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Abstract. Traffic analysis on highways at the macroscopic level is very similar to the analysis of the spread

of infectious diseases, namely the susceptible-infected-recover (SIR) model. We propose the SIR model with a

control variable. The dynamics with fixed control and stability of the model are analyzed. Sensitivity analysis was

also carried out. Variable control is applied as an effort to regulate or change the duration of the green light at an

intersection. We obtain an optimal control strategy when the control is time-dependent. Numerical results show

the positive impacts of implementing the control to susceptible vehicles and treatment for congested vehicles. We

have also done an efficiency analysis, which shows that control is more effective than without control.
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1. INTRODUCTION

Various studies and research have been conducted to improve the quality of traffic, one of

which is smooth travel without congestion. The microscopic approach in modelling urban traffic

is computationally consuming and requires large computations to calibrate the parameters [1].
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Meanwhile, traffic analysis on highways at the macroscopic level is very similar to the analysis

of the spread of infectious diseases, namely the susceptible-infected-recover (SIR) model. In

recent years, the classic model of SIR began to be used by some researchers to model the

dynamics of traffic congestion propagation. Some study results can be found in [1]-[4]. Wu

J. et al. in [2] have modelled traffic congestion that occurs at one node in a traffic system

network that can transmit/cause congestion at neighbouring points, and if not handled quickly,

gradually, the congestion can propagate to further nodes. The SIR model was used in [2] to

simulate the spread of bottlenecks quite well. Pu C et al. [3] also examined the spread of SIR

epidemics in traffic networks, observing the effects of several factors, namely load distribution

and homogeneity of load distribution. Network density or homogeneity will increase the spread

of epidemic jams. Meanwhile, in [1] the SIR model was proposed to represent the dynamics of

congestion propagation in a traffic network, and simulations were carried out for six different

metropolitan cities to obtain congestion distribution patterns at the macroscopic level. The

existence of a basic reproduction number (R0) for congestion spread in urban networks was

determined and is similar to that for the infectious disease model. Chen Y. et al.[4] examined

the spread pattern of traffic network congestion, which is important in network performance

analysis, namely by proposing an SIS-CP model based on virus transmission theory to model

density propagation patterns within large-scale networks. SIS-CP can best predict the ratio of

dense links during peak hours. The propagation of traffic jams in foggy weather situations was

modelled by Jiao Yao et al.[5] by combining the SIR model with cellular automata. The analysis

and simulations were able to give the best speed limit in foggy road conditions. Also, Chen K.

[6] established the SIR model with different scenarios on a road. Another way to reduce traffic

congestion is to provide real-time information on traffic conditions to vehicles on the road, with

a vehicle-to-vehicle communication process between vehicles. Indrakanti T. [7] proposed a

model for the propagation process of information received by vehicles based on the SIR model.

A research study by Ashfaq in [8] investigated congestion propagation in urban cities using the

SIR model with two macroscopic parameters: propagation rate and recovery rate. There are two

levels of traffic assignment model: link level flow and network level congestion pattern. It also
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investigates the dynamical congestion alternative approach model using the Reaction Diffusion

model, which involves a higher computational time.

The number of vehicles in major cities is increasing every year. This is not comparable to

the availability of highway capacity, which results in heavy traffic and congestion in various

places [9]. Looking at these conditions, effective solutions are needed to solve the problem

of traffic congestion, one of which is by improving traffic light management at intersections.

Traffic lights are generally used to regulate traffic in each lane to move in turns so as not to

cause congestion. However, problems often arise where improper traffic time settings can cause

very long vehicle queues. We observe that the number of vehicle arrivals and the duration of

traffic lights in one cycle often cause long queues of vehicles at the location of traffic lights.

Therefore, it is necessary to develop a model to regulate the duration of the red light so that

there is no increase in the number of queues at traffic intersections [9]. Based on previous

research mentioned, SIR is suitable for analyzing urban traffic congestion and can effectively

predict and infer the changing trend of congestion. To the best of the authors’ knowledge,

previous studies have not included variable controls in the model. In this study, we propose

adding variable control to the SIR model and then analyzing the stability of the model and the

existence of optimal control qualitatively. The simplified model concerning conditions on a

one-way (free-way) road section where there is an intersection with a traffic light at the end of

the section. During peak hours, a buildup of vehicles (congestion) occurs when the light is red

since the traffic-light cycle remains normal (constant) while the volume of vehicles increases

sharply. Variable control is applied as an effort to regulate or change the duration of the green

light by the traffic system operator. This paper will discuss the stability analysis of the optimal

control model of SIR and its controllability. Subsequent sections of this paper are organized

as follows. Section 2, the mathematical SIR model with control is introduced together with

basic considerations. The Boundedness and positivity of the solutions of the proposed model

are established followed by determining the equilibrium points and reproduction number are

discussed in Section 3. The analysis of model stability at equilibrium points is presented in

Section 4. In Section 5, we will discuss the optimum control characteristics. We performed
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numerical simulations in Section 6 to understand the positive impact of control and determine

the best strategy for managing traffic at the intersection. The conclusion is given in Section 7.

2. FORMULATION OF SIR MODEL WITH CONTROL

Consider the population of vehicles at time t ≥ 0 on a busy main road where traffic con-

gestion often occurs at the traffic light intersection. The number of vehicles (N) on the main

road is assumed constant and is divided into three sub-populations, namely, the population of

vehicles vulnerable to being affected by traffic jams denoted as S(t) or known as susceptible

compartment; then compartment I(t) is the number of vehicles that have been ’infected’, i.e.

vehicles that are caught in the traffic congestion; and lastly vehicles that have recovered, R(t),

are vehicles free from the congestion.

FIGURE 1. Proposed SIR Model with Control of Simple Traffic Congestion Pro-

cess

Vehicles arriving or entering the main road at peak rush hour become susceptible population

(S(t)) and are assumed to flow at an average rate α . The average transmission rate to the con-

gested vehicles, I(t), from the susceptible population, is denoted by the parameter β . A small

portion of susceptible vehicles on the main road exits the road at a rate λ1. At the intersection,

vehicles can turn left directly without stopping, thus exiting the congestion at a proportion rate

λ2. The proportion of green light in a single traffic-light cycle is denoted by δ . Once the green

light is on, vehicles leave (free) from the congestion state and transfer to R(t) at an average rate

γ . A small portion, θ , of the recovered vehicles may enter the main road again. The variable

control 0≤ u(t)≤ 1 is an intervention applied to adjust the duration of the green light to elim-

inate traffic congestion. The compartment diagram can be traced in Figure 1. Incorporating all
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the assumptions above, the differential equation system forms the SIR model as follows

dS
dt

= α−λ1S−βSI +θR

dI
dt

= βSI−λ2I− [u+(1−u)δ ]γI(1)

dR
dt

= [u+(1−u)δ ]γI−θR

with initial conditions S(0)≥ 0, I(0)≥ 0,R(0)≥ 0.

3. BOUNDEDNESS OF SOLUTIONS, EQUILIBRIUM POINTS AND BASIC REPRODUC-

TION NUMBER

We discuss the positivity and boundedness of the solutions, followed by the existence of the

equilibrium points of the system (1) for a fixed value of control parameter u. We also derive the

basic reproduction number when the control parameter is assumed fixed. From system (1), we

have

dS
dt

=−S (λ1 +β I)+α +θR≥−S (λ1 +β I) .

Integrating we get

S(t)≥ S (0)e
−

t∫
0
(λ1+β I)dt

≥ 0.

In a similar way we can obtain

I (t)≥ I (0)e−(λ2+k)t ≥ 0

and

R(t)≥ R(0)e−θ t ≥ 0.

Thus, we have shown that all variable solutions of the system (1) are positive. Now we will

prove the solutions are bounded [10]. Let λ =min(λ1,λ2) and k = [u+(1−u)δ ]γ . Summation

of the three equations of the system (1) gives dN
dt = α −λ1S−λ2I < α −λ (N−R), that is N

not bounded. To overcome this, we shift the system (1) along the S axis (see [11]). Here,

substitutions are made (S, I,R)→ (P, I,R) where P = S+ηR, thus the global properties of the

new system also apply to the system (1) and vice versa. Thus, system (1) became
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dP
dt

= α−λ1(P−ηR)−β (P−ηR)I +θR

dI
dt

= β (P−ηR)I−λ2I− [u+(1−u)δ ]γI(2)

dR
dt

= kI−θR

The phase space of system (2) is the quadrant R3
+ . The following theorem shows that system

(2) is well-posed therefore the same applies to system (1).

Theorem 1.

The region D =
{
(P, I,R) ∈ R3

+|P+ I +R≤ α

λ ∗
}

is a positively invariant set for system (2).

Proof. From the system (2), we can write N̂′= P′+ I′+R′, that is dN̂
dt =α−λ1P−(λ2−ηk) I−

(θ −λ1)ηR. Now let λ ∗ = min(λ1,(λ2−ηk) ,(θ −λ1)ηR). Thus, dN̂
dt < α −λ ∗ (P+ I +R),

integrate and evaluate limsup N̂(t) as t→ ∞ we obtain lim
t→∞

sup N̂(t)≤ α

λ ∗ . Therefore, solutions

of (2) are bounded and D is a positively invariant set. �

3.1. Equilibrium Points and Basic Reproduction Number. The existence of the equilib-

rium points can be determined from (1) by solving the relations dS
dt = 0, dI

dt = 0 and dR
dt = 0 or

written as

α−λ1S−βSI +θR = 0

βSI−λ2I− [u+(1−u)δ ]γI = 0(3)

[u+(1−u)δ ]γI−θR = 0

By solving (3) we obtained the congestion-free (non-endemic) equilibrium point (CFE) at E0 =(
S0, I0,R0)= ( α

λ1
,0,0

)
. When the system reaches the point E0, traffic congestion disappears.

Next, the basic reproduction number, R0, is defined as the number of secondary infections

or congested vehicles produced by a single congested vehicle in a completely susceptible pop-

ulation. We use the next-generation-matrix (NGM) [12], [13], FV−1, to find R0, where R0

is the spectral radius of matrix FV−1 at the equilibrium point, E0. In epidemic models, F is

a new infection transmission vector and the transition matrix V is the displacement between



ANALYSIS OF SIR MODEL WITH OPTIMAL CONTROL STRATEGY 7

compartments [14]. Here, F =
[
βS0]= [αβ

λ1

]
and

V−1 =

[
1

λ2 +[u+(1−u)δ ]γ

]
. Therefore, we can define the basic reproduction number for the system (1) as follows

R0 =
αβ

λ1 (λ2 +[u+(1−u)δ ]γ)
(4)

It is clear that R0 < 1 if and only if αβ < λ1 (λ2 +[u+(1−u)δ ]γ). From equations in (3) we

also determine the traffic congestion (endemic) equilibrium point: E∗ = (S∗, I∗,R∗) as follows.

Let k = [u+(1−u)δ ]γ , we have from (4), R0 =
αβ

λ1(λ2+k) . Thus, solving (3) we obtain

P∗ =
λ2 + k

β
+η

αk
θλ2

(1−R0)> 0, if R0 > 1 (endemic)

S∗ =
λ2 + k

β
> 0

R∗ =
αk
θλ2

(1−R0)> 0, if R0 > 1 (endemic)(5)

I∗ =
k

λ2
(1−R0)> 0, if R0 > 1 (endemic)

Clearly, R0 > 1 which means an endemic or traffic jam occur.

4. STABILITY ANALYSIS

Next, we shall investigate the stability at the congestion-free equilibrium point E0 =(
S0, I0,R0) = ( α

λ1
,0,0

)
for fixed control. The system (1) is linearized at E0, the Jacobian

matrix or variational matrix corresponding to system (1) is

J
(
E0)=


−λ1 −βS0 θ

0 βS0−λ2− k 0

0 k −θ

=


−λ1 −β

α

λ1
θ

0 β
α

λ1
−λ2− k 0

0 k −θ

(6)

The following result ensures the local stability of the model.

Theorem 2. If R0 < 1, then congestion free equilibrium point E0 is asymptotically stable and

if R0 > 1 then it is unstable.
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Proof. The characteristic roots or eigenvalues of the variational matrix J at E0 are

−λ1,(λ2 + k)(R0−1), and −θ . The matrix J
(
E0) have negative eigenvalues when R0 < 1

or when or αβ < λ1 (λ2 + k). Therefore, according to the Routh-Hurwitz stability criterium,

the equilibrium point E0 is locally asymptotically stable. Otherwise, if R0 > 1, then E0 is

unstable. �

Furthermore, we will prove the global stability ( [15] and [16] ) of the congestion free equi-

librium point.

Theorm 3. If R0≤ 1 than the congestion free equilibrium point E0 is globally asymptotically

stable.

Proof. Consider the following Lyapunov function defined and continuous for all S, I,R≥ 0,

L(S, I,R) = S0
(

S
S0 − ln

S
S0

)
+ I0

(
I
I0 − ln

I
I0

)
+R0

(
R
R0 − ln

R
R0

)
.

The function L satisfies ∂L
∂X = 1− X0

X for X = S, I,R. Then the derivative for the Lyapunov

function along the system (1) is as follows:

dL
dt

=

(
1− S0

S

)
dS
dt

+

(
1− I0

I

)
dI
dt

+

(
1− R0

R

)
dR
dt

.

After simplification and since α = λ1S0 , we have

dL
dt

= 2α−λ1S− α2

λ1S
− αθ

λ1S
R+

αβ

λ1
I−λ2I

= 2λ1S0−λ1S−λ1
S02

S
− αθ

λ1S
R−

(
λ2−

αβ

λ1

)
I

= λ1S0
(

2− S
S0 −

S0

S

)
− αθ

λ1S
R−

(
λ2−

αβ

λ1

)
I

= λ1S0
(

S
S0 −1

)(
S0

S
−1
)
− αθ

λ1S
R−

(
λ2−

αβ

λ1

)
I

Since S 6= S0 , then
(

S
S0 −1

)(
S0

S −1
)
< 0; and αβ

λ1
< λ2 < λ2 +k as R0 =

αβ

λ1(λ2+k) < 1. There-

fore dL
dt ≤ 0 if R0 ≤ 1. Further for S = S0,R = 0 and I = 0, the Lyapunov derivative function

dL
dt = 0. Based on the LaSalle invariant principle [17] and [18], this proofs that the free equilib-

rium point E0 is globally asymptotically stable �
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5. SENSITIVITY ANALYSIS

The basic reproduction number R0 also acts as initial congestion transmission. A normalized

sensitivity index is then determined to investigate the relative change of parameters (appeared

in R0) on the value of R0. This is used to measure which parameter that has the most impact on

R0. The normalized sensitivity index is defined as follows [14].

IR0
p =

∂R0

∂ p
× p

R0
,(7)

where p is the set of parameters, p = {α,λ1,β ,λ2,δ ,γ} From (7), we have IR0
α = IR0

β
= 1,

IR0
λ1

=− αβ

λ 2
1 [λ2 + k]

λ 2
1 [λ2 + k]

αβ
=−1 < 0

IR0
λ2

=−R0
λ1λ2

αβ
< 0

IR0
γ =−R0

kλ2

αβ
< 0

IR0
δ

=−R0
λ1 (1−u)γδ

αβ
< 0

Thus, parameters λ1,λ2,δ and γ have negative impact on R0, meaning as λ1,λ2,δ or γ in-

creases, then R0 decreases. Meanwhile, the parameters α and β have a positive impact. We

assume the parameter values are δ = 0.104,α = 0.4,λ1 = 0.1,β = 0.08,λ2 = 0.3andθ = 0.01.

By substituting fixed parameter values except for γ , we can analyze the normalized sensitivity

index of R0 towards the proportion rate of vehicles free from congestion, γ . It can be seen from

the graphic plotted in Figure 2b that γ = 0.5 is the threshold, when γ > 0.5, then R0 is < 1

meaning the road is always free from traffic congestion.
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(A) (B)

FIGURE 2. (a). Area R0 < 1 or R0 > 1 using combination α and λ2. (b) Graph

of R0 vs γ

In equation (4), as arrival rate α increases, R0 also increases, in other words, the curve of α

increases monotonically with respect to R0. Meanwhile in Figure 2a, the diagram shows how

combination of parameters α and λ2 that will produce R0 < 1 or R0 > 1. Next, we substitute fix

parameter values except α and u in the equation R0 = 1, and obtain α = 0.5+0.7476u. Figure

3 depicts how R0 can be determined by relying on α and u qualitatively. When α < 0.5 we can

see that R0 is always less than 1, meaning the free-way is always congestion-free.

(A) (B)

FIGURE 3. (a) R0 sensitivity diagram of parameter α(alpha) and control u with

threshold line R0 = 1. The colored area defines conditions with no traffic con-

gestion (free-flow). (b) The reproduction number reduces to 1 as the control

increases towards the maximum value of 1.

Figure 3(b) shows that when control u is applied then the reproduction number, R0, will

decrease until it reaches R0 = 1.



ANALYSIS OF SIR MODEL WITH OPTIMAL CONTROL STRATEGY 11

6. CHARACTERIZATION OF THE OPTIMAL CONTROL

The strategy of the optimal control is to minimize the number of population I(t), which is the

number of vehicles in the traffic congestion as well as the cost of implementing the control. We

assume the cost due to congestion is a nonlinear function of population I because the traffic jam

causes a sharp nonlinear cost from burning fuel and time lost during the bottleneck from each

vehicle. The cost to implement controlling the traffic light as a function of the effectiveness

is also assumed nonlinear. Thus, the aim of the optimal control problem is to minimize the

objective functional or cost function J(U) set as,

J (u) =
∫ t

0

(
mI2 +nu2)dt

where m and n are positive weight costs that relate to vehicles in the traffic congestion and the

implementation of control, respectively. Therefore, the optimal control problem is written as

minJ (u) =
∫ t

0

(
mI2 +nu2)dt

subject to system (1) with initial conditions S(0) ≥ 0, I(0) ≥ 0,R(0) ≥ 0, and u(t) ∈ U =

{0≤ u(t)≤ 1, t ∈ [0,T ]}, where terminal time T > 0.

Theorem 5. There exists an optimal solution u∗(t) such that J(u∗) = minJ(u) subject to

constraints of state variables system (1) with S(0)≥ 0, I(0)≥ 0,R(0)≥ 0, and u(t) ∈U .

Proof. The integrand of the objective functional J(u) is a convex function of u since n is posi-

tive. Furthermore, the control space U is a closed and convex region. We have J(u)≥ nu2, hence

there exists k1 = n≥ 0 and k2 ≥ 1 such thatJ(u)≥ k1‖u‖k2 The optimal control is bounded and

therefore there exists an optimal control u∗ that minimizes J(u) for t ∈ (0,T ). �

Apply the Pontryagin’s maximum principle To solve the optimal control problem we de-

fine the Hamiltonian function [19] which is the sum of the integrand of J(u) and the inner prod-

uct of the state function with the adjoint variables. The corresponding Hamiltonian is defined

as follows:

H(t) = mI2 +nu2 + zs
dS
dt

+ zI
dI
dt

+ zR
dR
dt

.(8)
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To obtain the optimal solution we use the following theorem.

Theorem 6. Consider optimal control u∗ and optimal solutions Ŝ, Î, R̂ of system (1) that min-

imizes J(u) over U . Then there exists adjoint variables zS(t),zI(t),zR(t) satisfying the co-state

system

dzS

dt
=−∂H

∂S
= zSλ1 +(zS− zI)β I

dzI

dt
=−∂H

∂ I
=−2mI +(zS− zI)βS+λ2zI +(zI− zR) [u+(1−u)δ ]γ(9)

dzR

dt
=−∂H

∂R
= (zR− zS)θ

with transversality condition given by:

zS(t) = zI(t) = zR(t) = 0.(10)

Thus, the optimal control is obtained

u∗ =
(z∗I − z∗R) Î (1−δ )γ

2n
.

Proof. Use Pontryagin’s Maximum Principle.

The Hamiltonian:

H(S(t), I(t),R(t),u(t),zS(t),zI(t),zR(t)) = mI2 +nu2 + zS(a−λ1S−βSI +λR)

+zI(βSI−λ2I− [u+(1−u)d]λ I)+ zR([u+(1−u)d]λ I−λR)

Differentiate the Hamiltonian with respect to each state variable, gives the co-state system (9):

dzS

dt
=−∂H

∂S
,
dzI

dt
=−∂H

∂ I
,
dzR

dt
=−∂H

∂R
.

There exists u∗ such that H
(
S∗, I∗,R∗,u∗,z∗S,z

∗
I ,z
∗
R
)
≤H

(
S∗, I∗,R∗,u,z∗S,z

∗
I ,z
∗
R
)

for all u(0,T )→

[0,1]. In this case, u∗ satisfies

∂H
∂u

∣∣∣∣
u∗
= 2nu∗− (z∗R− z∗I )(1−δ )γI∗ = 0.

Therefore, we obtain

u∗ =
(1−δ )γI∗ (z∗R− z∗I )

2n
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By using the property of the control space U , we have the following conditions. If ∂H
∂u < 0,then

u∗ = 0, conversely, if ∂H
∂u > 0 , at t, we take u∗ = 1. Therefore, we can rewrite in compact form

the optimal control variable by

u∗ = max
{

0,min
(

1,
(1−δ )γI∗ (z∗R− z∗I )

2n

)}
Here, (z∗I ,z

∗
R) is the solution of system (9), (10). �

7. NUMERICAL SIMULATION

In this section, we first simulate numerical results when the system (1) is without control,

there is forward bifurcation when R0 = 1, and plot results from sensitivity analysis. Further, we

simulate the dynamic system (1) with the control.

7.1. Simulation without Control. First, consider the basic reproduction number R0 in (4)

without control u, that is u = 0. Thus, we have I∗ = λ1(λ2+δγ)
λ2β

(R0−1). It is found that I∗ exists

if R0 ≥ 1. We can confirm this by plotting I∗ as a function of R0, where R0 varies. This is given

in Figure 4. It shows that there exists a forward bifurcation with R0 = 1 as the bifurcation point.

When R0 ≤ 1, we have I∗ = 0 i.e. there is no congestion, and when R0 ≥ 1, we get I∗ ≥ 0,

i.e. there is congestion with the number of vehicles in the congestion increases linearly as R0

increases.

FIGURE 4. A forward bifurcation diagram appeared in the system
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We can directly see from Equation (4) that decreasing the value of α or β , or increasing

the value of λ1,λ2,δ , or γ will reduce the number R0. This is confirmed in Figure 5. We can

observe that decreasing the value of α and β will reduce linearly the value of R0. Meanwhile,

increasing the value of λ1,λ2,δ , and γ will reduce the value of R0 exponentially

FIGURE 5. Plot of parameters versus the basic reproduction number.

To observe which parameter that has the most impact on R0, we calculate the normalized

sensitivity index, or elasticity index, that is defined as in (7). We present the bar plot in Figure

6 to compare the elasticity index for all parameters. It is found that parameters α,β ,λ1 have

most impact proportionally on R0, and followed by λ2. Thus, in order to control the congestion

maximally, we can reduce the number of susceptible vehicles entering the main road (that is

an interpretation of α), or reduce the transmission rate of the congested vehicles by keeping a

certain distance between the susceptible and infected vehicles (this is an interpretation of β ),

or increase the number of susceptible vehicles that exit the main road (this is an interpretation

of λ1). To do that in practice, for the case of α , we can add a traffic light on the main road

far before; for the case of β , we can add a road sign on the main road that says, for example,

be aware of the congestion ahead; for the case of λ1, some of the susceptible vehicles need to

move to the side road to exit the main road.
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FIGURE 6. Elasticity index of parameters.

Another way to observe the sensitivity of R0 is by plotting its contour plot where R0 acts

as a function of two parameters. The plots are presented in Figure 7. The figures show how

the behavior of R0 will change if two parameters are changed. Thus, by these figures, we can

observe how two treatments will affect simultaneously the congestion.

7.2. Simulation with Control. We implement the forward-backward sweep numerical ap-

proach [19] to solve the optimal control system. The fourth-order Runge-Kutta method is ap-

plied for solving the state system and the adjoint system. The parameter values δ = 0.104,γ =

0.5 are from the traffic condition at the intersection in [9]. The numerical simulation (Fig-

ure 8), when R0 < 1, confirms the analytical result of the non-endemic equilibrium point,

E0 =
(

α

λ1
,0,0

)
, in the case without the control (u = 0) where the remaining parameters are

assumed as follows: α = 0.4,λ1 = 0.1,β = 0.08,λ2 = 0.3 and θ = 0.01. The reproduc-

tion number is obtained R0 = 0.9091 ≤ 1. The initial conditions used are given as follows:

S(0) = 50, I(0) = 4,R(0) = 0. Here, the non-endemic (congestion-free) equilibrium point

E0 = (4,0,0) is reached at T = 300. Traffic congestion or endemic state can occur when

α increases, now assume α = 0.6 (see Figure 3(a)), thus, the reproduction number becomes

R0 = 1.3636 ≥ 1, meaning a traffic jam (endemic) occurs. By applying the control u(t) the

congestion is resolved faster compared to without the control. Figure 9 depicts the dynamics of

the number of congested vehicles,I, the recovered vehicles, R, and the variable optimal control,

u(t), for both cases with and without the control when T = 30 and T = 50, respectively. From
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(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)

FIGURE 7. Contour plot of the basic reproduction number as a function of two

parameters.
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(A) (B)

FIGURE 8. Non-endemic equilibrium

(A) (B)

(C) (D)

FIGURE 9. Dynamics of each state variables states in traffic congestion with and

without control, and the optimal control variable u(t).

the figures, we see that the optimal control u∗ that is extending the duration of green light is

effective for reducing traffic congestion.
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From Figure 9 it can be seen that the optimal control effectively reduces congestion faster,

when t = 5, the number of vehicles that are in a traffic jam is only below 5 compared to without

control the number is still above 17, thus, the intervention successfully reduces traffic conges-

tion with efficiency of around 75%. Conversely, the number of vehicles free from traffic jams

increased significantly at t = 5, which is R≈ 45 compared to without control R≈ 9. The value

of the control function u(t), at the beginning, reaches the maximum and then decreases once

vehicles in a congested state are recovered from the traffic congestion as shown in the plot for

R which reached the peak 45. Thus, the existence of optimal control is effective in reducing

congestion or vehicle buildup.

8. CONCLUSION

This paper deals with an SIR model with control for simple traffic congestion. A control on

the length of green light at a busy intersection has been used. The congestion-free equilibrium

point is locally asymptotically stable if the basic reproduction number R0 is less than 1 and is

unstable if R0 > 1. The optimal control problem is to minimize the vehicles in traffic congestion

and costs for implementation of the control. For the time-varying control problem, we discuss

its optimal control problem, including the existence and uniqueness of optimal control and its

solution. These problems are resolved by applying the optimal control theory. Numerical results

show the positive impacts of implementing the control to susceptible vehicles and treatment for

congested vehicles. We have also done an efficiency analysis, which shows that control is more

effective than without control. This work is theoretical modelling and it can be further justified

by using experimental results.
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