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Abstract: Coronavirus disease (Covid-19) is a respiratory disease caused by the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) virus which has spread throughout the world and becomes a pandemic in 2020. The
spread of Covid-19 in Indonesia is fluctuating depend on people's habits and government policies which results in the
time-dependent parameters. In this study, the spread of Covid-19 is analyzed by using a mathematical model through
a system of Ordinary Differential Equations (ODE) which its parameters change respect to time. This study focuses
on the time-dependent parameters which are estimated using the Deep Learning method based on the Covid-19 data
from East Java Province, Indonesia. Furthermore, numerical simulation results of the model with time-dependent
parameters are compared to numerical simulation results which use constant parameters. It is found that the simulation
results of the model with time-dependent parameters are closer to the data with a Mean Absolute Percentage Error
(MAPE) value is 3.68%, while the model with constant parameters had a MAPE value as 24.5%.
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1. INTRODUCTION

In last two years, the world experiences a health, social, and economic crisis caused by the
pandemic of Coronavirus disease 2019 (Covid-19) which also occurs in Indonesia. This disease is
caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) which has
spread throughout the world and become an outbreak. SARS-Cov2 has a spherical or elliptical
shape and is about 60-140 nm in diameter [1]. Covid-19 is a very dangerous disease because it can
cause death by its rapid spread process regardless of gender or age. The SARS-CoV-2 virus spreads
through respiratory droplets produced by sneezing, coughing, and normal breathing. Symptoms of
Covid-19 appear after an incubation period of approximately 5.2 days. The period from the onset
of Covid-19 symptoms to death ranged from 6 to 41 days with 14 days in average [2]. The
condition of infected individuals by Covid-19 can be divided into two categories, namely
symptomatic infection and asymptomatic infection [3]. Since 15 March 2020, there have been 4.22
million confirmed cases and 145,000 deaths due to Covid-19 in Indonesia [4,5]. Several efforts
have been made by the Indonesian government to deal with Covid-19, such as by enforcing health
protocols, limiting population mobility by working from home, and holding a free vaccination
program [6].

The development of mathematical knowledge also plays an important role in anticipating the
spread of Covid-19. Until now, many studies have been done from mathematics point of view
related to Covid-19 to ensure human survival. Many mathematical models illustrate the spread of
Covid-19 by using a system of differential equations [8] through the compartment approach which
is known as epidemic model. From those models, mathematical models have been developed to
predict the Covid-19 epidemic [8-11]. Mathematical models of the spread of infectious diseases
can be used to evaluate the process of epidemic transmission, but the values of parameters used in
the model are mostly based on assumptions. The unknown parameters need to be estimated with
the model fitting which makes the model more uncertain [12]. For a long duration of the spread of
Covid-19, the change of the parameters value in model may occur which is caused by various

reasons. For instance, the government policies in a country will affect the Covid-19 transmission
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which also affect the parameters value. It is a challenge to construct a model with a single
parameter to fit the real situation well [13]. In addition, previous researchers have also predicted
the spread of Covid-19 by an epidemic model through the machine learning method that able to
estimate the certain parameter which result in a simulation close to the data [14-18]. However,
using the machine learning method only to predict Covid-19 cases cannot capture the patterns of
the change of infectious disease transmission time by time [19]. To overcome the long duration of
the spread of Covid-19 and the shortcomings of machine learning methods in prediction, Chen et.
al. [20] proposed an SIR epidemic model which parameters change with time. Now, the model is
known as the time-dependent SIR model. This method aims to make the model more adaptive
since in reality the spread of Covid-19 is very volatile [20]. In the Covid-19 epidemic model with
time-dependent parameters, its parameters can be estimated by using the Deep Learning method
[21-24]. Parameters fluctuation in the model with time-dependent parameters are also influenced
by government policies and people's habits [25].

Since the Machine Learning method success to estimate the parameters of a simple epidemic
model, then in this study we develop a Covid-19 transmission model with time-dependent
parameters with more complex compartments to obtain a more realistic model. In the present study
we consider the infected population, which is divided into two categories namely symptomatic and
asymptomatic-infected, including the addition of exposed population. Moreover, the model is also
equipped by vaccination population as a representation of one of the government’s efforts in deal
with Covid-19 in Indonesia. After that, a series of numerical simulation of the model with time-
dependent parameters is implemented and compared to the numerical results of model whose
parameters are constant to show which one is better to describes the actual conditions of the spread
of Covid-19 in East Java, Indonesia. Here, the constant parameters are estimated by using the
Least-Square method, while the time-dependent parameters are estimated using the Deep Learning
method.

This paper is organized as follows. In Section 2, the research methods are discussed briefly,

such as the Gershgorin theorem which is used to analyze the stability of equilibrium points and the
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Deep Learning method. The results of this study are presented in Section 3. First, we construct the
Covid-19 transmission model, followed by determining the stability of the disease-free and
endemic equilibrium points and basic reproduction number as well. Next, the estimations of
constant and time-dependent parameters are carried out and performed the numerical simulation

results. Finally, we present the brief remarks of this study in the last section.

2. MATERIALS AND METHODS
2.1. Differential Equation System

An Ordinary Differential Equation (ODE) is an equation that involves the derivative of one
dependent variable and one independent variable, while the system of differential equations is a
collection of two or more differential equations. Systematically, the system of differential

equations can be written in the form

x(t) = f(x,t), )

where

dx;
ddxtz f1(t, xq, x5, o) Xp)
x® =7 |, f(x0) = f2(t, xl,afz, ey Xp) , %)
d;n fn(t, xl,aéz, e Xp)
dt
2.2. Time-dependent Epidemic Model
The model is based on the SIR model with its parameters being a function of time which can

be represented by

ds(e) _  B®SM®I()

at N
di(t)  B®)S®I()

T N —y@®I®), 3)
dR(t)

a y@®I(®).

Then, System (3) can be transformed into a differential equation with discrete time
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Sit+1)-S() = —w,
I+ —-I() = w —y(®I®), 4)

R(t+1)—R(t) =y(®)I(t).
By solving System (4) with respect to the parameters to be estimated so that the parameter

equations that depend on time are obtained as follows
B R(t+1)—R(t)
y(@®) = 0] :
(It +1) = 1)) + (R(t + 1) — R(®)) (5)

1(¢)

System (5) can be used to obtain parameters at any time needed [20].

B =

2.3. Equilibrium Point

A continuous dynamic system is said to have an equilibrium point if the system of differential
equations x = f(x) has a solution for f(x) = 0. The point x* where f(x*) = 0 is
satisfied is called the equilibrium point. In this state, the length of the tangent vector is zero and
the system is said to be in equilibrium. In a homogeneous system, the trivial solution x = 0 of
f(x) = 0 isalways an equilibrium state [27].
2.4. Basic Reproduction Number

The Basic Reproduction Number is the average number of second-infected individuals due to
contracting the first-infected individual in a susceptible population [28]. First, determining the new
infection vector and the displacement vector from the model that satisfies the

x = fi(x) = Fi(x) — Vi(x), i=1,..,n

(6)
Next, convert the vector in Equation (6) into a matrix that satisfies
OF; " _ % « ..
F = [a_x, (xo)] and V = [axj xo)], 1<ij<m. 7)

The basic reproduction number is determined through the next generation matrix by operating
FV 1. The largest eigenvalue of the next generation matrix is the basic reproduction number.

2.5. Gershgorin Theorem
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Suppose there is a matrix A = (a;;) then every eigenvalue of matrix A will satisfies
11— ay| < Z|aij| i€ {1,23,..,1} )
j=i

where A is the eigenvalue of matrix A. Matrix Al — A is Strictly Diagonally Dominant Matrices
12— a;| > ¥jzi|ai;| for every i. if Equation (8) is not satisfied then AI — A is Strictly
Diagonally Dominant Matrices. And if AI — A is Strictly Diagonally Dominant Matrices then the
result A is not an eigenvalue because the matrix Al — A nonsingular [29].
2.6. Stability Analysis Equilibrium Point using Gershgorin Discs

Let A = (a;;) be a complex square matrix. Then each eigenvalue of A lies in one of the

Gershgorin discs

Di={zeC:|z—ay| <R} VvV Dj={z€C:|z—aqa;| <R}

©)

where R; = Y71 i la;| and R; = X, ;. la;;]. The union of n Gershgorin discs is called the
Gershgorin set.
n
p=| o (10)
i=1
It can be observed that D is closed and finite in C, and all eigenvalues of A are elements of D.

Let x* be an equilibrium point of the system and the Jacobi Matrix of the system evaluated in x*

is
Ju hz e i
prGey =|J S S )
i Jnz o
and

n

R; = Z /i1 (12)

j=1,j#i
for i=12,..,n.1If J; <0 and R; < |J;;| then x* islocally asymptotically stable. Since J;; is

the center point of the Gershgorin Disc is on the negative real axis of the complex plane and R;
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is the radius, so if R; < |J;;| the disc is completely in the negative part of the complex plane and

all the eigenvalues are negative [30].

3. MAIN RESULTS
3.1. Mathematical Model
Mathematical model in the present study is constructed through a compartment approach.
Here, the population is divided into six subpopulations, namely susceptible, vaccinated, exposed,
symptomatic, asymptomatic, and recovered population. The proposed model of the Covid-19
transmission in this study is equipped with the following assumptions.
A1l. The population is assumed a closed population whose birth and death rates per time unit
are considered constant.
A2. The population is homogeneous which means that each individual has the same chance of
being infected.
A3. Vaccine is only given to the susceptible individuals.
A4. The vaccine efficacy is not permanent so that individuals who have been vaccinated can
revert to being susceptible individuals after certain time [31].
AS. There is a latent period in the disease infection process, i.e., a condition in which an
infected individual does not transmit the disease to other individuals.
Based on the above assumptions, the Covid-19 transmission can be described into a schematic

diagram as follows

ul
Sl + B2) }' ! V\I.
A, S . | E R
TN (A A
v wa |

le

FIGURE 1. Schematic diagram of Covid-19 spread model.
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Based on Figure 1, the Covid-19 transmission model can be written in the form of an equation

system as follows:

ds S(B1 + B,A)
—=A+€eV ———mFF———(w + 1)S,
ac_NTE N (@+p)
W S—(u+e)y
ac ¢ g e
dE  S(fq1 + B,A
U _SBIEEN (o,
: (13)
ar_ E I —ul
dt = p )/1 ,Ll )
A _ E(1—-p) A—uA
dt =« p Y2 ua,
dR
dt =yl +v2A—UR,
with

S : Susceptible population,

V' :Vaccinated population,

E  : Expossed population,

I : Symptomatic population,

A : Asymptomatic population,

R :Recovered population,

A : Recruitment rate,

U : Natural death rate,

w  : Vaccination rate,

€ : The rate of decline in immunity,

1 :Infection rate due to contact with symptomatic population,
B, : Infection rate due to contact with asymptomatic population,
a :Rate of the exposed individual becomes infected,

p : Rate of an infected individual being symptomatic,

Y1 : Recovery rate of the symptomatic population,

¥>  : Recovery rate of the asymptomatic population.
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In order to simplify System (13), normalization is performed by dividing each subpopulation

by the total population. First, introducing

5_‘251‘7: )E: )I_:Lllq_:£l andRZE’ (14)
N N N N

2| ™

v
N
Substituting Equations in (14) into System (13) and removing the bar mark in each compartment

notation for writing simplification, then the normalized model is obtained as follows

§= A+ eV —S(BiI + BA) — (w + w)S,

dt

dv

E=w5—(u+e)V,

dE

dar = S(p1l + B2A) — (a + WE,

dl (15)
at akEp —y.I —ul,

dA

¢ = EA-p) —v2A—pa,

E=Y1I+V2A_llR:

with S+V+E+I1+A+R=1 and A =p.
3.2. Equilibrium Points and Basic Reproduction Number

In this section, equilibrium points and basic reproduction number of System (14) are
performed. According to Section 2.3, System (15) has two equilibrium points, they are disease-
free and endemic equilibrium points. In practice, one may obtain equilibrium points
simultaneously. But in this paper, we display the basic reproduction number after the disease-free
equilibrium points. As a result, the endemic equilibrium can be denoted in terms of basic
reproduction number to provide simpler writing and analyzing.
3.2.1 Disease-free Equilibrium Point

The disease-free equilibrium point represents the situation of the population which is free from
Covid-19. It means that infected individuals will vanish by themselves in the population and stays
to be in a disease-free situation all the time. Here, the disease-free equilibrium is denoted by E|,

namely
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(u+e)A Aw
E0: p— ) —_— ’E
p(e +u+ w) pe+u+ w)

=0I=0A=0R= 0).

From the biological point of view, the disease-free equilibrium point E, always exists since all
populations are non-negative as the result of positivity of all parameters.
3.2.2 Basic Reproduction Number

The basic reproduction number of System (15) can be obtained by using the Next Generation
Matrix method in Section 2.4. The compartments that affect the spread of Covid-19 are E, I, and

A populations so that the Next Generation Matrix of System (15) is obtained as follows

a (u+ e)AB, (u + €)AB,
py-i=| o suteto)ditw ptet o)z +w)| (16)
0 0 0
0 0 0
with
ot Ora(ppiuty) + 80 - Pk tr1)) a7
o ppteta)@+mo+woz+y
Therefore, the spectral radius of Matrix (16) which is the basic reproduction number is
(u+)Aa(pBi(u+y;) + (1 =p) (1 +v1))
Ry = (18)

putet+w)(a+wy+ w2 +u
3.2.3. Endemic Equilibrium Point

The endemic point represents a situation where Covid-19 spreads within the population and
will always occur in the population over time. The endemic equilibrium point of System (15) is

represented in term of R, in Equation (18) to get the following results

E, = (S*V* E* I*,A*, RY), (19)
with
. (u+eA —_— wA
u(u+ €+ w)Ry’ p(u+ €+ w)Ry
£ _ A(Ry — 1)’ . _ aA(Ry — 1)p ' (20)
(a + Ry (e + )1+ vRo

. _ AR~ DA —p) pr = HPYL T V1Y2 + 12 (1 — p))ah(Ry — 1)
(@+mwW+v2)Ro’ (m+y2)(a+w+y)uRo
The representation of endemic equilibrium point in term of R, makes it easy to analyze. Since all
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parameters involved in System (15) are non-negative and 0 < p < 1 then the existence condition
of E; is Ry > 1.
3.3. Equilibrium Point Stability Analysis
3.3.1. Disease-free equilibrium stability

The stability of equilibrium points in this study is analyzed by using the eigenvalues approach.
The mathematical calculation to determine the stability of equilibrium points of System (15) is
complex enough. Thus, for simplification it is assumed that the infection rate by asymptomatic and
symptomatic individuals are the same (f; = ;). The eigenvalues which correspond to each
equilibrium point are detected by Gershgorin disc approach according to Section 2.5.

First, determining the Jacobian matrix of System (15) than we obtain

—AB—Ip1—p—-—w € 0 =SB4 =SB 0
) —€—U 0 0 0 0
J= ABy + 1By 0 —a—u Sp1 SpB, 0
0 0 ap —U—7Y1 0 0
0 0 a(l—p) 0 ~Y2—u 0
0 0 0 Y1 Y2 —u

Next, evaluating the Jacobian matrix | at E; so that the following result is yielded

(1 +e)A (1 +e)A
—-U—w € - - g 0
p(e +p+ w) p(e+p+ w)
w —€—U 0 0 0 0
+€e)A +€e)A
J(Ep) = 0 0 —a— (,u—) | M‘BZ 0
p(e +p+ w) u(e +p+ w)
0 0 ap —U—7V1 0 0
0 0 a(l-p) 0 —Y2— U 0
0 0 0 Y1 Y2 —H

It is clear that all elements of the diagonal of matrix J(E,) are negative so that based on the
Gershgorin theory the center point of the Gershgorin disc is in the negative plane. To ensure all
discs are in the negative plane so that all eigenvalues are negative as well, then the radius of the
whole discs must be R; < J; with i =1,2,...,6.

As the consequences, the disease-free equilibrium point Ej is local asymtotically stable if all
of the eigenvalues of the correspond Jacobian matrix (J(E,)) satisfy at least one of the following

Gershgorin discs, 1.e.
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2B(u+ e)A
—— < u+tw, <p+e
uCe + u + w) pro WSKTE
2B(u+ e)A
————<pu+ta, +y, <,
w(e + o+ o) Ura YiTtV2<U
ap < p+y1, a(l—p) <+

These Gershgorin discs condition or some of them can be simplified or represented in term of R,
as follows
Ry <1, AL 2, yi+y,<pu. (21)

The second inequality in conditions (21) is always fulfilled so that it is not an asymptotically
stable condition since the recruitment rate A is biologically less than 1, and the parameter B €
(0,1). Meanwhile, the third inequality is biologically impossible to occur because p is the rate of
natural death is not the death rate from disease is not greater than the sum of the recovery rates
from symptomatic (y;) and asymptomatic (y,) infections. Thus, the stability requirement for a
disease-free pointis Ry < 1.

In other words, the disease will disappear from the population if at least one or more of the
Gershgorin discs condition in (21) are satisfied. For the first inequality in (21), the disease-free
equilibrium will be stable if this condition is met because if the basic reproduction number is less
than 1 or each infected individual transmits the disease to less than one new individual, the number
of infections in a population will decrease. For the second inequality, it means that it will be stable
if B or the rate of infection, both asymptomatic and symptomatic infections multiplied by the rate
of recruitment into the ecosystem is less than 2, meaning that the value of the rate of infection is
small so that fewer individuals are infected. For the third inequality, the total value of the recovery
rate is smaller than the value of the death parameter. In the case of Ry, < 1 the value of the
recovery rate is relatively large so that a greater value of the death rate will remove the population
from the infected and recovered compartments while the susceptible population will still exist
because the recruitment rate is the same as the death rate.

The disease-free point is asymptotically stable if it satisfies at least one Gershgorin Disc in
System (21). The second inequality in System (21) is always satisfied so that it is not an

asymptotically stable condition because the recruitment rate (A) is biologically impossible to
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hold a value greater than 1, and the infection rate parameter (f) is not possible to be greater than
2. At the same time, the third inequality is not biologically possible because it is the pure death
rate (u), not the death rate due to disease, and not greater than the sum of the cure rates for
symptomatic (y;) and asymptomatic (,). Accordingly, the stability required for the disease-free
pointis Ry < 1.
3.5.2. Endemic equilibrium stability

The stability analysis of endemic equilibrium point E; is carried out by doing the same

prosedur as the stability analysis of Ej. Substituting E; to the Jacobian matrix J yield

(u+e)A 8 (u+e)A 8

a € - _
. H e+ R, T u(ute+ R, ?

w —€—U 0 0 0 0

+ €)A + €)A
](El) = a31 O - — (‘u ) 1 ('u ) ﬁz
p(u + € + w)R, p(u+ €+ w)R,
0 0 ap k=7 0 0
0 0 all=p) 0 2= H 0
0 0 0 Vi v .y
with
_ _aARe-1)(A-p) ,  aA(Ro—1)p o
M= T R, P2 (@+m)(u+y1)Ro himn-o,

T (a0 (p+y )Ry T2 T (@) (uty)Ro

It is clear that a,; is negative so that all elements of the diagonal of matrix J(E;) are
negative result in the center point of the Gershgorin disc is in the negative plane. The endemic
equilibrium point is asymptotically stable if Ry, > 1 and hold at least one of the following

Gershgorin disc,

(B1+B2)(u+e)A _ aA(Ro—1)(1-p) I aA(Ro—1)p

herurolRy @Gk P2 1 ararorg L TR T @

w< U-+e,

aA(Ro—1)(1-p)

i aA(Rg—1)p I; (B1+B2)(u+e)A
(a+w)(u+y2)Ro 1

2 7 (a+w)(u+yRo p(e+u+w)Ro

<u+a,

Yit+7v2<u, ap<p+y;, a(l-—p)<@u+y),

These Gershgorin discs condition or some of them can be simplified or represented in term of R,
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as follows
AB <2Ry, and y;+y, <y, (22)
with Ry > 1.

The disease will exist in the population or be endemic provided that R, > 1 must be met
before then being determined with at least one of the Gershgorin discs in System (22) being met.
This means that the disease is transmitted from an infected individual to more than one susceptible
individual so that the infected population will increase. Then the first inequality in System (22) the
value of the recruitment rate multiplied by the infection rate is less than twice the basic
reproduction number where Ry > 1 so that the right side will increase the B value limit or the
infection rate will be greater when compared to the gershorin disc system (21) a large recruitment
rate value will increase the infected population. Then the second inequality in system (22) where
previously the value of Ry > 1 must be fulfilled first so that the recovery value will be relatively
small, causing individuals in the infected compartment not to move much to the recovered
compartment.

However, the endemic point is asymptotically stable if Ry > 1 and satisfies at least one
Gershgorin disk in Equation (22). The first inequality in System (22) is always fulfilled because it
has a mandatory condition of Ry > 1, and biologically, it is not possible to have a recruitment
rate (A) and an infection rate (f) that is greater than 2. Moreover, the second inequality in System
(22) is biologically impossible to occur as stated in the previous explanation. Therefore, the
stability condition for the endemic pointis Ry > 1.

3.4. Parameters Estimation

In this study, estimation of several parameters is carried out in two ways, i.e., constant and
time-dependen parameters. The time-dependent estimation parameters is considered to capture the
fluctuation of parameters value due to government policies and people's habits during the Covid-
19 pandemic. Here, parameter «,f34,[,,¥1 and y, are choosen to be estimated since these
parameters are one of the core parameters of the model and related to running policies.

3.4.1. Constant Parameters Estimation
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Constant parameters estimation is carried out by using the Least-Square method. Here, the
data of Covid-19 cases in East Java Province, Indonesia, is collected from February 18 until April
8,2022. Those data are used to be the initial values of each population which is displayed in Table
1 and followed by other parameters that are not estimated.

TABLE 1. Variables and parameters values.

Parameters Value Reference
S 0.424455 [32]
%4 0.563233 [32]
E 0.001051 [32]
I 0.000409 [32]
A 0.000367 [32]
R 0.010486 [32]
A 3.8602x107 [33]
u 3.8602x107 [33]
p 0.45 Assumed
w 0.026 Assumed
€ 0.015 Assumed

Constant parameters estimation is performed in two cases, namely f; # B, and [; = f5,. In the
case of B, # B, the estimated parameters values are a = 0.1529, B; = 0.6619, B, =
2.444e¢~8 y, =0.2607, and y, = 0.2077. Meanwhile, in the case of B; = f3,, the estimated
parameter values obtained are a = 0,1563, f = 0,2851, y; = 0,2162, and y, = 0,2563.
Further, these results are analyzed in Section 3.5.
3.4.2. Time-dependent Parameter Estimation

Next, the time-dependent estimated parameters are performed by transforming System (15)
into a differential equation with discrete time according to Section 2.2. Under this circumstance,
the time-dependent estimated parameter can be done if it can be denoted explicitly from its original
equation and not contained other estimated parameters. As a consequence, the time-dependent
estimated parameters are only conducted in one case, namely [; = f5,, so that f; does not
depends on f, and vice versa. Thus, the number of time-dependent parameters that can be
estimated in System (15) are three parameters. Here, we decide to choose parameters f; = 8, =

B,v1, and y,. By doing the same technique as in [20], we obtain the estimated parameter function
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as follows
B(t) = E(t+1)—E(t)+ (a+ pE(t)
B SO +A®)) ’
aE()p —I1(t+ 1)+ I1(t) — ul(t) (23)
y1(t) = 6 ,
aE(t)(1—p) —A(t + 1) + A(t) — uA(t)
Y2(t) = A .

Next, System (15) is transformed into a discrete mode as follows
SE+1D) =S +A+e@V(E) —SOBOIE) +A®)) — (w0 + wS(L),
V(it+1)=V(t)+wS(t) —uV(t) —e(®)V(t),
Et+1)=EQ®+S®BOI®) +A®) — (a + WE(D),

I(t+1) =1(t) + aE©)p — y1(OI(©) — pI (D),
At +1) =A@ + aE(®)(1 —p) —y2(0)A() — pA),
R(t+1) = R(t) +y1(DI(®) +y2()A(E) — uR(D).

There are several steps to obtain time-dependent parameters by using the Deep Learning

(24)

method. First, dividing the data into two categories, i.e., the training and testing data with
composition 70% and 30% of the data, respectively. The training data is used to train the Deep
Learning model, while the testing data is used to compare the output of the Deep Learning
estimation. The daily data representing the number of individuals each compartment is proceeded
into Equations (23) to obtain time-dependent parameters value. After that, the time-dependent

parameters value is smoothed so that the following results are obtained and displayed in Figure 2.
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FIGURE 2. The results of data smoothing.
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The data after smoothing as shown in Figure 2 of the orange line is then processed to become
input data from the Deep Learning model. Data smoothing aims to eliminate outlier values that
can interfere with the estimation results from Deep Learning. In addition, data smoothing also
improves the performance of the Deep Learning model to be faster and more accurate [19].
Subsequently, creating a Long Short-term Memory (LSTM) model with three layers which each
batch size is 16, 32, and 16. Next, setting each sigmoid recurrent activation function. Finally, using
Adam's Optimizer for hyperparameter optimization on Deep Learning model and performing 500

epochs. The estimation results of the three parameters, f,y;, and y,, are plotted in Figure 3.
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FIGURE 3. The estimation results of the time-dependent parameter.

It can be observed from Figure 3 that the Deep Learning method is able to produce the

parameters values (red line) which is close to parameter values that is obtained from the data (blue
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line). These results also show that the time-dependent parameters are much better at capturing the
fluctuating parameter compared to the constant parameter. In Figure 3(a), during interval t = 100
to t =130 there is a quite difference between the estimation results and the data. It is a
consequence of the taken training data at the previous time is not experienced a very large increase
of parameter value. However, it could still detect the increasing of parameter value. Meanwhile,
the recovery rates y; and y, which can be seen in Figures 3(b) and 3(c) are able to be estimated
by using the Deep Learning method, whereas constant parameter values estimated using the Least
Square method can only approach the data at certain times.
3.5. Numerical Simulation

In this section, the numerical simulation of System (15) is performed with the parameter values
that have been estimated, i.e., the constant parameters and time-dependent parameters. The initial
values and other parameters use the values in Table 1. Numerical simulation results are seen in

Figure 4.
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FIGURE 4. Numerical simulation results of each compartment.
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The numerical simulation results of each compartment are displayed from the estimated
parameters. (a) is the susceptible compartment, (b) is the vaccine compartment, (c) is the exposed
compartment, (d) is the symptomatic compartment, (e) is the asymptomatic compartment, and (f)
is the recovered compartment. The red line is a simulation of the model with parameters that
change with time estimated using the Deep Learning method, while the green and yellow lines are
numerical simulations of the model with constant parameters, and the blue line represents the data.
Figure 4 shows the dynamics of each population which is produced by using parameter values
yielded form the Deep Learning methods (red curve) and the Least Square method with two cases,
namely B; # S, and f; = B, (green and yellow curve, respectively), where the blue line is the
data. Based on Figure 4, it is can be observed that the overall dynamics results using the Deep
Learning method are more accurate in approaching the data than the Least-square results with both
cases, /4 =, and B; = [,. In Figures 4(a), 4(b), and 4(f) there is not much difference
between the various estimation results in the Susceptible, Vaccinated and Recovered compartments,
but pay attention to Figures 4(c), 4(d), 4(e) which are the Exposed, Asymptomatic Infected and
Symptomatic Infected compartments the data values are also smaller compared to the previous
compartment. It is enough to see that the Deep Learning estimation results are more accurate in
approaching the data then the pattern is also more appropriate where there is an increase first before
finally decreasing. As has been done before, it is not only the pattern of changing parameters that
can be followed by the Deep Learning method, but also the pattern of changing the population

automatically follows like the data.

4. DISCUSSION
The MAPE is obtained by comparing data and the results of each estimation method. The

MAPE calculation results for each method are as follows.
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TABLE 2. MAPE of the estimation results from the constant and time-dependent parameters.

MAPE (%)
Compartments Constant Constant Time-dependent

Parameter (8, # £8,) Parameter (8, = f8,) Parameter

S 0.84589 0.84194 0.94499

|4 0.58571 0.58690 0.62044

E 53.24760 61.12237 6.55554

I 33.47746 45.57388 5.78422

A 48.10107 38.48291 6.79970

R 0.53130 0.58038 1.40085
Average 22.79817 24.53139 3.68429

The smaller the MAPE, the better the accuracy of the method that has been done. Based on
Table 2, it is observed that the model with Time-dependent parameters has the best accuracy with
a MAPE value of 3.68%, followed by a model with constant parameters for §; # B, with a
MAPE value of 22.79% and finally a model with constant parameters for g, = 5, with a MAPE
value of 24.53%. Thus, the use of time-dependent parameters can produce a very good model with
significant accuracy. Besides that, the complexity of the model also produces a better model in
terms of accuracy.

Constant and time-dependent parameters that have been estimated produce numerical
simulations that are in accordance with the data. Based on Figure 3, estimation using Deep
Learning is more accurate in compartments E, I, and A because it is closer to the data value. A
comparison can also be made based on the MAPE value. In the constant parameter estimation, the
MAPE values are 22.79% and 24.53% in the case of B; # f, and f; = f,, respectively.
Whereas the parameters depend on the estimated time resulting in numerical simulations that

correspond to the data with a MAPE value of 3.68%.

5. CONCLUSIONS
Analytically, the disease-free equilibrium points of the Covid-19 spread model are local
asymptotically stable if R, < 1, while the endemic point is local asymptotically stable if R, > 1.

The constant parameter estimation of the proposed model is carried out in the case of S, # [,
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and fS; = B,. From the estimated parameters, numerical simulations that correspond to the data
yield the MAPE values of 22.79% and 24.53% in the case of ; # , and f(; = B, respectively.
The estimation of time-dependent parameters in the model is only carried out in the case of f; =
B,. From the estimated parameters, numerical simulations yield a MAPE value of 3.68%. In
general, time-dependent parameter estimation can give better simulation results since it produces

the smallest MAPE value.
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