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Abstract. Most epidemiological studies prefer to rely on differential systems because of their mathematical

tractability, however, in addition to the need to control modeling framework that takes into account factors of

interconnections, there is also a need to rely on the practical pulsed controls. For that, we define first a susceptible-

immunized-infected-removed (SVIR) multi-region control differential system, then we explain how this problem

is reformulated after the introduction of discrete impulse controls via the compartment of the V variable and that

is associated to the example of the immunization policy whose goals can be reached either by following those who

recommend the application of discrete-time awareness seasonally or those who advise to use some potentially ef-

fective antiviral medications. Then, we characterize our sought optimal controls in the multi-region impulse case.

Finally, we take the example of three interconnected regions and conclude that prompt control measures are not

always necessary as we observe that even when their values are not that significant in the first six weeks, there is a

decrease in infection and which may be also due to natural immunity and that could lead to some herd immunity
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later enhanced by impulse controls for other months. We also discuss in the end, the pandemic crisis scenario when

impulse closure policies are needed to enhance the effectiveness of the impulse immunization strategy.

Keywords: multi-region model; impulsive differential model; impulsive control; immunization; closure policy.
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1. INTRODUCTION

1.1. Impulsive control: Literature limitations and recent developments. When compared

to conventional strategies, the immunization pulse strategy has the potential to eradicate some

epidemics at relatively low vaccination rates through either awareness campaigns or potentially

efficient medical interventions like vaccines or antiviral drugs. This potential was theoretically

demonstrated and investigated very early by Shulgin et al. in [1] and Agur et al. in [2]. The

efficiency and significance of such vaccination regimens were examined by the authors in the

first mentioned reference and also in [3], and more recently in the paper of Yang and Xiao [4]

where the authors discussed the effectiveness and importance of such immunization programs

by referring to many theoretical and applicable results in literature, as in the case of poliomyeli-

tis studied by De Quadros et al. [5], or in the case of measles treated by Albert Bruce Sabin in

[6].

Many mathematicians have been interested in the study of the complexity of epidemic mod-

els in the presence of impulsive vaccination, for example see Zhou and Liu in [8], Nistal et

al. in [7], Zhao Zeng with Sun Chen in [9] and again with Hua Sun in [10]. However, there

have been only very few studies that tried to develop from these studies and suggest a math-

ematical framework that could help to find optimized impulse interventions. In fact, optimal

control procedures have proven to be very good candidates in such development when they

have been subjects to continuous-time systems as in [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],

or discrete-time systems as in [22, 23, 24, 25], or even stochastic systems as in [26, 27, 28], but

there have been only very few initiatives as in [29] with a numerical method for the impulsive

control case, or as in [30] where the authors proved an impulse version for the application of

optimal control in an example of epidemic control model with short-term immunity. This is

not to say that limitations of this topic in literature would leave researchers not interested in

developing the theoretical framework of the optimal impulse control and that in our opinion,
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has an important potential to get involved in the resolution of many real-world problems that

are described with hybrid equations. In fact, just very recently, Hugo Leiva published a paper

about optimal control of nonlinear impulsive differential equations [31], and this makes a good

sign for more development of this context that has been lacking in research for many years.

1.2. Multi-region control modeling: Treated cases and goal of the paper. Recent multi-

region models have been interested in the study of the infection spread at large geographical

scales either by using discrete-time multi-region control systems as in [32, 34, 35, 36, 37, 38,

39, 40, 41, 43, 44] or deterministic continuous-time multi-region control systems as studied in

the cases of HIV/AIDS and Ebola [33, 42], or more recently with the stochastic multi-region

control systems [26, 28]. Nevertheless, the authors in [45] saw that despite the many forms of

the control policies in literature, this is not enough as any strategy would fail if there is no serious

focus on the health educational system. In the same context, no control approach has been

suggested to study the same phenomena in the more realistic case, namely when the controls

are introduced as discrete pulses, because as we have just explained above and before talking

about the interconnected regions, there is a lack of such control frameworks even if we consider

just one region within itself. In front of this problem, we try here to benefit from the research

initiated in [30] and we contribute to its development by considering now the multi-region

impulse case. In order to reach our goal, we first consider a multi-region susceptible-infected-

removed (SIR) epidemic model with an additional compartment to represent the immunized

population. Since our controls are introduced in discrete times and the state dynamics are based

on a continuous-time system, the proposed model becomes in the form of an S-Immunized-

IR (SVIR) differential hybrid system where the V variable is associated to the immunization

pulsed policy that can be achieved either by applying discrete-time awareness or by using some

potentially effective antiviral medications.

As described in the epidemic control systems [17, 22, 30], or as in [46] for the case of

COVID-19 where the authors reported that there is still no proper vaccine that is necessarily

100% effective, and people may get reinfected if the virus induced short-term immunity. As a

different modeling approach to the SIRS framework as in [22] and where people in the removed

class can move again to the susceptible one, we suppose here in our multi-region model that the



4 IMANE ABOUELKHEIR, FADWA EL KIHAL, ILIAS ELMOUKI

impulse immunization policy could only lead to temporary immunity as in [30], and then people

in the immunized class are not moving to the removed class as we could not be sure about the

effect of control as just explained and we suppose then it is very limited when it about recovery.

In fact, only the natural immunity that is prioritized and taken into account here for moving

to the R compartment, while the pulsed immunization discrete functions are only responsible

for controlling the infection spread between regions. Thus, we proceed by using a hybrid ver-

sion of Pontryagin’s maximum principle in order to find our optimal impulse controls. Finally,

we apply the hybrid regression-progressive iterative schemes first suggested in [30] in order to

generate numerical simulations of our example.

Our paper is organized as follows, the theoretical modeling framework is defined in section

2., while the impulse control procedure that enables us to characterize our optimal impulse

controls, is presented in section 3. Finally, we provide a numerical example in section 4.

2. MULTI-REGION CONTROL MODEL WITH SHORT-TERM IMMUNITY

2.1. Model description in continuous-time case. In this part, we consider a multi-region

epidemic control model where the vaccination strategy is described using a constant parameter

and it has a limited effect on people who receive it.

We need first to define the following four compartments

· SΩ j : the number of individuals in Ω j who are susceptible people to infection or who are not

yet infected,

· V Ω j : the number of susceptible people in Ω j and who are temporary immunized so they can

not move to the removed class due for example to the limited effect of vaccine [22, 30],

· IΩ j : the number of infected people in Ω j and who are capable of spreading the epidemic to

those in the susceptible and temporary controlled categories,

· RΩ j : the number of removed people from the epidemic in Ω j.

For all t belonging to an interval [0,T ] and when the immunization policy is only presented

by a constant parameter of control θ , the model takes the form of the following differential

system
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(1)



ṠΩ j(t) = Π j(t)−
p

∑
k=1

β jkSΩ j(t)IΩk(t)−aθ jSΩ j(t)−µ jSΩ j(t)

V̇ Ω j(t) = aθ jSΩ j(t)−bβ j jV Ω j(t)IΩ j(t)−µ jV Ω j(t)

İΩ j(t) =
p

∑
k=1

β jkSΩ j(t)IΩk(t)+bβ j jV Ω j(t)IΩ j(t)− γ jIΩ j(t)−µ jIΩ j(t)

ṘΩ j(t) = γ jIΩ j(t)−µ jRΩ j(t)

with initial conditions SΩ j(0) = SΩ j
0 > 0, V Ω j(0) = V Ω j

0 ≥ 0, IΩ j(0) = IΩ j
0 ≥ 0 and RΩ j(0) =

RΩ j
0 ≥ 0 and where Π j(t) = µ jNΩ j(t) with NΩ j(t) = SΩ j(t)+V Ω j(t)+ IΩ j(t)+RΩ j(t), giving

the newborn people.

aθ (0≤ a≤ 1) is the fraction of controlled people with ”a” modeling the reduced chances of

a susceptible individual to be controlled.

Also, β j j =
κ j j

N(t) with κ j j the infection transmission rate in Ω j, µ j is the natural death rate,

bθ j (0≤ b≤ 1) is the infection transmission rate even in the presence of θ j with ”b” modeling

the reduced chances of a temporary controlled individual to be infected, and γ j is the recovery

rate.

The population size N is constant because ṄΩ j(t) = ṠΩ j(t)+ V̇ Ω j(t)+ İΩ j(t)+ ṘΩ j(t) = 0,

hence, Π j(t) = Π j = µ jN
Ω j
0 knowing that NΩ j(0) = NΩ j

0 .

We note that θ j = 0 will denote no immunization and θ j = 1 will denote the use of immu-

nization having of an initial number of susceptible people S(0).

2.2. Model formulation in impulsive-time case. Let t1, t2, ..., tn be the times at which the

new immunization is followed. n is for example the total number of vaccines utilized.

Let the immunization strategy to be described now using a control function of time θ j(t).

The continuous-time model in (1) is now converted to the following hybrid system with impulse

immunizations

(2)



ṠΩ j(t) = Π j−
p

∑
k=1

β jkSΩ j(t)IΩk(t)−a
n

∑
i=1

δ (t− ti)θ j(t)SΩ j(t)−µ jSΩ j(t)

V̇ Ω j(t) = a
n

∑
i=1

δ (t− ti)θ j(t)SΩ j(t)−bβ j jV Ω j(t)IΩ j(t)−µ jV Ω j(t)

İΩ j(t) =
p

∑
k=1

β jkSΩ j(t)IΩk(t)+bβ j jV Ω j(t)IΩ j(t)− γ jIΩ j(t)−µ jIΩ j(t)

ṘΩ j(t) = γ jIΩ j(t)−µ jRΩ j(t)
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where δ (t− ti) is the Dirac-delta function. Thus, we understand the following conditions.

If t 6= ti ∀i, then the system (2) is changed to:

(3)



ṠΩ j(t) = Π j−
p

∑
k=1

β jkSΩ j(t)IΩk(t)−µ jSΩ j(t)

V̇ Ω j(t) = −bβ j jV Ω j(t)IΩ j(t)−µ jV Ω j(t)

İΩ j(t) =
p

∑
k=1

β jkSΩ j(t)IΩk(t)+bβ j jV Ω j(t)IΩ j(t)− γ jIΩ j(t)−µ jIΩ j(t)

ṘΩ j(t) = γ jIΩ j(t)−µ jRΩ j(t)

and

If t = ti ∀i, then we can obtain the following equations

(4)



SΩ j(t+i ) = SΩ j(ti)−aθ j(ti)SΩ j(ti)

V Ω j(t+i ) = V Ω j(ti)+aθ j(ti)SΩ j(ti)

IΩ j(t+i ) = IΩ j(ti)

RΩ j(t+i ) = RΩ j(ti)

where ti representing the immunization time and θ j(ti) the impulse control at this time, while

SΩ j(ti) = SΩ j(t−i ), V Ω j(ti) = V Ω j(t−i ), IΩ j(ti) = IΩ j(t−i ) and RΩ j(ti) = RΩ j(t−i ) are defined as

the old numbers of susceptible, immunized, infected and removed people respectively, while

SΩ j(t+i ), V Ω j(t+i ), IΩ j(t+i ) and RΩ j(t+i ) defining these same numbers just after ti. Thus, (4)

means we have abandoned the old immunization and used a new immunization for the number

of susceptible people S(ti).

3. OPTIMAL IMPULSE IMMUNIZATION CONTROL APPROACH

3.1. Theoretical framework. At time t and for j = 1, ..., p, let define for every region Ω j, the

following state and control variables

xΩ(t) = xΩ j(t) =


SΩ j(t)

IΩ j(t)

RΩ j(t)


θ Ω(t) = θ Ω j(t) = θ j(t).

In this part of paper, we define our objective by determining the optimal values of the impulse
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control θ j(ti) that minimizes a given criterion, but before this, we present hereafter the theoret-

ical steps for reaching this goal.

Based on results in [47], we try here to derive an analogous necessary conditions of optimality

that will be associated to our particular form of the impulsive system (2).

We start then first by presenting a general formulation of our optimal control problem that

can be adapted to the form (3)-(4) as follows

(5) min
n,ti,θ j(ti)

∫ T

0
F(t,xΩ j(t))+

n

∑
i=1

G(xΩ j(t−i ,θ j(ti), ti))+φ(xΩ j(T+))

subject to

ẋΩ j(t) = f (t,xΩ j(t)), t 6∈ {t1, ..., tn}

xΩ j(t+i )− xΩ j(t−i ) = g(xΩ j(t−i ,θ j(ti), ti)), i ∈ {1, ...,n}

xΩ j ∈RN ,θ j(ti) ∈Θ j, xΩ j(0−) = xΩ j
0 , ti ∈ [0,T ]

where xΩ j is the state variable, a piece-wise continuous function of time, and θ j(ti) is the im-

pulse control variable.

n is the number of pulses, ti is the instant of the ith pulse and t−i , t+i are the instants just

before and after the impulse, (i.e. xΩ j(t−i ), xΩ j(t+i ) represent the first and second limit sides

of xΩ j respectively). The final time is noted T > 0 while T+ is the instant that comes just after T .

The system gain is given by F(t,xΩ j(t)), G(xΩ j(t−i ,θ j(ti), ti)) is the gain function asso-

ciated to the ith pulse, and φ(xΩ j(T+)) is the final cost function associated to the system just

after T .

Finally, f (t,xΩ j(t)) is the continuous change of the state variable through time between

pulses points and g(xΩ j(t−i ,θ j(ti), ti)) is the function that represents the instantaneous or finite

change of the state variable when there is a pulse.

We admit that Θ j is bounded convex control set, and we impose that F, f ,g and G are con-

tinuously differentiable functions in xΩ j on RN and in θ j(ti) on Θ, φ(xΩ j(T+)) is continuously

differentiable in xΩ j(T+) on RN ,and that g and G are continuous on t. Finally, when there is no

pulse, i.e. θ j(ti) = 0, we assume that g(x(t),0, t) = 0 for all x and t.
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Consider the Hamiltonian function defined by

HΩ j(t,xΩ j(t),λ j(t)) = F(t,xΩ j(t))+λ j(t)T f (t,xΩ j(t))

and the impulse Hamiltonian function defined by

HI
j(t,x

Ω j(t),θ j(ti),λ j(t)) = G(t,xΩ j(t),θ j(ti))+λ j(t)T g(t,xΩ j(t),θ j(ti))

where λ j(t) represent the adjoint state variable.

As we have defined the general formulation of our objective that can be associated to the

form of impulsive system (2), we follow similar steps as in [48, 49, 50] to obtain the following

theorem which states the necessary conditions of optimality associated to our special case of

optimal impulse control problem (5).

Theorem 3.1.1. Let (xΩ j∗(t),n, t∗1 , ..., t
∗
k ,θ

∗
j (t1), ...,θ

∗
j (tk)) be optimal solutions of the mini-

mization problem (5), then there exists an adjoint variable such that the following conditions is

satisfied

λ̇ j(t) = −∂HΩ j

∂xΩ j
(t,xΩ j∗(t),λ j(t)).(6)

In the points of pulse, we have

(7)
∂HI

j

∂θ j(ti)
(t∗i ,x

Ω j∗(t∗−i ),θ j(ti),λ j(t∗+i ))(θ j(ti)−θ
∗
j (ti))≤ 0,

λ j(t∗+i )−λ j(t∗−i ) =
∂HI

j

∂xΩ j
(t∗i ,x

Ω j∗(t∗−i ),θ ∗(ti),λ (t∗+i ))(8)

3.2. Optimal impulse control problem. As the most evident objective in such cases of epi-

demic control as done for models in [17, 22], we aim also here to minimize the number of

infected people while minimizing the cost of immunization, we define the objective function to

be minimized as

J(θ j) =
∫ T

0
A jIΩ j(t)dt +

n

∑
i=1

B j

2
θ

2
j (ti)(9)

In other words, we are seeking an optimal control θ ∗ such that

J(θ ∗j ) = min{J(θ j)/θ j ∈Θ j}
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with

Θ j([0,T ]) = {θ j(ti) measurable|06 θ j(ti)6 1, ti ∈ [0,T ]}

subject to

(10)



ṠΩ j(t) = Π j−
p

∑
k=1

β jkSΩ j(t)IΩk(t)−a
n

∑
i=1

δ (t− ti)θ j(ti)SΩ j(t)−µ jSΩ j(t)

V̇ Ω j(t) = a
n

∑
i=1

δ (t− ti)θ j(ti)SΩ j(t)−bβ j jV Ω j(t)IΩ j(t)−µ jV Ω j(t)

İΩ j(t) =
p

∑
k=1

β jkSΩ j(t)IΩk(t)+bβ j jV Ω j(t)IΩ j(t)− γ jIΩ j(t)−µ jIΩ j(t)

ṘΩ j(t) = γ jIΩ j(t)−µ jRΩ j(t)

S0,V0, I0,R0 given

06 θ j(ti)6 1

Or, our optimal pulse control problem can be stated as follows

min
θ j∈Θ

{∫ T

0
A jIΩ j(t)dt +

n

∑
i=1

B j

2
θ

2(ti)

}
sub ject to

ṠΩ j(t) = Π j−
p

∑
k=1

β jkSΩ j(t)IΩk(t)−µ jSΩ j(t)

V̇ Ω j(t) =−bβ j jV Ω j(t)IΩ j(t)−µ jV Ω j(t)

İΩ j(t) =
p

∑
k=1

β jkSΩ j(t)IΩk(t)+bβ j jV Ω j(t)IΩ j(t)− γ jIΩ j(t)−µ jIΩ j(t)

ṘΩ j(t) = γ jIΩ j(t)−µ jRΩ j(t) when t 6= ti

and

SΩ j(t+i ) = SΩ j(ti)−aθ j(ti)SΩ j(ti)

V Ω j(t+i ) =V Ω j(ti)+aθ j(ti)SΩ j(ti)

IΩ j(t+i ) = IΩ j(ti)

RΩ j(t+i ) = RΩ j(ti) when t = ti

SΩ j
0 ,V Ω j

0 , IΩ j
0 ,RΩ j

0 given

06 θ j(ti)6 1

In order to resolve this problem, we follow these steps.
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We construct the Hamiltonian H without control as the function defined as

HΩ j(SΩ j(t),V Ω j(t), IΩ j(t),RΩ j(t),λ1, j(t),λ2, j(t),λ3, j(t))

= A jIΩ j(t)+λ1, j(t)(Π j−
p

∑
k=1

β jkSΩ j(t)IΩk(t)−µ jSΩ j(t))−λ2, j(t)(bβ j jV Ω j(t)IΩ j(t)+µ jV Ω j(t))

+λ3, j(t)(
p

∑
k=1

β jkSΩ j(t)IΩk(t)+bβ j jV Ω j(t)IΩ j(t)− γ jIΩ j(t)−µ jIΩ j(t))+λ4, j(t)(γ jIΩ j(t)−µ jRΩ j(t))

and the impulse Hamiltonian function H p,Ω j defined as

H p,Ω j(SΩ j(t),V Ω j(t), IΩ j(t),RΩ j(t),θ j(ti)) =
B j

2
θ

2
j (ti)−aλ1, j(t+)θ j(t)SΩ j(t)

+aλ2, j(t+)θ j(ti)SΩ j(t)(11)

We can announce the impulse maximum principle as follows.

Theorem 3.2.1. Given an impulse optimal control θ ∗(ti), i = 1, ...,n where ti > ti−1 > 0 and

which minimizes (9) along with the optimal trajectories S∗, V ∗, I∗ and R∗ associated to the

differential system in (10), then there exist adjoint variables λk, k = 1,2,3,4 as notations of

λk(t) and which satisfy for t 6= ti the following adjoint differential system

(12)



˙λ1, j(t) = λ1, j(t)(
p

∑
k=1

β jkIΩ j∗(t)+µ j)−λ3, j(t)
p

∑
k=1

β jkIΩ j∗(t)

˙λ2, j(t) = λ2, j(t)(bβ j jIΩ j∗(t)+µ j)−bλ3, j(t)β j jIΩ j∗(t)

˙λ3, j(t) = −A j +λ1, j(t)β j jSΩ j∗(t)+bλ2, j(t)β j jV Ω j∗(t)

−λ3, j(t)(β j j(SΩ j∗(t)+bV Ω j∗(t))−µ− γ)−λ4, j(t)γ

˙λ4, j(t) = λ4, j(t)µ j

with the transversality conditions λk(T ) = 0, k = 1,2,3,4 and we have,

(13)



λ1, j(ti) = λ1, j(t+i )−aλ1, j(t+i )θ j(ti)+aλ2, j(t+i )θ j(ti)

λ2, j(ti) = λ2, j(t+i )

λ3, j(ti) = λ3, j(t+i )

λ4, j(ti) = λ4, j(t+i )

Furthermore, we have

(14) θ
∗
j (ti) = min

(
max

(
0,

aSΩ j∗(ti)(λ1, j(t+i )−λ2, j(t+i ))

B j

)
,1
)
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Proof. We have the Hamiltonian function H is defined above as

H p,Ω j(SΩ j(t),V Ω j(t), IΩ j(t),RΩ j(t),θ j(ti)) =
B j

2
θ

2
j (ti)−aλ1, j(t+)θ j(ti)SΩ j(t)

+aλ2, j(t+)θ j(t)SΩ j(ti)

Then, using the impulse version of Pontryagin’s maximum principle in [47], then we have, for

t 6= ti

˙λ1, j(t) = λ1, j(t)(
p

∑
k=1

β jkIΩ j∗(t)+µ j)−λ3, j(t)
p

∑
k=1

β jkIΩ j∗(t)

˙λ2, j(t) = λ2, j(t)(bβ j jIΩ j∗(t)+µ j)−bλ3, j(t)β j jIΩ j∗(t)

˙λ3, j(t) = −A j +λ1, j(t)β j jSΩ j∗(t)+bλ2, j(t)β j jV Ω j∗(t)

−λ3, j(t)(β j j(SΩ j∗(t)+bV Ω j∗(t))−µ− γ)−λ4, j(t)γ

˙λ4, j(t) = λ4, j(t)µ j

while the transversality conditions defined as minus the derivative of the final gain function with

respect to the state variables S, V , I and R. Since the final gain function in (9) does not contain

any term of these variables, then λk, j(T ) = 0, k = 1,2,3,4.

Since the impulse Hamiltonian function H p is defined above as

H p
j (S

Ω j ,V Ω j , IΩ j ,RΩ j ,θ j) =
B j

2
θ

2
j −aλ1, j(t+)θ jSΩ j +aλ2, j(t+)θ jSΩ j

Then, we have also at t = ti

λ1, j(ti) = λ1, j(t+i )+H p
SΩ j

(SΩ j ,V Ω j , IΩ j ,RΩ j ,θ j) = λ1, j(t+i )

−aλ1, j(t+i )θ j(ti)+aλ2, j(t+i )θ j(ti)

λ2, j(ti) = λ2, j(t+i )+H p
V Ω j

(SΩ j ,V Ω j , IΩ j ,RΩ j ,θ j) = λ2, j(t+i )

λ3, j(ti) = λ3, j(t+i )+H p
IΩ j

(SΩ j ,V Ω j , IΩ j ,RΩ j ,θ j) = λ3, j(t+i )

λ4, j(ti) = λ4, j(t+i )+H p
RΩ j

(SΩ j ,V Ω j , IΩ j ,RΩ j ,θ j) = λ4, j(t+i )

The optimality condition at θ j = θ ∗j implies that
∂H p

j

∂θ j(ti)
= 0.

Then, after setting SΩ j = S
Ω j∗, we have

B jθ j(ti)−aS(ti)λ1, j(t+i )+aS(ti)λ2, j(t+i ) = 0⇒ θ j(ti) =
aS(ti)(λ1, j(t+i )−λ2, j(t+i ))

B
.
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Using the bounds on controls, we obtain

θ
∗
j (ti) = min

(
max

(
0,

aS
Ω j∗(ti)(λ1, j(t+i )−λ2, j(t+i ))

B j

)
,1

)
�

4. NUMERICAL RESULTS

In Figure 9.1. we present simulations of the number of susceptible people in the absence

and presence of the control and we can observe that when we choose θ j = 0, the number of

susceptible people has decreased from its initial condition to numbers close to 7.5, 8 and 9 in

regions Ω1, Ω2 and Ω3 respectively, while the optimal state S∗ associated to θ j 6= 0 decreases

to a value that is close to zero after just 10 days.

Simultaneously in Figure 9.2., the number of removed people increases to only a value close

to values close to 100, 75 and 50 people in regions Ω1, Ω2 and Ω3 respectively, due to natural

recovery, while it reaches a value higher than this number with a maximal peak equaling to 650,

1200 and 450 in regions Ω1, Ω2 and Ω3 respectively when θ j 6= 0. As regards to the number of

infected people, it remains stabilized in an important value close to its initial condition in Ω1,

increased to 1150 and 1180 in Ω1 and Ω2 respectively, while it decreases towards values very

close to 300, 400 and 500 in regions Ω1, Ω2 and Ω3 respectively after the introduction of the

control θ j.

We can observe the relationship between the number of controlled people and the optimal

values taken by θ j in Figure 9.3., so when this is increasing, the optimal state V ∗ is also in-

creasing. In fact, we can deduce that with only one pulse value of θ j, we reach our goal by

minimizing I function, and maximizing R function while the total number of the susceptible

who received the control along T .

Figure 9.2. also explains how an impulse vaccination can be followed when we suppose that

all pulse immunizations are equal. In all weeks except week 3, it is recommended to follow

immunizations by their maximal values.
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FIGURE 1. Number of susceptible people without and with pulse immunization
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5. DISCUSSION OF THE PANDEMIC CRISIS SCENARIO WITH CLOSURE POLICY

Let I = {1, ..., p} and IH ⊂ I the set of indices of regions at high-risk and then, having the

ability to spread the epidemic to other regions. Here, we study the case when a given region Ω j

is under impulse vaccination control θ j and at the same time under threat of infection coming

from other regions. For this, we add to the vaccination strategy, an other control denoted as

ζ jΩk to characterize the effectiveness of movement restriction operations, in order to prevent

infected of regions Ωk, k ∈ IH to come to the controlled region Ω j, where

(15)

 ζ jΩk 6= 0 ∀k ∈ IH k 6= j

ζ jΩk = 0 elsewhere

Then, if the functional (9) is changed to

J(θ j,ζ
jΩ) =

∫ T

0
A jIΩ j(t)dt + ∑

k∈IH

n

∑
i=1

Ck

2
(ζ jΩk(ti))2 +

n

∑
i=1

B j

2
θ

2
j (ti)(16)

Thus, the problem changes to searching the optimal control θ ∗ and ζ jΩ =
(
ζ jΩk

)
k∈IH

belonging

to the control set ZIH
j defined as

ZIH
j ([0,T ]) = {ζ jΩ(ti) measurable|06 ζ

jΩk(ti)6 1,k ∈ IH , ti ∈ [0,T ]}

such that

J(θ ∗j ,ζ
jΩ∗) = min{J(θ j,ζ

jΩk)/(θ j,ζ
jΩk) ∈Θ j×ZIH

j }

subject to

(17)

ṠΩ j(t) = Π j−
p

∑
k=1

n

∑
i=1

δ (t− ti)(1−ζ
jΩk(ti))β jkSΩ j(t)IΩk(t)−a

n

∑
i=1

δ (t− ti)θ j(ti)SΩ j(t)

−µ jSΩ j(t)

V̇ Ω j(t) = a
n

∑
i=1

δ (t− ti)θ j(ti)SΩ j(t)−bβ j jV Ω j(t)IΩ j(t)−µ jV Ω j(t)

İΩ j(t) =
p

∑
k=1

n

∑
i=1

δ (t− ti)(1−ζ
jΩk(ti))β jkSΩ j(t)IΩk(t)+bβ j jV Ω j(t)IΩ j(t)− γ jIΩ j(t)−µ jIΩ j(t)

ṘΩ j(t) = γ jIΩ j(t)−µ jRΩ j(t)

S0,V0, I0,R0 given

06 θ j(ti)6 1, 06 ζ jΩk(ti)6 1
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Or, our optimal pulse control problem can be stated as follows

min
(θ j,ζ

jΩk )∈Θ j×ZIH
j

{∫ T

0
A jIΩ j(t)dt + ∑

k∈IH

n

∑
i=1

Ck

2
(ζ jΩk(ti))2 +

n

∑
i=1

B j

2
θ

2
j (ti)

}
sub ject to

ṠΩ j(t) = Π j−µ jSΩ j(t)

V̇ Ω j(t) =−bβ j jV Ω j(t)IΩ j(t)−µ jV Ω j(t)

İΩ j(t) = bβ j jV Ω j(t)IΩ j(t)− γ jIΩ j(t)−µ jIΩ j(t)

ṘΩ j(t) = γ jIΩ j(t)−µ jRΩ j(t) when t 6= ti

and

SΩ j(t+i ) = SΩ j(ti)−
p

∑
k=1

(1−ζ
jΩk(ti))β jkSΩ j(ti)IΩk(ti)−aθ j(ti)SΩ j(ti)

V Ω j(t+i ) =V Ω j(ti)+aθ j(ti)SΩ j(ti)

IΩ j(t+i ) = IΩ j(ti)+
p

∑
k=1

(1−ζ
jΩk(ti))β jkSΩ j(ti)IΩk(ti)

RΩ j(t+i ) = RΩ j(ti) when t = ti

SΩ j
0 ,V Ω j

0 , IΩ j
0 ,RΩ j

0 given

06 θ j(ti)6 1, 06 ζ jΩk(ti)6 1

In order to resolve this problem, we follow the same previous steps when there was no closure

policy.

Thus, using the bounds on controls, we obtain

(18) θ
∗
j (ti) = min

(
max

(
0,

aSΩ j∗(ti)(λ1, j(t+i )−λ2, j(t+i ))

B j

)
,1
)

while for l ∈ IH

ζ
jΩl∗(ti) = min

(
max

(
0,−

(λ1, j(t)−λ3, j(t))β jlIΩl∗SΩ j∗

Cl

)
,1

)
,

As a numerical result, we can observe from Figure 4. that movement restriction approach is

slightly more effective than immunization alone. The difference between the number of infected

people when there is only pulse immunization and this number when there there is pulse closure

policy, takes the values 0.07, 7.7× 10−4 and 10−3 in regions Ω1, Ω2 and Ω3 in the final time

respectively. In fact, in the first seek weeks, as we have observed in Figure 3. when no control
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is recommended, we have IΩ j
without ≈ IΩ j

with ≈ 0, however once both impulse controls θ ∗j and ζ jΩk∗

are introduced with bigger values tending just to 0.1, we can observe that IΩ j
without − IΩ j

with > 0

which gives IΩ j
with < IΩ j

without , thus, ζ jΩk∗ is enhancing the immunization policy by reducing the

number of infected people more than the case when there has been only θ ∗j .
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FIGURE 4. Effect of the impulse closure control on infection vs the impulse

immunization control through the computation of the difference IΩ j
without− IΩ j

with.

6. CONCLUSION

In this paper, we have proposed a hybrid control model for the study of infection dynamics

when an epidemic emerges in regions that are connected by any factor of mobility, considering

immunization pulses for epidemic prevention in a first case, and thereafter, investigating the role
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of second control pulses and which have represented the closure policy used in the pandemic

crisis scenario, in enhancing the effectiveness of the first one. The theoretical control framework

suggested here for the multi-region impulse case has also the potential to be applied for other

real-world examples.
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