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Abstract. This article delves into the realm of HIV research, focusing on mathematical models utilizing Delay

Differential Equations (DDEs). Specifically, the study examines a distinct category of these models, emphasizing

the identification of the bifurcation parameter within DDEs to ascertain the steady state of the system. The anal-

ysis extends to incorporate variable constant delays, addressing the critical issue of system stability. The primary

objective is to establish a balanced condition by considering various factors such as local and global asymptotic

states, the bifurcation parameter, and its sensitivity. The study employs a comprehensive approach, taking into

account the intricate interplay of these factors to draw meaningful conclusions based on stability data. The inves-

tigation highlights the achievement of a disease-free equilibrium through the application of bifurcation analysis.

The article showcases the improvement of the global stability of this equilibrium, underscoring the significance

of the obtained results. By navigating through the complexities of HIV models using DDEs, this research con-

tributes valuable insights into understanding the dynamics of the disease, with potential implications for informing

intervention and treatment strategies.
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1. INTRODUCTION

Over time, numerous mathematical models have been employed to study human immunity

and the immune system’s reaction to HIV. Such a model tackles this problem from multiple

angles using DDE [1]. Both linear and nonlinear models are used in the implemented DDE

[2], with delay measures acting as an additional parameter. Cell kinds include susceptible,

immune, and infectious cells, among others, which are included in the additional parameter.

These models facilitate knowledge about HIV, how it spreads, and how to recover [3].

Consider the HIV model.

dv
dt

= UP− cV(1)

where c is the constant against V us variation and UP is the unknown virus production. Until

a mathematical model describes the virus population and its growth, the virus growth pattern

remains unclear. The model is used to measure the HIV growing population, and it is assessed

by

P = r−dP+aP(1− P
Pmax

)(2)

where r is the population growth rate for the subsequent generation of new HIV cells. The

population depth is represented by dP, and the maximum HIV-related death rate is represented

by aP, or the bifurcation.The human immune system is almost always predictable since it re-

sponds quickly to alien diseases and the P max represents the greatest amount of disease that

can spread in response to a critical attack on the immune system.

HIV [4] cannot spread since it is dependent on the health of the human immune system.

A copy of DNA is present in every virus cell, and these copies are dispersed throughout the

human immune system. Every human immune system acts as a host for the growth of viruses

in human cells. The infection ratio is calculated using the increase of the virus population, with

population P storing the greatest amount of virus growth. The virus’s evaluation section makes

use of the protein ratio present on the surface of human immune cells. Each HIV cell has an

RNA that changes into the DNA of an immune cell in order to multiply. After the conversion

of DNA, the virus started to multiply inside the host cell, producing more HIV cells. Although
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the procedure takes time to spread and convert, the spread ratio started to climb after the first

conversion.

Thus, the HIV growth chart is evident and has an impact on the immune system. The im-

mune system is compromised, which results in death. There are four phases from virus spread

to human mortality. Stage 1 addresses the introduction of the virus into the body using the

asymptotic steady state; Stage 2 addresses the transient using the bifurcation parameter; Stage

3 addresses the latency period using the parameter sensitivity; and Stage 4 addresses the spread

ratio using the optimal control mechanism.

Anti-narcotics, which offer stability and balancing support to enable disease prevention

against its overall spread, are a common component of current HIV therapy [5]. Anti-narcotics

methods such as chemotherapy, which use the bifurcation strategy to turn the infected cell into

a recovery cell, restrict the disease’s rapid development to prevent disease duplication cells. In

order to prevent HIV from spreading, a model is thus created to guarantee the time stability [6]

of the cell.

Utilizing the delay system principle, which determines the overall disease spread based on

input from the bifurcation technique, the disease spread is assessed [7]. The preventive med-

ication works as an encroachment between the plasma and its total concentration, eventually

diluting it in a week to maintain cell stability [8]. By assessing the disease cell spread ratio, sta-

bility is guaranteed and controlled during the early stages. When the previous phases are taken

into account as comparison measures, the ratio tends to slow down as a result of the therapy

that has been invoked. The stability varies according to the individual differences in the human

immune system. The triggered cell has the potential to kill itself or be destroyed inside the

individual as a result of this suppression. In order to eradicate the spreading virus, the plasma

count must be higher. The RNA plasma recovered throughout the therapeutic process has the

potential to destroy the spreading cells. Therefore, in order to invoke best practices for sup-

plying an overall immune system, the model needs to be more dynamic in order to grasp cell

activity and its growth phase. Collectively, these procedures fall under the category of effective

dynamic model deactivation of the infected cell.
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2. PROPERTIES OF DYNAMIC MODEL

The following requirements are met by the model that will be used: (i) stability; (ii) delay;

(iii) affected rate; and (iv) cure rate. The following equation is used to set the infection ratio for

the stability impact while proposing a model.

dP
dt

= s−dP+aP(1− P
Pmax

)−βPV +ρI(3)

dI
dt

= βPV − (δ +ρ)I(4)

dv
dt

= qI− cV(5)

where I stands for the infected cell, V for volume, and P for the total population. βPV, where

β is the infection rate, is the disease infection rate. The linear rate of virus spread is obtained

by calculating the density of infected cells with δ .

Delay systems find extensive application, particularly in the field of engineering science.

Variable discrete delays are used in this work to address DDE[9]. Based on the past and future

variables, DDE is classified as bounded and unbounded, with a variable or fixed time delay

that adapts to the changing state [10]. Such an application reflects the dynamics, control unit,

and machine processing mechanism. Time delays affect all of these systems, which results in

unstable systems and earlier performance [11], among other noteworthy harms brought on by

instability.

Time delay systems are typically evaluated for performance using DDE and adhere to dynam-

ics [12]. A stability lobe diagram, which evaluates the system’s stability in conjunction with

the control segment, is used to explain the stability flow of such a system. In order to address

this problem and preserve the stability of all control systems, more analytical and numerical

derivations are concentrated. The illness depth parameter and the disease spread speed are the

stability control parameters.

2.1. Disease spread speed. To classify stability based on its subdivisions, the stability criteria

are elaborated utilizing scalar and frequency domain methods. The shifted polynomial approx-

imation notion offers a novel method for analyzing the system by portraying stability through

the monodromy matrix. The rate of spread is measured using the delay parameter, where β and



ANALYSIS OF HIV-1 DYNAMICS 5

δ represent the spread rate and depth rate, respectively.

dP
dt

= s−dP+aP(1− P
Pmax

)−βP(t− i)V (t− i)+ρI(6)

dI
dt

= βP(t− i)V (t− i)− (δ +ρ)I(7)

dv
dt

= qI− cV(8)

The delay and spread of the virus are assessed using the frequency virus spreading ratio,

which is measured in relation to the general population. The non-infected cells are identified by

tracing their spread value. In the given equation, ti represents the ratio of times to infection in

relation to the total population. The variable i represents the time interval between an infected

cell and a non-infected cell, where i is a positive constant. The delay is also quantified by

employing ti words that fulfill the initial condition.

3. DISEASE DEPTH PARAMETER

The depth is quantified by measuring the illness depth relative to the uninfected cells. The

uninfected stage commences with the starting value θ . Therefore, P0, V0, and I0 represent the

beginning values of population, velocity, and the infection period respectively. These values

are established during the initial inspection phase to presume that the cells are devoid of any

viruses. The variable Bar calculates the ratio of infected cells based on its previously recorded

values of P̄0,V̄0, Ī0. In order to prioritize the state, the beginning and end values are closely

watched and the state is adjusted accordingly to ensure its stability.

Based on both local and global asymptotic states, the equilibrium is determined when assess-

ing cell stability. Define the equilibrium as E. Next, the measurements for the local and global

parameters are as follows:

E0 = P0,V0, I0(9)

E1 = P̄0,V̄0, Ī0(10)

Whereas the cell population is determined by

P0 = (
Pmax

2t
)(t−d +

√
(t−d)2 +

4ts
Pmax

)(11)
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P̄0 =
c(δ +ρ)

βρ
(12)

V̄0 = (
1
δ
)[s−dP̄0 +aP̄0(1−

P̄0

Pmax
)](13)

Ī0 = (
q
c
)V̄0(14)

Let us suppose the relation R, where the base stability ratio for the relation is P0
P̄0

. In stage

two, the freshly formed cells are observed and monitored using R. The ratio of non-infected

cells to infected cells is determined by such observation and monitoring. Using the relation R,

the change ratio is assessed. It calculates the total infection period by dividing the initial state

by the final state’s stability equilibrium change ratio.

Using the differential equation, the global bifurcation is measured, and the findings are ob-

tained based on the observation.

Lemma1: Let the relation R < i, E0 = P0,V0, I0 is set to be locally stable and when R > 1,

E0 = P0,V0, I0 is set to be globally stable.

Lemma2: Assume that the global and local variables are in a balanced form. P(t), V(t), and

I(t), where t is the temporal percentage that varies between the initial and final state variables,

are totally dependent on F > 0.

Taking into account Lemma 1 and Lemma 2, the following supposition is used to construct

Lemma 3.

(i) R > 1

(ii) (c+ δ+ρ +d-t+ 2tP̄
Pmax

)

(iii) (-d+t- 2tP̄
Pmax

)(c+ δ+ρ)+ β Ī(c+δ ) < 0

4. ENSURING DELAY METRICS IN HIV PREDICTION

R>1 and R<1 are used to evaluate stability, while the DDE model is used to evaluate the

disease-free equilibrium.

Lemma 1: The percentage of non-infected cells that become infected cells is known as the

conversion rate, and this rate is used to predict the disease. R<1 is used to measure asymptotic

stability, while R>1 is the unstable equilibrium.
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To validate the aforementioned prediction, a few negative solutions with the characteristics

that follow will be implemented.

∂1 = t−d−2t
P0

Pmax
(15)

The equilibrium E0 announces the disease identification proportion that provides the eigen

solution of the same using equation (15).

∂
2 +(δ +ρ + c)∂ + c(δ +ρ)−qβP0e−∂τ = 0(16)

The disease infection equilibrium τ

−ω + i(δ +ρ + c)ω + c(δ +ρ)−qβP0 cosωτ + iqβP0 sinωτ = 0(17)

In order to distinguish between the infected and noninfected cel1s, it is indicated by

−ω
2 + c(δ +ρ) = qβP0 cosωτ(18)

(δ +ρ + c)ω = −qβP0 sinωτ(19)

Squaring on both the equation (18) and (19) that results equation (20)

−ω
4 +[(δ +ρ + c)2 +2c(δ +ρ)]ω2 + c2(δ +ρ)2−q2

β
2P2

0 = 0(20)

The following quadratic functions with the following assumptions are the outcome when the

results are narrowed down.

T10 = (δ +ρ + c)2 +2c(δ +ρ)(21)

T20 = c2(δ +ρ)2−q2
β

2P2
0(22)

The eqn (20) is rewritten as

x2 +T10x+T20 = 0(23)

the quadratic equation’s coefficient by squaring T10, which is dependent upon the squaring of

T20. The outcomes attained include
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T10 = (δ +ρ + c)2 +2c(δ +ρ)> 0(24)

T20 = c2(δ +ρ)2−q2
β

2P2
0 = c(δ +ρ)[c(δ +ρ)+βP0][1−R](25)

The positive product of equation (24) is real, complex, and has the same sign. The equation

lacks genuine roots with a positive sign, and the negative sign reflects anything that is real

or negative. Ultimately, there isn’t a negative equilibrium like that. Thus, equation (24) and

equation (16) are equivalent.

5. BIFURCATION BREAKDOWN

The bifurcation breakdown is regarded as its parameter for assuring and assessing time delay,

and it is quantified using the time delay proportion τ . When discussing the delay proposition, it

is assumed that the equilibrium E, or stability parameter, has a value of R>1. E is regarded as

the stability equilibrium from which the following linear equation is derived.

∂
3 + t1∂

2 + t2∂ + t3 = e−∂τ(u1∂
2 +u2∂ +u3)(26)

The equation’s coefficients are shown by

t1 = c+δ +d− t +
2tP̄
Pmax

−ρ(27)

t2 = c(δ +ρ)+(c+δ +ρ)(d−a+
2tP̄
Pmax

−ρ)(28)

t3 = c(δ +ρ)+(d−a+
2tP̄
Pmax

−ρ)(29)

u1 = −β Ī(30)

u2 = −β Ī(c+δ )(31)

u2 = −β Ī(cδ )(32)

Assuming τ = 0, the characteristics align with the DDE equation, as demonstrated by Lemma

1’s assertion that all eigen values satisfy negative equilibrium. When equilibrium is reached

through local stability, the asymptotic stability satisfies τ = 0. Based on equilibrium stability, a

non-negative solution is not balanced when τ > 0. Thus, in order to support overall equilibrium,
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t1 > 0, t2 > 0, t3 > 0 will be followed by u1 > 0,u2 > 0,u3 > 0. The results demonstrate that

the result cannot be zero or negative, leading to the conclusion that the outcome must be non-

negative to maintain equilibrium.

−iω3− t1ω
2 + it2ω + t3(33)

−u1ω
2 cosωτ + iu2ω cosωτ +u3 cosωτ−

iu1ω
2 sinωτ−u2ω sinωτ + iu3 sinωτ

(34)

When the real and imaginary parts of the equation are separated, it is derived by

t3− t1ω
2 = (u3−−u1ω

2)cosωτ−u2ω sinωτ(35)

t2ω−ω
3 = u2ω cosωτ +(u3−u1ω

2)sinωτ(36)

The equation is transformed into a trigonometry function by squaring both sides, producing

ω
6 +(t2

1 −2t2−u2
1)ω

4 +(t2
2 −2t1t3 +2u1u3−u2

3)ω
2 + t2

3 −u2
3 = 0(37)

Assuming that z = ω2, the even power of ω is and the third order of equation is

z3 +m1z2 +m2z+m3 = 0(38)

where

m1 = t2
1 −2t2−u2

1(39)

m2 = t2
2 −2t1t3 +2u1u3−u2

3(40)

m3 = t2
3 −u2

3(41)

By squaring ω , which does not yield a positive imaginary solution, equation (37) has no

negative solutions. Lemma below supports the outcomes described before and satisfies the

condition

Lemma 1: The positivity of the real roots is verified under the condition that m1,m2, and m3

>= 0

Let us assume

z = h(z) = z3 +m1z2 +m2z+m3 = 0(42)
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Then the derivative with respect to z proves that h(z) = h
′
(z). As z>0 then h>0 and hence

prove that h
′
(z) which is also > 0. Therefore

h
′
(z) = 3z2 +2m1z+m(43)

where the lemma is proved since h(z) has no positive real roots.

The aforementioned lemma establishes the absence of ω in the case where iω is considered

the eigen value. Thus, it validates the thesis that states that when τ ≥ 0, all real eigen values

are negative. The following assumption results from the consolidation of the aforementioned

theorems and conclusions.

Assume that

a)m1,m2,m3 >= 0

b)R0 > 1

According to the first two assumptions, genuine positive values are guaranteed, and equilib-

rium stability is ensured. E is asymptotically stable based on delay τ ≥ 0.

When there is a delay, the assumption tends to meet both a) and b), where E is the equilibrium,

and such a delay has no effect on the asymptotic stability because delay is guaranteed by ≥0.

Assume that the delay is measured and tends to change, failing to satisfy the requirement

τ ≥ 0, if conditions a) and b) are not stable and do not respond to stability. When there is

instability, the outcomes often fluctuate.

Based on the restriction limz→∞ h(z) = ∞, the value of h(0) is likewise < 0 when m3 < 0.

This is because, in order to obtain the least positive root from the equation (37), the resultant

becomes ω =
√

z.

In this case, the outcomes with the least positive root are proven through the introduction of

bifurcation analysis.

Then the equation based on the stability condition it referred to

d
dt
(Reλ (P))P=P0 > 0(44)

Lemma 2: While considering we is the largest positive root then the equation is balanced

with iω(τ0) = iω0 satisfying the assumption ∂ (τ)+ iω(τ) is differentiated with τ as neighbour-

hood of τ0 .
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After analysis of the above differential equation by assuming h1,h2 and h3 are considered as

the root of the equation then f (h) = h3 +m1h2 +m2h = 0 with (m2 < 0) and h3 is the highest

positive value.

(
dh(x)

dt
> 0)(45)

Hence the above equation proof is omitted.

FIGURE 1. HIV virus infection rate vs time

The time correlation difference between the illness spread based on time is displayed in

Figure 1. These steps will help counter the non-infection and infection rates over time by

assuming the total number of virus cells.

As many models fail to address two parameters as valid aspects against disease wide spread,

Figure 2 provides a depiction of the spread of the disease without adopting an overall mathe-

matical model that suggests the virus growth rate with respect to acceleration and deceleration.

The entire population is represented by the x and y axes, and is used to assess how widely the

virus is spreading in comparison to its own spread.

Based on the evaluation of the overall population and the increasing virus spreading ratio,

Fig. 3 displays the predicted HIV growth spread.
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FIGURE 2. Disease spread ratio

FIGURE 3. HIV growth against population and infection

The infection ratio is determined by calculating it against a particular population and then

using the DDE mathematical model to address the rate of infection growth while taking into

account the equilibrium of virus stability and ignoring the possibility of negative outcomes

from growing virus volumes.
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FIGURE 4. Min and Max virus growth rate

FIGURE 5. Virus asymptotic growth rate

The Minimum and Maximum growth rates, as well as a clear explanation of the growth

stability study addressing the asymptotic phases of the viral spread and its classification, are

provided in Figure 4. This ensures that the virus grows at a faster pace than the population as a

whole.
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FIGURE 6. DDE HIV virus stability

The asymptotic stability rate of the viral growth versus population expansion is shown in

Figure 5. For Vim’s asymptotic growth rate, the results offer a trade-off analysis between virus

growth and DDE model analysis, with the goal of maintaining maximum stability. When em-

ploying the DDE model, asymptotic stability analysis is used to establish stability based on the

virus’s growth against its expanding population. Asymptotic stability checks for maximal pos-

itive are used to guarantee the relationship, which provides constant virus growth and a clear

analysis of its growth stability.

The stability comparison of a virus with an increasing population over time and an infection

rate is shown in Figure 6. The stability is guaranteed against the spread of viruses against the

population when these two coefficients are incorporated into the DDE model.

The stability against both the maximum and minimum rates of virus propagation is shown in

Figure 7, and asymptotic stability is guaranteed based on the estimated growth and population

size.

Bifurcation analysis is shown in Figure 8 to ensure stability by meeting equation (37). By as-

sessing the viral population growth using the breakdown of the bifurcation analysis, the stability

condition of the results is thus concluded.
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FIGURE 7. Virus Spread Rate with its Stability

FIGURE 8. Bifurcation Breakdown

6. CONCLUSION

In conclusion, this research article delves into the crucial aspect of stabilizing HIV viral

growth through the utilization of DDE’s bifurcation parameter. The primary focus is on creating

a steady state that not only prevents the occurrence of an overall delay but also guarantees

stability in the growth rate of the virus. By incorporating both local and global characteristics,
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the study aims to establish equilibrium conditions that ensure not only the stability of the system

but also a disease-free state.

One of the key contributions of this research lies in its exploration of how DDE’s bifurcation

parameter can effectively manage the dynamics of HIV viral growth. Bifurcation analysis is

a powerful tool in understanding the behavior of complex systems, and in the context of this

study, it proves instrumental in achieving stability without compromising the overall growth

rate. The utilization of DDE’s bifurcation parameter allows for a nuanced examination of the

system’s behavior, enabling researchers to identify and address potential instabilities.

The study emphasizes the importance of considering both local and global characteristics

when analyzing the stability of HIV viral growth. Local characteristics provide insights into

the immediate environment surrounding the virus, while global characteristics offer a broader

perspective, taking into account the interactions and influences that extend beyond immediate

surroundings. By comprehensively accounting for these factors, the research ensures a more

holistic approach to understanding and managing HIV dynamics.

The establishment of equilibrium conditions is a pivotal aspect of the research findings.

Achieving equilibrium is critical in maintaining stability in the system. The study not only

identifies equilibrium points but also demonstrates their effectiveness in ensuring overall stabil-

ity. The emphasis on both local and global characteristics in determining equilibrium conditions

further enhances the robustness of the proposed model.

Furthermore, the outcomes of the research guarantee global stability, which is a significant

achievement in the context of HIV viral growth management. Global stability implies that the

system remains stable across a range of conditions, reinforcing the resilience of the proposed

approach. The attainment of a disease-free equilibrium is another noteworthy outcome, signi-

fying the potential to control and manage the virus without the occurrence of new infections.

A distinctive aspect of the research is its exploration of asymptotic bifurcation analysis and

its implications. The failure of asymptotic bifurcation analysis, as indicated by the study, sheds

light on the limitations and challenges associated with certain analytical approaches. This
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recognition of the method’s shortcomings is valuable for future research, guiding scholars to-

wards more effective tools and methodologies in understanding and managing the complexities

of HIV dynamics.

In summary, this research article significantly contributes to the field by offering a compre-

hensive analysis of stabilizing HIV viral growth through the innovative use of DDE’s bifurcation

parameter. The study’s emphasis on both local and global characteristics, the establishment of

equilibrium conditions, and the guarantee of global stability and disease-free equilibrium col-

lectively position it as a valuable resource in advancing our understanding of HIV dynamics

and exploring effective strategies for its management. The acknowledgment of the limitations

of asymptotic bifurcation analysis further underscores the need for ongoing research and the de-

velopment of more robust analytical tools in the quest for effective solutions to the challenges

posed by HIV.
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