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Abstract: Coronavirus disease (Covid-19) is a respiratory disease caused by the Severe Acute Respiratory Syndrome 

Coronavirus 2 (SARS-CoV-2) virus which has spread throughout the world and becomes a pandemic in 2020. The 

spread of Covid-19 in Indonesia is fluctuating depend on people's habits and government policies which results in the 

time-dependent parameters. In this study, the spread of Covid-19 is analyzed by using a mathematical model through 

a system of Ordinary Differential Equations (ODE) which its parameters change respect to time. This study focuses 

on the time-dependent parameters which are estimated using the Deep Learning method based on the Covid-19 data 

from East Java Province, Indonesia. Furthermore, numerical simulation results of the model with time-dependent 

parameters are compared to numerical simulation results which use constant parameters. It is found that the simulation 

results of the model with time-dependent parameters are closer to the data with a Mean Absolute Percentage Error 

(MAPE) value is 3.68%, while the model with constant parameters had a MAPE value as 24.5%.  
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1. INTRODUCTION 

In last two years, the world experiences a health, social, and economic crisis caused by the 

pandemic of Coronavirus disease 2019 (Covid-19) which also occurs in Indonesia. This disease is 

caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) which has 

spread throughout the world and become an outbreak. SARS-Cov2 has a spherical or elliptical 

shape and is about 60-140 nm in diameter [1]. Covid-19 is a very dangerous disease because it can 

cause death by its rapid spread process regardless of gender or age. The SARS-CoV-2 virus spreads 

through respiratory droplets produced by sneezing, coughing, and normal breathing. Symptoms of 

Covid-19 appear after an incubation period of approximately 5.2 days. The period from the onset 

of Covid-19 symptoms to death ranged from 6 to 41 days with 14 days in average [2]. The 

condition of infected individuals by Covid-19 can be divided into two categories, namely 

symptomatic infection and asymptomatic infection [3]. Since 15 March 2020, there have been 4.22 

million confirmed cases and 145,000 deaths due to Covid-19 in Indonesia [4,5]. Several efforts 

have been made by the Indonesian government to deal with Covid-19, such as by enforcing health 

protocols, limiting population mobility by working from home, and holding a free vaccination 

program [6]. 

The development of mathematical knowledge also plays an important role in anticipating the 

spread of Covid-19. Until now, many studies have been done from mathematics point of view 

related to Covid-19 to ensure human survival. Many mathematical models illustrate the spread of 

Covid-19 by using a system of differential equations [8] through the compartment approach which 

is known as epidemic model. From those models, mathematical models have been developed to 

predict the Covid-19 epidemic [8-11]. Mathematical models of the spread of infectious diseases 

can be used to evaluate the process of epidemic transmission, but the values of parameters used in 

the model are mostly based on assumptions. The unknown parameters need to be estimated with 

the model fitting which makes the model more uncertain [12]. For a long duration of the spread of 

Covid-19, the change of the parameters value in model may occur which is caused by various 

reasons. For instance, the government policies in a country will affect the Covid-19 transmission 
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which also affect the parameters value. It is a challenge to construct a model with a single 

parameter to fit the real situation well [13]. In addition, previous researchers have also predicted 

the spread of Covid-19 by an epidemic model through the machine learning method that able to 

estimate the certain parameter which result in a simulation close to the data [14-18]. However, 

using the machine learning method only to predict Covid-19 cases cannot capture the patterns of 

the change of infectious disease transmission time by time [19]. To overcome the long duration of 

the spread of Covid-19 and the shortcomings of machine learning methods in prediction, Chen et. 

al. [20] proposed an SIR epidemic model which parameters change with time. Now, the model is 

known as the time-dependent SIR model. This method aims to make the model more adaptive 

since in reality the spread of Covid-19 is very volatile [20]. In the Covid-19 epidemic model with 

time-dependent parameters, its parameters can be estimated by using the Deep Learning method 

[21-24]. Parameters fluctuation in the model with time-dependent parameters are also influenced 

by government policies and people's habits [25]. 

Since the Machine Learning method success to estimate the parameters of a simple epidemic 

model, then in this study we develop a Covid-19 transmission model with time-dependent 

parameters with more complex compartments to obtain a more realistic model. In the present study 

we consider the infected population, which is divided into two categories namely symptomatic and 

asymptomatic-infected, including the addition of exposed population. Moreover, the model is also 

equipped by vaccination population as a representation of one of the government’s efforts in deal 

with Covid-19 in Indonesia. After that, a series of numerical simulation of the model with time-

dependent parameters is implemented and compared to the numerical results of model whose 

parameters are constant to show which one is better to describes the actual conditions of the spread 

of Covid-19 in East Java, Indonesia. Here, the constant parameters are estimated by using the 

Least-Square method, while the time-dependent parameters are estimated using the Deep Learning 

method. 

This paper is organized as follows. In Section 2, the research methods are discussed briefly, 

such as the Gershgorin theorem which is used to analyze the stability of equilibrium points and the 
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Deep Learning method. The results of this study are presented in Section 3. First, we construct the 

Covid-19 transmission model, followed by determining the stability of the disease-free and 

endemic equilibrium points and basic reproduction number as well. Next, the estimations of 

constant and time-dependent parameters are carried out and performed the numerical simulation 

results. Finally, we present the brief remarks of this study in the last section. 

 

2. MATERIALS AND METHODS 

2.1. Differential Equation System 

An Ordinary Differential Equation (ODE) is an equation that involves the derivative of one 

dependent variable and one independent variable, while the system of differential equations is a 

collection of two or more differential equations. Systematically, the system of differential 

equations can be written in the form 

�̇�(𝑡) = 𝐟(𝐱, 𝑡), 
(1) 

where 

�̇�(𝑡) =

(

 
 
 
 

𝑑𝑥1
𝑑𝑡
𝑑𝑥2
𝑑𝑡
⋮
𝑑𝑥𝑛
𝑑𝑡 )

 
 
 
 

, 𝐟(𝐱, 𝑡) = (

𝑓1(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛)

𝑓2(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛)
⋮

𝑓𝑛(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛)

), (2) 

2.2. Time-dependent Epidemic Model 

The model is based on the SIR model with its parameters being a function of time which can 

be represented by 

𝑑𝑆(𝑡)

𝑑𝑡
= −

𝛽(𝑡)𝑆(𝑡)𝐼(𝑡)

𝑁
, 

𝑑𝐼(𝑡)

𝑑𝑡
=
𝛽(𝑡)𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝛾(𝑡)𝐼(𝑡), 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾(𝑡)𝐼(𝑡). 

(3) 

Then, System (3) can be transformed into a differential equation with discrete time 
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𝑆(𝑡 + 1) − 𝑆(𝑡) = −
𝛽(𝑡)𝑆(𝑡)𝐼(𝑡)

𝑛
, 

𝐼(𝑡 + 1) − 𝐼(𝑡) =
𝛽(𝑡)𝑆(𝑡)𝐼(𝑡)

𝑛
− 𝛾(𝑡)𝐼(𝑡), 

𝑅(𝑡 + 1) − 𝑅(𝑡) = 𝛾(𝑡)𝐼(𝑡). 

(4) 

By solving System (4) with respect to the parameters to be estimated so that the parameter 

equations that depend on time are obtained as follows 

𝛾(𝑡) =
𝑅(𝑡 + 1) − 𝑅(𝑡)

𝐼(𝑡)
,  

𝛽(𝑡) =
(𝐼(𝑡 + 1) − 𝐼(𝑡)) + (𝑅(𝑡 + 1) − 𝑅(𝑡))

𝐼(𝑡)
. 

(5) 

System (5) can be used to obtain parameters at any time needed [20]. 

2.3. Equilibrium Point 

A continuous dynamic system is said to have an equilibrium point if the system of differential 

equations 𝐱̇ =  𝐟(𝐱)  has a solution for 𝐟(𝐱)  =  0 . The point 𝑥∗   where 𝐟(𝑥∗)  =  0  is 

satisfied is called the equilibrium point. In this state, the length of the tangent vector is zero and 

the system is said to be in equilibrium. In a homogeneous system, the trivial solution 𝐱 =  0 of 

𝐟(𝐱)  =  0 is always an equilibrium state [27]. 

2.4. Basic Reproduction Number 

The Basic Reproduction Number is the average number of second-infected individuals due to 

contracting the first-infected individual in a susceptible population [28]. First, determining the new 

infection vector and the displacement vector from the model that satisfies the 

�̇� = 𝑓𝑖(𝑥) = ℱ𝑖(𝑥) − 𝒱𝑖(𝑥), 𝑖 = 1,… , 𝑛. 
(6) 

Next, convert the vector in Equation (6) into a matrix that satisfies 

𝐹 = [
𝜕ℱ𝑖

𝜕𝑥𝑗
(𝑥0
∗)] and 𝑉 = [

𝜕𝒱𝑖

𝜕𝑥𝑗
(𝑥0
∗)],       1 ≤ 𝑖, 𝑗, ≤ 𝑚. (7) 

The basic reproduction number is determined through the next generation matrix by operating 

𝐹𝑉−1. The largest eigenvalue of the next generation matrix is the basic reproduction number. 

2.5. Gershgorin Theorem 
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Suppose there is a matrix 𝐴 = (𝑎𝑖𝑗) then every eigenvalue of matrix 𝐴 will satisfies 

|𝜆 − 𝑎𝑖𝑖| ≤ ∑|𝑎𝑖𝑗|

𝑗≠𝑖

          𝑖 ∈ {1,2,3, … , 𝑛} (8) 

where 𝜆 is the eigenvalue of matrix 𝐴. Matrix 𝜆𝐼 − 𝐴 is Strictly Diagonally Dominant Matrices 

|𝜆 − 𝑎𝑖𝑖| > ∑ |𝑎𝑖𝑗|𝑗≠𝑖   for every 𝑖 . if Equation (8) is not satisfied then 𝜆𝐼 − 𝐴  is Strictly 

Diagonally Dominant Matrices. And if 𝜆𝐼 − 𝐴 is Strictly Diagonally Dominant Matrices then the 

result 𝜆 is not an eigenvalue because the matrix 𝜆𝐼 − 𝐴 nonsingular [29]. 

2.6. Stability Analysis Equilibrium Point using Gershgorin Discs 

Let 𝐴 = (𝑎𝑖𝑗) be a complex square matrix. Then each eigenvalue of 𝐴 lies in one of the 

Gershgorin discs 

𝐷𝑖 = {𝑧 ∈ ℂ ∶ |𝑧 − 𝑎𝑖𝑖| ≤ 𝑅𝑖}     ∨    𝐷𝑗 = {𝑧 ∈ ℂ ∶ |𝑧 − 𝑎𝑗𝑗| ≤ 𝑅𝑗} (9) 

where 𝑅𝑖 = ∑ |𝑎𝑖𝑗|
𝑛
𝑗=1,𝑗≠𝑖  and 𝑅𝑗 = ∑ |𝑎𝑖𝑗|

𝑛
𝑖=1,𝑖≠𝑗 . The union of n Gershgorin discs is called the 

Gershgorin set. 

𝐷 =⋃𝐷𝑖

𝑛

𝑖=1

 (10) 

It can be observed that 𝐷 is closed and finite in 𝐶, and all eigenvalues of 𝐴 are elements of 𝐷. 

Let 𝑥∗ be an equilibrium point of the system and the Jacobi Matrix of the system evaluated in 𝑥∗ 

is 

𝐷𝐟(𝑥∗) = (

𝐽11 𝐽12 … 𝐽1𝑛
𝐽21 𝐽22 ⋯ 𝐽2𝑛
⋮ ⋮ ⋱ ⋮
𝐽𝑛1 𝐽𝑛2 ⋯ 𝐽𝑛𝑛

) (11) 

and 

𝑅𝑖 = ∑ |𝐽𝑖𝑗|

𝑛

𝑗=1,𝑗≠𝑖

 (12) 

for 𝑖 = 1,2, … , 𝑛. If 𝐽𝑖𝑖 < 0 and 𝑅𝑖 < |𝐽𝑖𝑖| then 𝑥∗ is locally asymptotically stable. Since 𝐽𝑖𝑖 is 

the center point of the Gershgorin Disc is on the negative real axis of the complex plane and 𝑅𝑖 



7 

MATHEMATICAL MODEL OF COVID-19 TRANSMISSION 

is the radius, so if 𝑅𝑖 < |𝐽𝑖𝑖| the disc is completely in the negative part of the complex plane and 

all the eigenvalues are negative [30]. 

 

3. MAIN RESULTS 

3.1. Mathematical Model 

Mathematical model in the present study is constructed through a compartment approach. 

Here, the population is divided into six subpopulations, namely susceptible, vaccinated, exposed, 

symptomatic, asymptomatic, and recovered population. The proposed model of the Covid-19 

transmission in this study is equipped with the following assumptions. 

A1. The population is assumed a closed population whose birth and death rates per time unit 

are considered constant. 

A2. The population is homogeneous which means that each individual has the same chance of 

being infected. 

A3. Vaccine is only given to the susceptible individuals. 

A4. The vaccine efficacy is not permanent so that individuals who have been vaccinated can 

revert to being susceptible individuals after certain time [31]. 

A5. There is a latent period in the disease infection process, i.e., a condition in which an 

infected individual does not transmit the disease to other individuals. 

Based on the above assumptions, the Covid-19 transmission can be described into a schematic 

diagram as follows 

 

FIGURE 1. Schematic diagram of Covid-19 spread model. 
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Based on Figure 1, the Covid-19 transmission model can be written in the form of an equation 

system as follows: 

𝑑𝑆

𝑑𝑡
= Λ + 𝜖𝑉 −

𝑆(𝛽1𝐼 + 𝛽2𝐴)

𝑁
− (𝜔 + 𝜇)𝑆, 

𝑑𝑉

𝑑𝑡
= 𝜔𝑆 − (𝜇 + 𝜖)𝑉, 

𝑑𝐸

𝑑𝑡
=
𝑆(𝛽1𝐼 + 𝛽2𝐴)

𝑁
− (𝛼 + 𝜇)𝐸, 

𝑑𝐼

𝑑𝑡
= 𝛼𝐸𝑝 − 𝛾1𝐼 − 𝜇𝐼, 

𝑑𝐴

𝑑𝑡
= 𝛼𝐸(1 − 𝑝) − 𝛾2𝐴 − 𝜇𝐴, 

𝑑𝑅

𝑑𝑡
= 𝛾1𝐼 + 𝛾2𝐴 − 𝜇𝑅, 

  (13) 

with 

𝑆 : Susceptible population, 

𝑉  : Vaccinated population, 

𝐸  : Expossed population, 

𝐼  : Symptomatic population, 

𝐴 : Asymptomatic population, 

𝑅 : Recovered population,  

𝛬 : Recruitment rate, 

𝜇 : Natural death rate, 

𝜔 : Vaccination rate, 

𝜖  : The rate of decline in immunity, 

𝛽1 : Infection rate due to contact with symptomatic population, 

𝛽2 : Infection rate due to contact with asymptomatic population, 

𝛼 : Rate of the exposed individual becomes infected, 

𝑝 : Rate of an infected individual being symptomatic, 

𝛾1  : Recovery rate of the symptomatic population, 

𝛾2 : Recovery rate of the asymptomatic population. 
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In order to simplify System (13), normalization is performed by dividing each subpopulation 

by the total population. First, introducing  

𝑆̅ =
𝑆

𝑁
, �̅� =

𝑉

𝑁
, �̅� =

𝐸

𝑁
, 𝐼 ̅ =

𝐼

𝑁
, �̅� =

𝐴

𝑁
, and �̅� =

𝑅

𝑁
,                  (14)     

Substituting Equations in (14) into System (13) and removing the bar mark in each compartment 

notation for writing simplification, then the normalized model is obtained as follows 

𝑑𝑆

𝑑𝑡
= Λ + 𝜖𝑉 − 𝑆(𝛽1𝐼 + 𝛽2𝐴) − (𝜔 + 𝜇)𝑆, 

𝑑𝑉

𝑑𝑡
= 𝜔𝑆 − (𝜇 + 𝜖)𝑉, 

𝑑𝐸

𝑑𝑡
= 𝑆(𝛽1𝐼 + 𝛽2𝐴) − (𝛼 + 𝜇)𝐸, 

𝑑𝐼

𝑑𝑡
= 𝛼𝐸𝑝 − 𝛾1𝐼 − 𝜇𝐼, 

𝑑𝐴

𝑑𝑡
= 𝛼𝐸(1 − 𝑝) − 𝛾2𝐴 − 𝜇𝐴, 

𝑑𝑅

𝑑𝑡
= 𝛾1𝐼 + 𝛾2𝐴 − 𝜇𝑅, 

(15) 

with 𝑆 + 𝑉 + 𝐸 + 𝐼 + 𝐴 + 𝑅 = 1 and Λ = 𝜇.  

3.2. Equilibrium Points and Basic Reproduction Number 

In this section, equilibrium points and basic reproduction number of System (14) are 

performed. According to Section 2.3, System (15) has two equilibrium points, they are disease-

free and endemic equilibrium points. In practice, one may obtain equilibrium points 

simultaneously. But in this paper, we display the basic reproduction number after the disease-free 

equilibrium points. As a result, the endemic equilibrium can be denoted in terms of basic 

reproduction number to provide simpler writing and analyzing.  

3.2.1 Disease-free Equilibrium Point 

The disease-free equilibrium point represents the situation of the population which is free from 

Covid-19. It means that infected individuals will vanish by themselves in the population and stays 

to be in a disease-free situation all the time. Here, the disease-free equilibrium is denoted by 𝐸0, 

namely 
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𝐸0 = (𝑆 =
(𝜇 + 𝜖)Λ

𝜇(𝜖 + 𝜇 + 𝜔)
, 𝑉 =

Λ𝜔

𝜇(𝜖 + 𝜇 + 𝜔)
, 𝐸 = 0, 𝐼 = 0, 𝐴 = 0, 𝑅 = 0). 

From the biological point of view, the disease-free equilibrium point 𝐸0 always exists since all 

populations are non-negative as the result of positivity of all parameters. 

3.2.2 Basic Reproduction Number 

The basic reproduction number of System (15) can be obtained by using the Next Generation 

Matrix method in Section 2.4. The compartments that affect the spread of Covid-19 are 𝐸, 𝐼, and 

𝐴 populations so that the Next Generation Matrix of System (15) is obtained as follows 

𝐹𝑉−1 = [
𝑎11

(𝜇 + 𝜖)Λ𝛽1
𝜇(𝜇 + 𝜖 + 𝜔)(𝛾1 + 𝜇)

(𝜇 + 𝜖)Λ𝛽2
𝜇(𝜇 + 𝜖 + 𝜔)(𝛾2 + 𝜇)

0 0 0
0 0 0

], (16) 

with 

𝑎11 =
(𝜇 + 𝜖)Λ𝛼(𝑝𝛽1(𝜇 + 𝛾2 ) + 𝛽2(1 − 𝑝)(𝜇 + 𝛾1 ))

𝜇(𝜇 + 𝜖 + 𝜔)(𝛼 + 𝜇)(𝛾1 + 𝜇)(𝛾2 + 𝜇)
. (17) 

Therefore, the spectral radius of Matrix (16) which is the basic reproduction number is 

𝑅0 =
(𝜇 + 𝜖)Λ𝛼(𝑝𝛽1(𝜇 + 𝛾2 ) + 𝛽2(1 − 𝑝)(𝜇 + 𝛾1 ))

𝜇(𝜇 + 𝜖 + 𝜔)(𝛼 + 𝜇)(𝛾1 + 𝜇)(𝛾2 + 𝜇)
. (18) 

3.2.3. Endemic Equilibrium Point 

The endemic point represents a situation where Covid-19 spreads within the population and 

will always occur in the population over time. The endemic equilibrium point of System (15) is 

represented in term of 𝑅0 in Equation (18) to get the following results 

𝐸1 = (𝑆
∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝐴∗, 𝑅∗), (19) 

with 

𝑆∗ =
(𝜇 + 𝜖)Λ

𝜇(𝜇 + 𝜖 + 𝜔)𝑅0
,                  𝑉∗ =

𝜔Λ

𝜇(𝜇 + 𝜖 + 𝜔)𝑅0
, 

𝐸∗ =
Λ(𝑅0 − 1)

(𝛼 + 𝜇)𝑅0
,                            𝐼∗ =

𝛼Λ(𝑅0 − 1)p

(𝛼 + 𝜇)(𝜇 + 𝛾1)𝑅0
, 

𝐴∗ =
𝛼Λ(𝑅0 − 1)(1 − 𝑝)

(𝛼 + 𝜇)(𝜇 + 𝛾2)𝑅0
,           𝑅∗ =

(𝜇𝑝𝛾1 + 𝛾1𝛾2 + 𝜇𝛾2(1 − 𝑝))𝛼Λ(𝑅0 − 1)

(𝜇 + 𝛾2)(𝛼 + 𝜇)(𝜇 + 𝛾1)𝜇𝑅0
 

(20) 

The representation of endemic equilibrium point in term of 𝑅0 makes it easy to analyze. Since all 
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parameters involved in System (15) are non-negative and 0 < 𝑝 < 1 then the existence condition 

of 𝐸1 is 𝑅0 > 1.     

3.3. Equilibrium Point Stability Analysis 

3.3.1. Disease-free equilibrium stability 

The stability of equilibrium points in this study is analyzed by using the eigenvalues approach. 

The mathematical calculation to determine the stability of equilibrium points of System (15) is 

complex enough. Thus, for simplification it is assumed that the infection rate by asymptomatic and 

symptomatic individuals are the same (𝛽1 = 𝛽2 ). The eigenvalues which correspond to each 

equilibrium point are detected by Gershgorin disc approach according to Section 2.5. 

  First, determining the Jacobian matrix of System (15) than we obtain 

𝐽 =

(

 
 
 

−𝐴𝛽2 − 𝐼𝛽1 − 𝜇 − 𝜔 𝜖 0 −𝑆𝛽1 −𝑆𝛽2 0
𝜔 −𝜖 − 𝜇 0 0 0 0

𝐴𝛽2 + 𝐼𝛽1 0 −𝛼 − 𝜇 𝑆𝛽1 𝑆𝛽2 0
0 0 𝛼𝑝 −𝜇 − 𝛾1 0 0
0 0 𝛼(1 − 𝑝) 0 −𝛾2 − 𝜇 0
0 0 0 𝛾1 𝛾2 −𝜇)

 
 
 

. 

Next, evaluating the Jacobian matrix 𝐽 at 𝐸0 so that the following result is yielded   

𝐽(𝐸0) =

(

 
 
 
 
 
 
−𝜇 − 𝜔 𝜖 0 −

(𝜇 + 𝜖)Λ

𝜇(𝜖 + 𝜇 + 𝜔)
𝛽 −

(𝜇 + 𝜖)Λ

𝜇(𝜖 + 𝜇 + 𝜔)
𝛽 0

𝜔 −𝜖 − 𝜇 0 0 0 0

0 0 −𝛼 − 𝜇
(𝜇 + 𝜖)Λ

𝜇(𝜖 + 𝜇 + 𝜔)
𝛽1

(𝜇 + 𝜖)Λ

𝜇(𝜖 + 𝜇 + 𝜔)
𝛽2 0

0 0 𝛼𝑝 −𝜇 − 𝛾1 0 0

0 0 𝛼(1 − 𝑝) 0 −𝛾2 − 𝜇 0
0 0 0 𝛾1 𝛾2 −𝜇)

 
 
 
 
 
 

. 

It is clear that all elements of the diagonal of matrix 𝐽(𝐸0) are negative so that based on the 

Gershgorin theory the center point of the Gershgorin disc is in the negative plane.  To ensure all 

discs are in the negative plane so that all eigenvalues are negative as well, then the radius of the 

whole discs must be 𝑅𝑖 < 𝐽𝑖𝑖 with 𝑖 = 1,2, … ,6. 

As the consequences, the disease-free equilibrium point 𝐸0 is local asymtotically stable if all 

of the eigenvalues of the correspond Jacobian matrix (𝐽(𝐸0)) satisfy at least one of the following 

Gershgorin discs, i.e. 
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𝜖 +
2𝛽(𝜇 + 𝜖)Λ

𝜇(𝜖 + 𝜇 + 𝜔)
< 𝜇 + 𝜔,                         𝜔 < 𝜇 + 𝜖, 

2𝛽(𝜇 + 𝜖)Λ

𝜇(𝜖 + 𝜇 + 𝜔)
< 𝜇 + 𝛼,                                 𝛾1 + 𝛾2 < 𝜇, 

𝛼𝑝 < 𝜇 + 𝛾1,                                                    𝛼(1 − 𝑝) < (𝜇 + 𝛾2). 

These Gershgorin discs condition or some of them can be simplified or represented in term of 𝑅0 

as follows 

𝑅0 < 1, 𝛽𝛬 < 2,     𝛾1 + 𝛾2 < 𝜇. (21) 

The second inequality in conditions (21) is always fulfilled so that it is not an asymptotically 

stable condition since the recruitment rate Λ is biologically less than 1, and the parameter β ∈

(0,1). Meanwhile, the third inequality is biologically impossible to occur because μ is the rate of 

natural death is not the death rate from disease is not greater than the sum of the recovery rates 

from symptomatic (𝛾1) and asymptomatic (𝛾2) infections. Thus, the stability requirement for a 

disease-free point is 𝑅0 < 1. 

In other words, the disease will disappear from the population if at least one or more of the 

Gershgorin discs condition in (21) are satisfied. For the first inequality in (21), the disease-free 

equilibrium will be stable if this condition is met because if the basic reproduction number is less 

than 1 or each infected individual transmits the disease to less than one new individual, the number 

of infections in a population will decrease. For the second inequality, it means that it will be stable 

if 𝛽 or the rate of infection, both asymptomatic and symptomatic infections multiplied by the rate 

of recruitment into the ecosystem is less than 2, meaning that the value of the rate of infection is 

small so that fewer individuals are infected. For the third inequality, the total value of the recovery 

rate is smaller than the value of the death parameter. In the case of 𝑅0 < 1  the value of the 

recovery rate is relatively large so that a greater value of the death rate will remove the population 

from the infected and recovered compartments while the susceptible population will still exist 

because the recruitment rate is the same as the death rate. 

The disease-free point is asymptotically stable if it satisfies at least one Gershgorin Disc in 

System (21). The second inequality in System (21) is always satisfied so that it is not an 

asymptotically stable condition because the recruitment rate (𝛬)  is biologically impossible to 
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hold a value greater than 1, and the infection rate parameter (𝛽) is not possible to be greater than 

2. At the same time, the third inequality is not biologically possible because it is the pure death 

rate (𝜇 ), not the death rate due to disease, and not greater than the sum of the cure rates for 

symptomatic (𝛾1) and asymptomatic (𝛾2). Accordingly, the stability required for the disease-free 

point is 𝑅0  < 1.  

3.5.2. Endemic equilibrium stability 

The stability analysis of endemic equilibrium point 𝐸1  is carried out by doing the same 

prosedur as the stability analysis of 𝐸0. Substituting 𝐸1 to the Jacobian matrix 𝐽 yield 

𝐽(𝐸1) =

(

 
 
 
 
 
 
𝑎11 𝜖 0 −

(𝜇 + 𝜖)Λ

𝜇(𝜇 + 𝜖 + 𝜔)𝑅0
𝛽1 −

(𝜇 + 𝜖)Λ

𝜇(𝜇 + 𝜖 + 𝜔)𝑅0
𝛽2 0

𝜔 −𝜖 − 𝜇 0 0 0 0

𝑎31 0 −𝛼 − 𝜇
(𝜇 + 𝜖)Λ

𝜇(𝜇 + 𝜖 + 𝜔)𝑅0
𝛽1

(𝜇 + 𝜖)Λ

𝜇(𝜇 + 𝜖 + 𝜔)𝑅0
𝛽2 0

0 0 𝛼𝑝 −𝜇 − 𝛾1 0 0
0 0 𝛼(1 − 𝑝) 0 −𝛾2 − 𝜇 0
0 0 0 𝛾1 𝛾2 −𝜇)

 
 
 
 
 
 

  

with 

𝑎11 = −
𝛼Λ(𝑅0−1)(1−𝑝)

(𝛼+𝜇)(𝜇+𝛾2)𝑅0
𝛽2 −

𝛼Λ(𝑅0−1)p

(𝛼+𝜇)(𝜇+𝛾1)𝑅0
𝛽1 − 𝜇 − 𝜔, 

𝑎31 =
𝛼Λ(𝑅0−1)(1−𝑝)

(𝛼+𝜇)(𝜇+𝛾2)𝑅0
𝛽2 +

𝛼Λ(𝑅0−1)p

(𝛼+𝜇)(𝜇+𝛾1)𝑅0
𝛽1. 

  

It is clear that 𝑎11  is negative so that all elements of the diagonal of matrix 𝐽(𝐸1)  are 

negative result in the center point of the Gershgorin disc is in the negative plane. The endemic 

equilibrium point is asymptotically stable if 𝑅0 > 1  and hold at least one of the following 

Gershgorin disc, 

𝜖 +
(𝛽1+𝛽2)(𝜇+𝜖)Λ

𝜇(𝜖+𝜇+𝜔)𝑅0
<
𝛼Λ(𝑅0−1)(1−𝑝)

(𝛼+𝜇)(𝜇+𝛾2)𝑅0
𝛽2 +

𝛼Λ(𝑅0−1)p

(𝛼+𝜇)(𝜇+𝛾1)𝑅0
𝛽1 + 𝜇 + 𝜔, 

𝜔 < 𝜇 + 𝜖, 

𝛼Λ(𝑅0−1)(1−𝑝)

(𝛼+𝜇)(𝜇+𝛾2)𝑅0
𝛽2 +

𝛼Λ(𝑅0−1)p

(𝛼+𝜇)(𝜇+𝛾1)𝑅0
𝛽1 +

(𝛽1+𝛽2)(𝜇+𝜖)Λ

𝜇(𝜖+𝜇+𝜔)𝑅0
< 𝜇 + 𝛼, 

𝛾1 + 𝛾2 < 𝜇, 𝛼𝑝 < 𝜇 + 𝛾1, 𝛼(1 − 𝑝) < (𝜇 + 𝛾2), 

 

These Gershgorin discs condition or some of them can be simplified or represented in term of 𝑅0 
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as follows 

Λ𝛽 < 2𝑅0  and  𝛾1 + 𝛾2 < 𝜇, (22) 

with 𝑅0 > 1. 

The disease will exist in the population or be endemic provided that 𝑅0 > 1 must be met 

before then being determined with at least one of the Gershgorin discs in System (22) being met. 

This means that the disease is transmitted from an infected individual to more than one susceptible 

individual so that the infected population will increase. Then the first inequality in System (22) the 

value of the recruitment rate multiplied by the infection rate is less than twice the basic 

reproduction number where 𝑅0 >  1 so that the right side will increase the β value limit or the 

infection rate will be greater when compared to the gershorin disc system (21) a large recruitment 

rate value will increase the infected population. Then the second inequality in system (22) where 

previously the value of 𝑅0 >  1 must be fulfilled first so that the recovery value will be relatively 

small, causing individuals in the infected compartment not to move much to the recovered 

compartment. 

However, the endemic point is asymptotically stable if 𝑅0 > 1  and satisfies at least one 

Gershgorin disk in Equation (22). The first inequality in System (22) is always fulfilled because it 

has a mandatory condition of 𝑅0 > 1, and biologically, it is not possible to have a recruitment 

rate (𝛬) and an infection rate (𝛽) that is greater than 2. Moreover, the second inequality in System 

(22) is biologically impossible to occur as stated in the previous explanation. Therefore, the 

stability condition for the endemic point is 𝑅0 > 1.  

3.4. Parameters Estimation 

In this study, estimation of several parameters is carried out in two ways, i.e., constant and 

time-dependen parameters. The time-dependent estimation parameters is considered to capture the 

fluctuation of parameters value due to government policies and people's habits during the Covid-

19 pandemic. Here, parameter 𝛼, 𝛽1, 𝛽2, 𝛾1  and 𝛾2  are choosen to be estimated since these 

parameters are one of the core parameters of the model and related to running policies. 

3.4.1. Constant Parameters Estimation 
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Constant parameters estimation is carried out by using the Least-Square method. Here, the 

data of Covid-19 cases in East Java Province, Indonesia, is collected from February 18 until April 

8, 2022. Those data are used to be the initial values of each population which is displayed in Table 

1 and followed by other parameters that are not estimated. 

TABLE 1. Variables and parameters values. 

Parameters Value Reference 

𝑆 0.424455 [32] 

𝑉 0.563233 [32] 

𝐸 0.001051 [32] 

𝐼 0.000409 [32] 

𝐴 0.000367 [32] 

𝑅 0.010486 [32] 

𝛬 3.8602×10-5 [33] 

𝜇 3.8602×10-5 [33] 

𝑝 0.45 Assumed 

𝜔 0.026 Assumed 

𝜖 0.015 Assumed 

Constant parameters estimation is performed in two cases, namely 𝛽1 ≠ 𝛽2 and 𝛽1 = 𝛽2. In the 

case of 𝛽1 ≠ 𝛽2 , the estimated parameters values are 𝛼 = 0.1529 , 𝛽1  =  0.6619 , 𝛽2 =

2.444𝑒−8 , 𝛾1 = 0.2607 , and 𝛾2 = 0.2077 . Meanwhile, in the case of 𝛽1 = 𝛽2 , the estimated 

parameter values obtained are 𝛼 = 0,1563 , 𝛽 = 0,2851 , 𝛾1 = 0,2162 , and 𝛾2 = 0,2563 . 

Further, these results are analyzed in Section 3.5. 

3.4.2. Time-dependent Parameter Estimation 

Next, the time-dependent estimated parameters are performed by transforming System (15) 

into a differential equation with discrete time according to Section 2.2. Under this circumstance, 

the time-dependent estimated parameter can be done if it can be denoted explicitly from its original 

equation and not contained other estimated parameters. As a consequence, the time-dependent 

estimated parameters are only conducted in one case, namely 𝛽1 = 𝛽2 , so that 𝛽1  does not 

depends on 𝛽2  and vice versa. Thus, the number of time-dependent parameters that can be 

estimated in System (15) are three parameters. Here, we decide to choose parameters   𝛽1 = 𝛽2 =

𝛽, 𝛾1, and 𝛾2. By doing the same technique as in [20], we obtain the estimated parameter function 
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as follows 

𝛽(𝑡) =
𝐸(𝑡 + 1) − 𝐸(𝑡) + (𝛼 + 𝜇)𝐸(𝑡)

𝑆(𝑡)(𝐼(𝑡) + 𝐴(𝑡))
, 

𝛾1(𝑡) =
𝛼𝐸(𝑡)𝑝 − 𝐼(𝑡 + 1) + 𝐼(𝑡) − 𝜇𝐼(𝑡)

𝐼(𝑡)
, 

𝛾2(𝑡) =
𝛼𝐸(𝑡)(1 − 𝑝) − 𝐴(𝑡 + 1) + 𝐴(𝑡) − 𝜇𝐴(𝑡)

𝐴(𝑡)
. 

(23) 

Next, System (15) is transformed into a discrete mode as follows 

𝑆(𝑡 + 1) = 𝑆(𝑡) + Λ + 𝜖(𝑡)𝑉(𝑡) − 𝑆(𝑡)𝛽(𝑡)(𝐼(𝑡) + 𝐴(𝑡)) − (𝜔 + 𝜇)𝑆(𝑡), 

𝑉(𝑡 + 1) = 𝑉(𝑡) + 𝜔𝑆(𝑡) − 𝜇𝑉(𝑡) − 𝜖(𝑡)𝑉(𝑡), 

𝐸(𝑡 + 1) = 𝐸(𝑡) + 𝑆(𝑡)𝛽(𝑡)(𝐼(𝑡) + 𝐴(𝑡)) − (𝛼 + 𝜇)𝐸(𝑡), 

𝐼(𝑡 + 1) = 𝐼(𝑡) + 𝛼𝐸(𝑡)𝑝 − 𝛾1(𝑡)𝐼(𝑡) − 𝜇𝐼(𝑡), 

𝐴(𝑡 + 1) = 𝐴(𝑡) + 𝛼𝐸(𝑡)(1 − 𝑝) − 𝛾2(𝑡)𝐴(𝑡) − 𝜇𝐴(𝑡), 

𝑅(𝑡 + 1) = 𝑅(𝑡) + 𝛾1(𝑡)𝐼(𝑡) + 𝛾2(𝑡)𝐴(𝑡) − 𝜇𝑅(𝑡). 

(24) 

 

 

There are several steps to obtain time-dependent parameters by using the Deep Learning 

method. First, dividing the data into two categories, i.e., the training and testing data with 

composition 70% and 30% of the data, respectively. The training data is used to train the Deep 

Learning model, while the testing data is used to compare the output of the Deep Learning 

estimation. The daily data representing the number of individuals each compartment is proceeded 

into Equations (23) to obtain time-dependent parameters value. After that, the time-dependent 

parameters value is smoothed so that the following results are obtained and displayed in Figure 2. 
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(a) 

 

(b) 

 

 

(c) 

FIGURE 2. The results of data smoothing. 

The data after smoothing as shown in Figure 2 of the orange line is then processed to become 

input data from the Deep Learning model. Data smoothing aims to eliminate outlier values that 

can interfere with the estimation results from Deep Learning. In addition, data smoothing also 

improves the performance of the Deep Learning model to be faster and more accurate [19]. 

Subsequently, creating a Long Short-term Memory (LSTM) model with three layers which each 

batch size is 16, 32, and 16. Next, setting each sigmoid recurrent activation function. Finally, using 

Adam's Optimizer for hyperparameter optimization on Deep Learning model and performing 500 

epochs. The estimation results of the three parameters, 𝛽, 𝛾1, and 𝛾2, are plotted in Figure 3.  



18 

BAYU SETIAWAN, ANITA TRISKA, NURSANTI ANGGRIANI 

 

 

(a) 

 

(b) 

 

(c) 

FIGURE 3. The estimation results of the time-dependent parameter. 

It can be observed from Figure 3 that the Deep Learning method is able to produce the 

parameters values (red line) which is close to parameter values that is obtained from the data (blue 
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line). These results also show that the time-dependent parameters are much better at capturing the 

fluctuating parameter compared to the constant parameter. In Figure 3(a), during interval 𝑡 = 100 

to 𝑡 = 130  there is a quite difference between the estimation results and the data. It is a 

consequence of the taken training data at the previous time is not experienced a very large increase 

of parameter value. However, it could still detect the increasing of parameter value. Meanwhile, 

the recovery rates 𝛾1 and 𝛾2 which can be seen in Figures 3(b) and 3(c) are able to be estimated 

by using the Deep Learning method, whereas constant parameter values estimated using the Least 

Square method can only approach the data at certain times. 

3.5. Numerical Simulation 

In this section, the numerical simulation of System (15) is performed with the parameter values 

that have been estimated, i.e., the constant parameters and time-dependent parameters. The initial 

values and other parameters use the values in Table 1. Numerical simulation results are seen in 

Figure 4. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

 

(f) 

FIGURE 4. Numerical simulation results of each compartment. 
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The numerical simulation results of each compartment are displayed from the estimated 

parameters. (a) is the susceptible compartment, (b) is the vaccine compartment, (c) is the exposed 

compartment, (d) is the symptomatic compartment, (e) is the asymptomatic compartment, and (f) 

is the recovered compartment. The red line is a simulation of the model with parameters that 

change with time estimated using the Deep Learning method, while the green and yellow lines are 

numerical simulations of the model with constant parameters, and the blue line represents the data. 

Figure 4 shows the dynamics of each population which is produced by using parameter values 

yielded form the Deep Learning methods (red curve) and the Least Square method with two cases, 

namely 𝛽1 ≠ 𝛽2 and 𝛽1 = 𝛽2  (green and yellow curve, respectively), where the blue line is the 

data. Based on Figure 4, it is can be observed that the overall dynamics results using the Deep 

Learning method are more accurate in approaching the data than the Least-square results with both 

cases, 𝛽1  = 𝛽2  and 𝛽1  =  𝛽2 . In Figures 4(a), 4(b), and 4(f) there is not much difference 

between the various estimation results in the Susceptible, Vaccinated and Recovered compartments, 

but pay attention to Figures 4(c), 4(d), 4(e) which are the Exposed, Asymptomatic Infected and 

Symptomatic Infected compartments the data values are also smaller compared to the previous 

compartment. It is enough to see that the Deep Learning estimation results are more accurate in 

approaching the data then the pattern is also more appropriate where there is an increase first before 

finally decreasing. As has been done before, it is not only the pattern of changing parameters that 

can be followed by the Deep Learning method, but also the pattern of changing the population 

automatically follows like the data. 

 

4. DISCUSSION 

The MAPE is obtained by comparing data and the results of each estimation method. The 

MAPE calculation results for each method are as follows. 
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TABLE 2. MAPE of the estimation results from the constant and time-dependent parameters. 

Compartments 

MAPE (%) 

Constant  

Parameter (𝛽2 ≠ 𝛽2) 

Constant  

Parameter (𝛽2 = 𝛽2) 

Time-dependent 

Parameter 

𝑆 0.84589 0.84194 0.94499 

𝑉 0.58571 0.58690 0.62044 

𝐸 53.24760 61.12237 6.55554 

𝐼 33.47746 45.57388 5.78422 

𝐴 48.10107 38.48291 6.79970 

𝑅 0.53130 0.58038 1.40085 

Average 22.79817 24.53139 3.68429 

The smaller the MAPE, the better the accuracy of the method that has been done. Based on 

Table 2, it is observed that the model with Time-dependent parameters has the best accuracy with 

a MAPE value of 3.68%, followed by a model with constant parameters for 𝛽1 ≠ 𝛽2 with a 

MAPE value of 22.79% and finally a model with constant parameters for 𝛽1 = 𝛽2 with a MAPE 

value of 24.53%. Thus, the use of time-dependent parameters can produce a very good model with 

significant accuracy. Besides that, the complexity of the model also produces a better model in 

terms of accuracy. 

Constant and time-dependent parameters that have been estimated produce numerical 

simulations that are in accordance with the data. Based on Figure 3, estimation using Deep 

Learning is more accurate in compartments 𝐸, 𝐼, and 𝐴 because it is closer to the data value. A 

comparison can also be made based on the MAPE value. In the constant parameter estimation, the 

MAPE values are 22.79% and 24.53% in the case of 𝛽1 ≠ 𝛽2  and 𝛽1 = 𝛽2 , respectively. 

Whereas the parameters depend on the estimated time resulting in numerical simulations that 

correspond to the data with a MAPE value of 3.68%. 

 

5. CONCLUSIONS 

Analytically, the disease-free equilibrium points of the Covid-19 spread model are local 

asymptotically stable if 𝑅0 < 1, while the endemic point is local asymptotically stable if 𝑅0 > 1. 

The constant parameter estimation of the proposed model is carried out in the case of 𝛽1 ≠ 𝛽2 
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and 𝛽1 = 𝛽2. From the estimated parameters, numerical simulations that correspond to the data 

yield the MAPE values of 22.79% and 24.53% in the case of 𝛽1 ≠ 𝛽2 and 𝛽1 = 𝛽2, respectively. 

The estimation of time-dependent parameters in the model is only carried out in the case of 𝛽1 =

𝛽2 . From the estimated parameters, numerical simulations yield a MAPE value of 3.68%. In 

general, time-dependent parameter estimation can give better simulation results since it produces 

the smallest MAPE value. 
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