been

simulated numerically and shown in figure (11). The EE point is found as Q1(152.472, 1.66891,

0.451144, 0.240764, 32.2316, 1.19083, 35.5209, 10.284, 10.033) and R0 = 8.94728 > 1 using

the values of parameter from table (6). Hence for different initial conditions coresponding

to state variables near the equilibrium point Q1 in ϒ, it is seen from the figure (11)(A)

that lim
t→∞

Sh(t) = S∗h = 152.472, lim
t→∞

Eh(t) = E∗h = 1.66891, lim
t→∞

Ih(t) = I∗h = 0.451144,

lim
t→∞

Rh(t) = R∗h = 0.240764, lim
t→∞

Sm(t) = S∗m = 32.2316, lim
t→∞

Em(t) = E∗m = 1.19083,
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lim
t→∞

Im(t) = I∗m = 35.5209, lim
t→∞

Se(t) = S∗e = 10.284, lim
t→∞

Ie(t) = I∗e = 10.033. In ad-

dition, the necessary and sufficient condition as stated in theorem (6), namely for

b1 = 3.12409, b2 = 3.98792, b3 = 2.66994, b4 = 1.00525, b5 = 0.21396, b6 = 0.0249967,

b7 = 0.00147221,we get |H1| = 3.12409 > 0, |H2| = 9.78867 > 0, |H3| = 16.9924 > 0,

|H4| = 10.1056 > 0, |H5| = 1.27002 > 0, |H6| = 0.018925 > 0, |H7| = 0.0000278617 > 0,

|H8|= 9.39119×10−10 > 0 are satisfied. Hence Q1 is LAS in ϒ as per the theorem (6). From

figure (11)(B), it is found that for any initial conditions of state variables Sh(t) , Sm(t) and Se(t)

in ϒ, the solutions (Sh(t),Sm(t),Se(t)) → (S∗h,S
∗
m,S
∗
e) = (152.472,32.2316,10.284) as t → ∞.

This property of convergence can be checked for all ordered triples of state variables with

the initial conditions in ϒ. As per the results of theorem (7), it is found that Q1 is GAS in ϒ

when R0 > 1. From figure (11)(C), it is seen that the populations Ih(t),Im(t) and Ie converges

to I∗h = 0.451144, I∗m = 35.5209 and I∗e = 10.033 respectively as t → ∞ when the initial state

variables belong to ϒ. Similarly from the figures (11)(D), (11)(E), (11)(F), it is seen that the

state variables (Ih(t),Rh(t), Im(t)) → (I∗h (t),R
∗
h(t), I

∗
m(t)) = (0.451144,0.240764,35.5209),

(Sh(t),Sm(t),Se(t)) → (S∗h(t),S
∗
m(t),S

∗
e(t)) = (152.472,32.2316,10.284) and

(Sm(t), Im(t), Ie(t)) → (S∗m(t), I
∗
m(t), I

∗
e (t))= (32.2316, 35.5209, 10.033) as t → ∞ respec-

tively whenever the initial populations belong to ϒ.

TABLE 5. parameter values for constructing figure (10)

Parameter Ω Ψ α1 α2 β1 β2 θ ρ φ µ γ d b ξ p π k δ c1 c2 c3

Value 10 10 0.0165 0.165 0.153 0.165 0.513 0.0165 0.452 0.064 0.271 0.201 0.163 0.093 0.201 0.271 1 0.5 0.103 0.184 0.2

TABLE 6. parameter values for constructing figure (11)

parameters Ω Ψ α1 α2 β1 β2 θ ρ φ µ γ d b ξ p π k δ c1 c2 c3

values 10 10 0.0165 0.165 0.153 0.165 0.513 0.165 0.452 0.064 0.271 0.201 0.163 0.093 0.201 0.271 1 0.5 0.103 0.184 0.2

9.2. Numerical analysis of control strategies. The system (1) is analysed numerically using

the parameters as in table (7). It is assumed that the recruitment rate of human population (Ω)

and the recruitment rate of Aedes Aegypti mosquitoes eggs per day (Ψ) are 500. The disease

transmission rates for human and vector populations, namely α1 and α2 are assumed as 10−6.
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The incubation period for dengue virus is of 5-7 days, the progression rate from exposed to in-

fected human population (β1) is assumed between 0.14-0.2, say 0.17. The extrinsic incubation

period say the progression rate from exposed to infected female Aedes Aegypti mosquito pop-

ulation is 8-12 days [1]. Hence the progression rate (β2) from exposed to infected compartment

is assumed between 0.08-0.125 say 0.1. The mean life time of humans is assumed as 68 years

and hence the human population natural mortality rate (µ) is assumed to be 1
68×365 which is ap-

proximately 4×10−5. The adult mosquitoes can live up to one month [76]. Hence the natural

mortality rate of adult mosquito (ξ ) is assumed as 0.04. Symptoms of dengue typically last 2–7

days and most people will recover after about a week [76]. Hence the natural recovery rate of

hosts from the infection (γ) is assumed as 0.14. The death rate due to disease (d) for humans is

assumed as 10−5. The humans who get recovered from dengue disease of a particular serotype

virus attains life time immunity but after 2 to 3 months reinfection with different serotype is

possible [77]. Hence the reinfection rate (δ ) is assumed to be between 0.0111-0.0167 say 0.01

approximately. The saturation factor (k) is assumed as zero. The effectiveness of the control

c2 say b is assumed as 0.5. The effectiveness of the control c3 say p is assumed as 0.7. A

mosquito egg develops into an adult mosquito in 9 to 12 days [78]. Hence the development rate

of Aedes Aegypti mosquito eggs (φ ) is assumed to be between 0.08-0.11 say 0.08. The vertical

transmission rate (π) of dengue virus in Aedes Aegypti mosquitoes is assumed to be 10−6. The

effective biting rate of mosquitoes ρ is assumed as 0.08

The figures 12 to 23 are constructed using the parameter estimated values as in table (7).

The initial population sizes are assumed to be Sh(0) = 107, Eh(0) = 50, Ih(0) = 10, Rh(0) = 10,

Sm(0) = 106, Em(0) = 50, Im(0) = 10, Se(0) = 104, Ie(0) = 5. The weights for the optimal

control analysis is assumed to be Wi = 0.01 and Wj = 100 for i = 1 to 5 and j = 6 to 8.

Figures (12)(A) and (12)(B) show that increasing disease transmission rates (α1 and α2) in

human and vector populations, respectively, increases the basic reproduction number relative

to unity. Hence, the endemic equilibrium is more stable, and the disease persists in society for

an extended period.
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TABLE 7. The estimated parameter values of system (1)

Parameters values source

Ω 500 Assumed

Ψ 500 Assumed

α1 10−6 Assumed

α2 10−6 Assumed

β1 0.17 [1]

β2 0.1 [1]

µ 4×10−5 Assumed

ξ 0.04 [76]

γ 0.14 [76]

d 10−5 Assumed

δ 0.01 [77]

k 0 Assumed

b 0.5 Assumed

p 0.7 Assumed

φ 0.08 [78]

θ 500 Assumed

π 10−6 Assumed

ρ 0.08 Assumed
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FIGURE 12. Variation of Basic Reproduction Number R0 with: (A) Human dis-

ease transmission rate, α1; (B) Vector disease transmission rate, α2; (C) Protec-

tion control c1; (D) Treatment control for human infection, c2; (E) Insecticide

spray control against mosquitoes, c3. Parameter values as per Table (7).
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Figures (12)(C)-(12)(E) show that a gradual increase in the rates of protection controls (c1),

treatment controls (c2), and insecticide spray controls (c3) against mosquitoes reduces the basic

reproduction number under unity, stabilizing the disease-free equilibrium and eradicating the

disease from society.

Figures (13)(A)-(13)(D) show that as disease transmission rates (α1 and α2) increase in the

human and vector populations, respectively, so do the infected populations (Ih and Im) in the

human and vector populations.
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FIGURE 13. Time series graphs of infected populations Ih and Im for varying

human disease transmission rate, α1, and vector disease transmission rate, α2.

Parameter values from Table (7).

It is found from figures (14)(A)-(14)(F) that the increase in the rate of the protection control

c1, treatment control c2 and insecticide spray control c3, results in a decrease in the infected

populations, namely Ih and Im among the human and vector populations, respectively.
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It is found from figures (15)(A)-(15)(B) that the increase in the saturation factor k, results in a

decrease in the infected populations, namely Ih and Im among the human and vector populations,

respectively.
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FIGURE 14. Time series graphs of infected populations Ih and Im for different

values of protection controls (c1), treatment controls for humans infected with

either serotype virus (c2), and insecticide spray control against mosquitoes (c3),

with parameter values as assumed from Table (7).

Figures (16)(A)- (16)(C) clearly show that controls, specifically protection controls (c1),

treatment controls for humans infected with either serotype virus (c2), and mosquito insecti-

cide spray control (c3), should be implemented early on to control the rapid spread of dengue

disease.
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From figure(17), it is obvious that when all controls are applied simultaneously, there is a

rapid decrease in the infected populations Ih and Im of human and vector populations, respec-

tively.
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FIGURE 17. Time series: (A) Ih with all controls, (B) Ih without controls, (C)

Im without controls. Parameters from Table (7).
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FIGURE 18. Time series of the infected population (A) Ih with implementing

the protection control, c1, (B) Im with implementing the protection control, c1

with the parameter values as assumed from table(7) .
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FIGURE 19. Time series of the infected population (A) Ih with implementing

the treatment control, c2, (B) Im with implementing the treatment control, c2

with the parameter values as assumed from table(7).
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the insecticide spray control, c3, (B) Im with implementing the insecticide spray

control, c3 with the parameter values as assumed from table(7).
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FIGURE 21. Time series of infected populations with protection control c1 and

treatment control c2: (A) Ih, (B) Im. Parameter values as per Table (7).
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FIGURE 22. Time series of infected populations: (A) Ih with protection control

c1 and insecticide spray control c3, (B) Im with protection control c1 and insecti-

cide spray control c3. Parameter values from Table (7).
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FIGURE 23. Time series of infected populations: (A) Ih with treatment control

c2 and insecticide spray control c3, (B) Im with treatment control c2 and insecti-

cide spray control c3. Parameter values from Table (7).

The numerical analysis of optimal control strategies for managing and mitigating dengue dis-

ease presents a comprehensive assessment of various intervention measures aimed at curbing

the rapid spread of this debilitating disease. Dengue, a mosquito-borne viral infection, poses

a significant public health challenge worldwide, making effective control strategies crucial in

reducing its impact on human populations. This section examines the outcomes of employing

protection controls (c1), treatment controls for infected humans (c2), and mosquito insecticide

spray control (c3), both independently and in combination, using the dynamic simulations de-

picted in the provided figures.

Effectiveness of Individual Control Strategies: Protection Control (c1):

Figure (18) illustrates the impact of implementing protection control measures. The time se-

ries graph demonstrates an apparent reduction in the infected human population (Ih) when pro-

tection controls are in place. By imposing quarantine measures, vaccinations, or other means to

shield susceptible individuals from exposure, the progression of the disease is notably hindered.

This emphasizes the significance of preemptive measures to protect vulnerable populations from

contracting the virus.

Treatment Control for Humans Infected with the Dengue Virus (c2):

The utilization of treatment control strategies is highlighted in figure (19). This graph unveils

a decrease in the infected human population (Ih) due to the timely and effective treatment of

individuals infected with the dengue virus. The treatment controls contribute significantly to
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curtailing the spread of the disease within the human population.

Mosquito Insecticide Spray Control (c3):

The impact of mosquito insecticide spray control is depicted in figure (20). The time series

graph reveals a decline in the infected mosquito population (Im) due to targeted insecticide

applications. Targeting the vectors responsible for disease transmission disrupts the mosquito-

human transmission cycle, thereby reducing the overall disease burden.

Synergistic Effects of Combined Control Strategies:

Figures (21), (22), and (23) explore the synergistic impact of employing two control strategies

simultaneously. These combinations demonstrate enhanced efficacy in disease control com-

pared to individual strategies.

Protection Control (c1) + Treatment Control (c2):

Figure (21) showcases the outcomes of combining protection and treatment controls. The

infected human population (Ih) experiences a pronounced decline, reinforcing that safeguarding

susceptible individuals and treating those infected are complementary strategies for effective

disease management. Protection Control (c1) + Insecticide Spray Control (c3):

The combination of protection and insecticide spray controls is investigated in figure (22).

This combination significantly reduces both infected human and mosquito populations (Ih and

Im), underscoring the importance of interrupting both human-to-human and human-to-mosquito

transmission.

Treatment Control (c2) + Insecticide Spray Control (c3):

Figure (23) illustrates the dynamic impact of employing treatment and insecticide spray con-

trols in tandem. The time series graph demonstrates a substantial reduction in infected popula-

tions (Ih and Im), indicating the effectiveness of targeting both vectors and infected individuals.

Conclusive Insights:

Collectively, the presented numerical analysis underscores the significance of early imple-

mentation of control strategies to mitigate the rapid spread of dengue disease effectively. The

synergistic effects observed in the combined strategy emphasize the importance of multifaceted
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approaches to combat this complex disease. The findings of this analysis provide valuable in-

sights for policymakers, healthcare professionals, and researchers striving to formulate compre-

hensive and targeted strategies for dengue disease control, ultimately contributing to improved

public health outcomes on a global scale.

10. CONCLUSION

In this research, a mathematical model for Dengue disease transmission with a saturated

incidence function among the human population and a bi-linear transmission function among

vectors has been formulated and studied. The vector population was divided into adult and

egg populations and considered to have vertical transmission among vector populations. The

human population reinfection component was added to the model. The fundamental properties

of the system, like non-negativity and uniform boundedness of solutions of the model (1), were

proved theoretically. The equilibrium points, namely the DFE and EE points, were found and

analysed for their existence. The basic reproduction number was determined as the average

number of new infections caused by one infected person in a population that is completely sus-

ceptible. The local and global stability of the equilibrium points is examined under particular

conditions. By computing the various sensitivity indices of highly sensitive parameters relative

to the basic reproduction number, the sensitivity analysis of the model is performed. Accord-

ing to bifurcation analysis, a stable endemic equilibrium coexists with an unstable disease-free

equilibrium point, where the bifurcation parameter is the disease transmission rate of the human

population (α1). Forward bifurcation occurs at R0 = 1. From an epidemiological point of view,

the dengue disease persists in the host population for a very long period of time, as per the

model (1). Parameter estimation is done, and used those values to perform simulations of the

system. The optimal control problem is framed and analysed as the optimal system for the ex-

istence of optimal controls, namely protection control, treatment control, and insecticide spray

control. The optimal controls are found theoretically and later simulated using the estimated

parameter values. The simulation of the model using some assumed values verified the theo-

retically proven results for the stability analysis. The simulation of the optimal control model

using the estimated values of parameters highlights the importance of implementing the optimal
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controls together at the initial stage of the spread of dengue disease among the susceptible hu-

man population. The model is analysed with only three control strategies, and the model can be

modified to investigate the control strategy of introducing a Wolbachia-affected female Aedes

aegypti mosquito among the vector population with different serotype infections and analyse

the disease transmission dynamics of the improved model.
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