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Abstract. In this study, we examine the effects of wind speed on profit optimization within dual-fishermen ex-

ploitation of tritrophic prey-predator fish ecosystems. Recognizing wind speed as an influential external parameter,

our bioeconomic model emphasizes its impact on profit maximization for two distinct fishing actors. Grounded

in the Nash Equilibrium framework, we posit that optimal outcomes arise when each participant steadfastly ad-

heres to their respective strategies. Utilizing a Python-driven Markov chain methodology, we anticipate future

wind states, contingent upon current conditions and inherent transition probabilities. Preliminary findings denote a

significant correlation between wind speed variations and the economic viability of fishing ventures. This research

not only elucidates the profound influence of wind speed on marine fisheries but also advocates for the integration

of advanced computational methodologies, such as Python and Markov chains, in fisheries management.
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1. INTRODUCTION

Wind prediction is important for a variety of reasons. For example, it can help individuals

and businesses make informed decisions about outdoor activities such as sailing, kite surfing
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or paragliding. Wind prediction is also an important tool for farmers as it helps them deter-

mine when to plant and harvest their crops. Additionally, it is crucial for the operation of wind

turbines as it enables energy companies to optimize the production of renewable energy as re-

searched by Tang et al. [14]. Overall, wind prediction plays a critical role in many industries and

activities, helping people make better decisions and improve the efficiency of their operations.

There are several mathematical methods used to predict wind. One of the most common

methods is numerical weather prediction (NWP), which involves complex mathematical models

that simulate the Earth’s atmosphere. These models use data from weather stations, satellites,

and other sources to predict the behavior of the atmosphere, including wind patterns.

Another common method is statistical modeling, which involves analyzing historical weather

data to identify patterns and trends, and then using this information to make predictions about

future wind patterns. This method is particularly useful for short-term wind prediction, such as

predicting wind gusts during a storm.

Another mathematically based method is machine learning, which involves training algo-

rithms on large amounts of data to identify patterns and make predictions. This method is

becoming increasingly popular for wind prediction, as it can be used to analyze complex data

sets and make accurate predictions over longer time frames.

Overall, the mathematical methods used to predict wind depend on the complexity of the

system being analyzed and the length of time over which the predictions are being made.

This study is designed to investigate the impact of wind speed on the profitability of fishermen

within a tritrophic prey-predator system. Here, wind speed is viewed as an external factor that

influences the bioeconomic model, which targets the maximization of profits for two fishing

actors. The model relies on the concept of the Nash Equilibrium, asserting that each participant

in this competitive environment must adhere to their original strategy to realize the desired

outcome. This approach is built upon the foundational work by El Foutayeni et Khaladi [5,6].

It’s critical to recognize, however, that the system in question does not exist in isolation. It is

susceptible to external factors, such as wind speed, that can significantly influence the expected

outcomes. The exploration of these external elements and their impacts on the fishing industry

is of paramount importance. Recent research by Riahi et al. [10], conducted a comprehensive
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study on temperature prediction utilizing the Markov chain method. The research focused on

analyzing the temperature data archive of Casablanca, Morocco, specifically from the preceding

year. The results of the analysis exhibited an impressive convergence, accurately aligning with

the real temperatures observed. Similarly, as wind speed is a significant factor not only for the

fishermen but also for fish populations, its influence warrants a detailed study.

Wind can have a significant impact on fishing, both positively and negatively. In general,

wind can help to stir up the water and create currents, which can attract fish and make them

more active. This can be especially true in areas where there are underwater structures like

reefs or drop-offs. On the other hand, strong winds can also make fishing difficult or even

dangerous. High winds can create large waves that can make it difficult to navigate a boat

or fish from shore. Additionally, strong winds can cause fish to seek shelter in deeper water,

making them harder to catch. Overall, the impact of wind on fishing depends on a variety of

factors such as wind strength, water temperature, and the specific species of fish being targeted.

The region of Casablanca, Morocco is known for its windy conditions, which are influenced

by its coastal location on the Atlantic Ocean. The frequency and intensity of the winds can vary

throughout the year, but generally, the summer months are less windy compared to the fall and

winter months. During the peak of the windy season, the average wind speed can range from

15 to 25 km/h, with gusts reaching up to 50 km/h or more. The most common wind direction in

Casablanca is from the northwest, but it can also come from the northeast or southwest during

certain times of the year. These wind conditions can impact various aspects of life in the region,

including transportation, agriculture, and outdoor activities.

A Python program for Markov chain wind prediction holds significant utility in the field of

meteorology and weather forecasting. By leveraging the power and flexibility of Python, this

program can effectively analyze historical wind data and generate probabilistic predictions for

future wind patterns. The Markov chain methodology employed in the program allows for the

consideration of the current state of the wind system and the transition probabilities to determine

the subsequent states. This enables the program to capture the inherent dynamics and depen-

dencies in wind patterns, providing valuable insights for various applications. For instance, in

renewable energy planning, accurate wind predictions are essential for optimizing the placement
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and operation of wind turbines. Additionally, the program can aid in environmental modeling

and pollution dispersion studies by simulating the movement of airborne particles. The abil-

ity to predict wind patterns using a Python program based on the Markov chain method offers

a valuable tool for industries and researchers to make informed decisions, improve resource

management, and enhance risk assessment in fields that rely on accurate wind forecasting.

The current research diverges in perspective by focusing on the implications for fishermen,

Differing from earlier works such as those by Takyi et al. [13] and Barman et al. [2]. Their

research was primarily concerned with developing a predator-prey model that incorporated wind

as a critical abiotic factor influencing predation patterns.

This paper is organized as follows: Section 2 introduces the bioeconomic model aimed at

maximizing profits in a tritrophic prey-predator fishery, exploited by two fishermen. Section 3

delves into the influence of wind dynamics on marine life and the application of the Markov

Chain. In Section 4, we provide a simulation and analysis based on the proposed model. The

paper ends with a conclusion section.

2. BIOECONOMIC MODEL FOR PROFIT MAXIMIZATION IN DUAL-FISHERMEN EX-

PLOITATION OF TRITROPHIC PREY-PREDATOR FISH POPULATIONS

2.1. Prey-Predator Biological Model. In this segment, we analyze a tritrophic prey-predator

model that encompasses three interacting populations: the prey, an intermediate predator, and

an apex predator. It’s postulated that the prey population, denoted as D1(t), proliferates ac-

cording to a logistic growth model characterized by a specific birth rate constant. Additionally,

interactions between the prey and both predator levels are incorporated due to the defensive

capacities of the prey.

Similarly, the intermediate predator population, represented as D2(t), also expands following

a logistic growth model with its unique birth rate constant. The availability of its favored food

source, the prey D1(t), positively impacts the population density of the intermediate predator,

D2(t). This model also takes into account the interactions between the intermediate and top

predators, considering the defensive abilities of the intermediate predator.

The apex predator population, D3(t), sees an increase in its population density with the pres-

ence of its favored food sources (prey and the intermediate predator). Therefore, the model can
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be expressed mathematically as follows:

(2.1)


Ḋ1 = r1D1 (1−D1)−αD1D2−βD1D3,

Ḋ2 = r2D2 (1−D2)+ ᾱD2D1−δD2D3,

Ḋ3 = r3D3 (1−D3)+ β̄D1D3 + δ̄D2D3

where
(
D j
)

j=1,2,3 represent the densities of the three populations, with each having positive

inital conditions D1 (0) > 0, D2 (0) > 0, D3 (0) > 0. The variables
(
r j
)

j=1,2,3 correspond to

the intrinsic growth rates of the prey, the middle predator, and top predator, respectively. The

parameters α, β ,and δ represent the maximum values that the per capita reduction rate of D1and

D2 can attain, respectively. ᾱ is the conversion rate of prey D1into middle predator D2, and β̄

and δ̄ are the conversion rate of prey D1into top predator D3and the conversion rate of middle

predator D2 into top predator D3, respectively.

Proposition 2.1. The Persistent Model of a dynamical system of differential equations can be

estimated by setting all derivativeses to zero.

The equilibrium points for the system outlined in equations (1) can be determined by finding

the solutions to the following equations:

(2.2)


Ḋ1 = r1D1 (1−D1)−αD1D2−βD1D3 = 0,

Ḋ2 = r2D2 (1−D2)+ ᾱD2D1−δD2D3 = 0,

Ḋ3 = r3D3 (1−D3)+ β̄D1D3 + δ̄D2D3 = 0.

The solution to the system denoted as (2.2) is represented by P(D∗1,D
∗
2,D

∗
3), where the values

are defined in the equation set (2.3):

(2.3)

D∗1 =
(r1r2r3+r1δ δ̄+r3αδ−r2r3α−r2r3β−r2β δ̄)

∆
,

D∗2 =
(r1r2r3+r2ββ̄−r3βᾱ−r1r3δ+r1r3ᾱ−r1β̄ δ)

∆
,

D∗3 =
(r1r2r3+r1r2β̄+r1r2δ̄+r1ᾱδ̄−r2β̄α+r3αᾱ)

∆

where ∆ = r1r2r3 + r1δ δ̄ + r2ββ̄ + r3αᾱ−αδβ̄ +βᾱδ̄ .

The equilibrium point exists if r1 > max{α,β}, r2 > δ , and r3 > max{δ , β̄}.

Remark 2.1. This system potentially has other solutions that were not considered due to their

contradiction with the established hypotheses. For instance, the point P(0,0,0) was excluded
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because the system would lose its ecological meaning if the population densities were to equal

zero.

Proposition 2.2. A steady state is stable if it is locally asymptotically stable.

Theorem 2.1. The point P(D∗1,D
∗
2,D

∗
3) is locally asymptotically stable.

Proof. The Jacobian matrix for system (1) is given by:

(2.4) J∗ =


−r1D∗1 −αD∗1 −βD∗1

ᾱD∗2 −r2D∗2 −δD∗2

β̄D∗3 δ̄D∗3 −r3D∗3

 ,
by formulating the characteristic equation and applying Routh-Hurwitz criterion, we find:

(2.5) Q(λ ) = n0λ
3 +n1λ

2 +n2λ +n3,

where

n0 = 1,

n1 = r1D∗1 + r2D∗2 + r3D∗3,

n2 = r3D∗3 (r1D∗1 + r2D∗2)+D∗1D∗2 (αᾱ + r1r2)+D∗1D∗3ββ̄ +D∗2D∗3δ δ̄ ,

n3 =D∗3 (r1D∗1 + r2D∗2)
(
D∗1ββ̄ +D∗2δ δ̄

)
− δ̄D∗2D∗3 (δ r2D∗2− ᾱβD∗1)− β̄D∗1D∗3 (β r1D∗1 +αδD∗2)

+ r3D∗1D∗3D∗2 (αᾱ + r1r2) .

as n0, n1, n2, n3, and (n1n2−n0n3) are all positive.The Routh-Hurwitz conditions are

satisfed. Therefore, the point P(D∗1, D∗2, D∗3) is locally asymptotically stable. �

2.2. Bioeconomic Model. We characterize the bioeconomic model by the following set of

equations:

(2.6)


Ḋ1 = r1D1 (1−D1)−αD1D2−βD1D3−q1E1D1,

Ḋ2 = r2D2 (1−D2)+ ᾱD2D1−δD2D3−q2E2D2,

Ḋ3 = r3D3 (1−D3)+ β̄D1D3 + δ̄D2D3−q3E3D3.

Catchability, denoted as q, is a pivotal parameter in the establishment and verification of the

fishing simulation model. This constant value represents the efficiency of a fishing operation

or how effectively a unit of fishing effort captures fish. The fishing effort itself is a composite
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metric representing the degree of fishing activity and fishing power. Each fleet’s fishing effort

is an aggregate of the individual efforts of its fishing units. Importantly, a unit’s fishing power

signifies its capacity to harvest fish. Numerous variables influence the fishing effort, including

the type of vessel, the duration of fishing, the number of fishing expeditions, the technological

level, the fishing equipment, and the size of the crew. However, within the context of this paper,

’effort’ denoted E is interpreted as an encompassing term, encapsulating all these influencing

factors.

The biomass representation as a function of fishing effort at the biological equilibrium is

determined by solving the system:

(2.7)


r1 (1−D1) = αD2 +βD3 +q1E1,

r2 (1−D2) =−ᾱD1 +δD3 +q2E2,

r3 (1−D3) =−β̄D1− δ̄D2 +q3E3.

The solution to the aforementioned system (7) is provided as follows:

(2.8)


D1 = n11E1 +n12E2 +n13E3 +D∗1,

D2 = n21E1 +n22E2 +n23E3 +D∗2,

D3 = n31E1 +n32E2 +n33E3 +D∗3.

where

(2.9) n11 =
−(δ δ̄q1−r2r3q1)

∆
,

n21=
(δ β̄q1−ᾱr3q1)

∆
,

n31=
(−ᾱβ̄q1−β̄ r2q1)

∆
,

n12=
(β δ̄q2−αr3q2)

∆
,

n22 =
(ββ̄q2−r1r3q2)

∆
,

n32 =
(αβ̄q2−δ̄ r1q2)

∆
,

n13=
(−δαq3+β r2q3)

∆
,

n23=
(βᾱq3−δ r1q3)

∆
,

n33 =
(−αᾱq3−r1r2q3)

∆
.

We define the matrix D, where D=−NE+D∗ where N =(−ni j)1≤i, j≤3 and D=(D∗1,D
∗
2,D

∗
3)

T

with nii < 0 for all i = 1,2,3.
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2.2.1. Expression of the Profit. The profit accrued by each fisherman is characterized by the

ensuing function:

(2.10) Πi(E) = (T R)i− (TC)i,

where Πi(E) is the profit for each fisherman, (T R)i is the total revenue and (TC)i is the total

cost.

The Total Revenue (T R)i is linearly associated with the catch, expressed as T R = price×

catches.

(2.11) (T R)i = pi×Hi j,

where Hi j = q jEi jD j represent the catches of species j by the fsherman i.

The total catches of species j by all fishermen is expressed by:

(2.12) H j =
2

∑
i=1

Hi j,

The total fishing effort dedicated to species j by all fishermen can be represented as:

(2.13) E j =
2

∑
i=1

Ei j,

We elaborate these notations as follows:

(2.14)

(T R)i = p1Hi1 + p2Hi2 + p3Hi3

= p1q1Ei1 (n11E1 +n12E2 +n13E3 +D∗1)+ p2q2Ei2 (n21E1 +n22E2 +n23E3 +D∗2)

+p3q3Ei3
(
n31E1 +n32E2 +n33E3 +D∗3

)
= p1q1Ei1

(
n11

n
∑

i=1
Ei1 +n12

n
∑

i=1
Ei2 +n13

n
∑

i=1
Ei3 +D∗1

)
+p2q2Ei2

(
n21

n
∑

i=1
Ei1 +n22

n
∑

i=1
Ei2 +n23

n
∑

i=1
Ei3 +D∗2

)
+p3q3Ei3

(
n31

n
∑

i=1
Ei1 +n32

n
∑

i=1
Ei2 +n33

n
∑

i=1
Ei3 +D∗3

)
.

Then

(2.15) (T R)i =
〈
E i,−pqNE i〉+〈E i, pqD∗−

n

∑
j=1. j 6=1

pqNE j

〉
,

where (p j) j=1,2,3 is the price per unit biomass of the species j. In this work, we take p1, p2 and

p3 as constants.
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In alignment with numerous established fisheries models, such as those proposed by Clark

[4] and Gordon [7], we assume that:

(2.16) (TC)i =< ci,E i >,

where (TC)i is the total effort cost of the fisherman i, and ci is the constant cost per unit of

harvesting and E i is the total effort of the fisherman i.

Leveraging these notations, we can now formulate the expression of profit.

(2.17)
Πi(E) = (T R)i− (TC)i

=
〈
E i,−pqNE i〉+〈E i, pqD∗−

n
∑

j=1. j 6=1
pqNE j

〉
.

As the biological model is meaningful only if the biomass of all the marine species are strictly

positive.

Then D =−NE +D∗ ≥ D0 > 0.

For each fisherman i we have:

(2.18) NE i ≤−
n

∑
j=1. j 6=1

NE j +D∗.

2.2.2. Profit Maximization.

Nash Equilibrium. A Nash equilibrium solution is realized when each involved fisherman main-

tains their fishing strategy while aiming to optimize their individual profit and establish a certain

level of fishing effort.

We can reformulate this issue into an optimization problem:

To maximize the profit of the first fisherman, we need to resolve problem (P1):

max Π1(E) =
〈
E1,−pqNE1 + pqD∗− c− pqNE2〉 ,(2.19)

subject to
NE1 ≤−NE2 +D∗,

E1 ≥ 0, E2 is given.

To optimize the second fisherman’s profit, we resolve problem (P2):

max Π2(E) =
〈
E2,−pqNE2 + pqD∗− c− pqNE1〉 ,(2.20)

subject to
NE2 ≤−NE1 +D∗,

E2 ≥ 0, E1 is given.
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The point (E1,E2) constitutes a generalized Nash equilibrium if and only if E1solves problem

(P1) when E2 is given, and E2 solves problem (P2) when E1 is given.

By employing the Karush-Kuhn-Tucker conditions to problem (P1) we obtain vectors u1 ∈

R3
+,v1 ∈ R3

+ and λ 1 ∈ R3
+ that satisfy the following conditions:

(2.21)


2pqNE1 + c− pqD∗+ pqNE2−u1 +NT λ 1 = 0,

NE1 + v1 =−NE2+D∗,

< u1,E1 > =< λ 1,v1 > = 0.

Similarly, applying the Karush-Kuhn-Tucker conditions to problem (P2), we have u2 ∈R3
+,v2 ∈

R3
+ and λ 2 ∈ R3

+ such that:

(2.22)


2pqNE2 + c− pqD∗+ pqNE1−u1 +NT λ 2 = 0,

NE2 + v2 =−NE2 +D∗,

< u2,E2 > =< λ 2,v2 > = 0.

From (2.21) and (2.22) we have

(2.23)



u1= 2pqNE1+c− pqD∗+pqNE2+NT λ
1,

u2= 2pqNE2+c− pqD∗+pqNE1+NT λ 2,

v1=−NE1−NE2+D∗ ,

v2=−NE1−NE2+D∗,

< ui,E i> =< λ
i,vi> = 0 for all i = 1,2,3, (∗1)

E i,ui,λ i,vi> 0 for all i = 1,2,3. (∗2)

From (∗1) and (∗2) we have v1 = v2

And as D j > 0 for all j = 1,2,3 ; therefore v1 = v2 > 0.

We also have the scalar product of (λ i)i=1,2,3 = 0 and (vi)i=1,2,3 = 0 .

We denote by v = v1 = v2, so we have:

(2.24)



u1= 2pqNE1+pqNE2+c− pqD∗,

u2= 2pqNE2+pqNE1+c− pqD∗,

v =−NE1−NE2+D∗,

< ui,E i> = 0 for all i = 1,2,3,

E i,ui,vi> 0 for all i = 1,2,3,
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Thus,

(2.25)


u1

u2

v

=


2pqN pqN NT

pqN 2pqN 0

−N −N 0




E1

E2

0

+


c− pqD∗

c− pqD∗

D∗

 .

Linear Complementarity Problem. We have a linear complementarity problem equivalent to the

Nash equilibriumn problem LCP(M,b) such that z,w ∈ R6 in order that:

(2.26) LCP(M,b)


w = Mz+b> 0,

z,w > 0,

zT w = 0.

We verify that the LCP(M,b) has a unique solution by the next Theorem.

Theorem 2.2. LCP(M,b) has a unique solution for every b if and only if M is a P−matrix.

Proof. A matrix M is called P−matrix if the determinant of every principal submatrix of M is

positive Murty, [9]. �

Remark 2.2. If M is a P−matrix the Nash Equilibrium Problem have a unique solution.

Theorem 2.3. The matrix

(2.27) M =


2pqN pqN NT

pqN 2pqN 0

−N −N 0

 ,
is a P−matrix.

Proof. As we have nii < 0 for all i = 1,2,3 and χ > 0, we note by (Mi)i=1,....,9 the submatrix of

M, we obtain:

(2.28)

det(M1) =−2p1q1n11 > 0,

det(M2) = 4p1q1 p2q2q1r3q2∆ > 0,

det(M3) = 8p1q1 p2q2 p3q3q3q1q2∆2 > 0,

det(M4) =−12n11 p2
1q2

1 p2q2 p3q3q3q1q2∆2 > 0,

det(M5) = 18p2
1q21p2

2q2
2 p3q3q1r3q2q3q1q2∆3 > 0,
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det(M6) = 27p2
1q2

1 p2
2q2

2 p2
3q2

3(q3q1q2∆2)2 > 0,

det(M7) =−9p1q1 p2
2q2

2 p2
3q2

3n11(q3q1q2∆2)2 > 0,

det(M8) = 3p1q1 p2q2 p2
3q2

3q1r3q2∆(q3q1q2∆2)2 > 0,

det(M9) = p1q1 p2q2 p3q3(q3q1q2∆2)3 > 0.

With all the principal minors det(Mi)i=1,....,9 > 0 being greater than zero, it implies that the

matrix M is P−matrix. Hence, the associated linear complementarity problem, denoted as

LCP(M,b), is guaranteed to have a unique solution. This unique solution embodies the Nash

equilibrium of the problem under consideration.

(2.29)

 E1 = 1
3N−1(D∗− c

pq),

E2 = 1
3N−1(D∗− c

pq).

�

Summary 2.1. Ultimately, the fishing effort that optimally maximizes the profit for fishermen

exploiting the three species is expressed in equation (29):

(2.30)

E11=
1
3

[
r1
q1
[
(

D∗1−
c1

p1q1

)
+ α

q1

(
D∗2−

c1
p2q2

)
+ β

q1

(
D∗3−

c1
p3q3

)]
,

E12=
1
3

[
r2
q2

(
D∗2−

c1
p2q2

)
− ᾱ

q2

(
D∗1−

c1
p1q1

)
+ δ

q2

(
D∗3−

c1
p3q3

)]
,

E13=
1
3

[
r3
q3

(
D∗3−

c1
p3q3

)
− β̄

q3

(
D∗1−

c1
p1q1

)
− δ̄

q3

(
D∗2−

c1
p2q2

)]
,

E21=
1
3

[
r1
q1

(
D∗1−

c2
p1q1

)
+ α

q1

(
D∗2−

c2
p2q2

)
+ β

q1

(
D∗3−

c2
p3q3

)]
,

E22=
1
3

[
r2
q2

(
D∗2−

c2
p2q2

)
− ᾱ

q2

(
D∗1−

c2
p1q1

)
+ δ

q2

(
D∗3−

c2
p3q3

)]
,

E23=
1
3

[
r3
q3

(
D∗3−

c2
p3q3

)
− β̄

q3

(
D∗1−

c2
p1q1

)
− δ̄

q3

(
D∗2−

c2
p2q2

)]
.

3. WIND DYNAMICS: INFLUENCE ON MARINE LIFE AND MARKOV CHAIN PREDIC-

TIVE MODELLING

3.1. Wind Impact on Prey-Predator Interactions. The relation that is more affected by

wind speed in fishing can vary depending on the specific fishing location, the species of fish

present, and the fishing techniques employed. However, in general, wind speed can have a more

significant impact on fishing in relation to the behavior and movements of prey and predator fish

rather than species in competition.
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It’s also important to note that the effects of wind might not be the same for all species or

even all individuals within a species. Some predators might be better able to cope with or exploit

windy conditions than others, for example, due to differences in body size or foraging strategy.

The interaction between wind speed and predator-prey relationships can significantly impact

predator-prey system dynamics, either by decreasing or increasing predation rates.

(1) Influence on Predation Success: High wind conditions can make hunting more challeng-

ing for predators. This adversity initially triggers an increase in their population density.

However, beyond a certain threshold, the predator population begins to diminish due to

hunting difficulties, suggesting that extremely windy conditions could potentially lead

to species extinction.

(2) Wind as a Stabilizer: Conversely, wind can serve to stabilize the predator-prey ecosys-

tem. In situations where predation follows a Holling Type II functional response, an

uptick in wind flow can transition the system into a stable state. By mitigating over-

predation, strong winds can foster long-term system stability.

(3) Effects on Species Coexistence: Wind can help maintain a stable coexistence of preda-

tor and prey populations when predation aligns with the law of mass action principle.

However, under a Holling Type II functional response, wind doesn’t impact the system’s

stability. Importantly, extreme wind strength can lead both predator and prey popula-

tions to dwindle to zero, thereby risking species extinction.

(4) Impact of Time-Variant Wind Flow: The incorporation of time-variant wind flow into

the model adds a layer of complexity to the system dynamics. The periodic variation in

wind flow has a profound influence on predator predation patterns, highlighting an area

ripe for further exploration.

Overall, wind speed plays a critical role in shaping predator-prey dynamics within a fishing

context. It influences predator hunting success rates, prey vulnerability, and the overall stability

of the ecosystem. This understanding is vital for effectively predicting and managing population

dynamics amid fluctuating environmental conditions.



14 C. RIAHI, I. AGMOUR, Y. EL FOUTAYENI, N. ACHTAICH

3.2. Fishermen and Wind Speed Interactions. Fishermen target a variety of species as prey

and predators, with the types and techniques varying based on location, regulations, and prac-

tices. Notably, wind speed can impact predator-prey dynamics in the fishing ecosystem.

Wind Speed Influence: In high wind conditions, the hunting challenges for predators lead to

an increase and then a decrease in their population, suggesting potential species extinction with

extreme winds. Contrarily, wind can stabilize the predator-prey ecosystem, preventing over-

predation and promoting system stability. While wind fosters predator and prey coexistence,

extreme wind strength can risk species extinction. The introduction of time-variant wind flow

adds complexity to system dynamics.

Variables Impacting Fishing Trips: The likelihood of fishing trips is influenced by factors

such as wind speed, wave height, expected catch weight, and expected unit price. As wind speed

increases, trip likelihood decreases. Conversely, successful fishing or high market prices can

incentivize trips even in adverse weather. The need for accurate weather forecasts is emphasized

for fishermen’s informed and safe decisions.

The study conducted by Sainsbury [11] examines the impact of wind speed on the likelihood

of embarking on a trip. The hypothesis suggests that wind speed in a favourable direction

would have a negative impact on trip likelihood. The rationale behind this hypothesis is that

stronger winds and larger waves increase discomfort, pose operating challenges, and reduce

safety, which in turn, may dissuade people from taking trips.

The study made by Sainsbury [11] illustrates the results of two distinct logistic regression

models: Conditional Logit and Random Parameter Logit. Both models are used to analyze the

relationship between wind speed (an independent variable) and trip decisions (the dependent

variable) for fishermen.

Here’s the interpretation of the coefficients with respect to wind speed and trip decisions:

(1) Wind speed: In both models, the coefficient for wind speed is positive, which suggests

that an increase in wind speed is associated with an increase in the log-odds of the

outcome (presumably, the decision to go on a fishing trip).

(2) In the Conditional Logit model, the coefficient estimate for wind speed is 0.09344, indi-

cating that for each unit increase in wind speed, the log-odds of the outcome increases
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by about 0.09344. The 2.5% and 97.5% confidence intervals (CIs) are 0.04401 and

0.14286 respectively, which gives us an interval where the true coefficient lies with a

95% confidence level.

(3) In the Random Parameter Logit model, the coefficient estimate for wind speed is a bit

larger, at 0.12772. This means that for each unit increase in wind speed, the log-odds

of the outcome increases by about 0.12772. The 2.5% and 97.5% CIs are 0.06448 and

0.19096 respectively. This result is also statistically significant at the 99% confidence

level.

The attribute levels for wind speed are presented as 10, 20, 30, 40, and 50 mph. This

suggests that the analysis is considering varying degrees of wind speed and their impact

on trip likelihood.

The Conditional Logit and Random Parameter Logit models indicate a significant positive

correlation between wind speed and the probability of choosing to go on a fishing trip. Thus,

as wind speed rises, so does the likelihood of initiating a fishing trip. However, in practice,

high wind speeds, which pose safety risks and operational challenges, could deter fishermen

from setting out. This dichotomy underscores the importance of precise and timely weather

forecasting in aiding fishermen to make safe, informed decisions about their trips.

3.3. Wind Speed Prediction.

3.3.1. Data and Modeling Strategy. The study utilizes a dataset derived from the Anfa op-

erational meteorological tower located in Casablanca, Morocco. This dataset includes hourly

average wind speed data collected over a year (from March 1, 2022, to February 28, 2023), and

is publicly accessible via the Windguru website.

The main objective of this research is to construct a model capable of accurately capturing and

illustrating seasonal variations, despite the constraints of a limited annual time series dataset.

To this end, the dataset is divided into four seasons - winter (December, January, February),

spring (March, April, May), summer (June, July, August), and autumn (September, October,

November).
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To better analyze and utilize this seasonally-divided data, transition matrices were created for

each selected month. These matrices were then employed to generate synthetic data, a method

that will allow for a more detailed exploration of seasonal wind speed variations.

3.3.2. Markov Chain Simulation Technique. In this study, we utilize a first-order Markov

chain to model the wind speed. The first-order Markov chain is a type of stochastic process

where the state at the next time step depends only on the current state, as outlined by Shamshad

et al. [12], rather than on the sequence of events that came before it.

The ’order’ in this context refers to how many previous time steps, or states, from each season

we consider when calculating the probability of transitioning to the next state. In a first-order

Markov chain, we only look at the current state to predict the next one.

These transition probabilities are encapsulated within a matrix known as the ’transition prob-

ability matrix.’ The dimensions of this matrix are determined by the number of distinct, or

’dominant,’ states observed in each season.

Definition 3.1. A discrete-time Markov chain is a sequence of random variables X0,X1, ......,with

the Markov property, known as a stochastic process, in which the value of the next variable de-

pends only on the value of the current variable

(3.1) P(Xn+1 = x|X1 = x1,X2 = x2....Xn = xn) = P(Xn+1 = x|Xn = xn).

The probability of Xn+1 only depends on the probability of Xn that precedes it.

Definition 3.2. A Markov chain is called homogeneous if and only if the transition probabilities

are independent of the time, such that :

(3.2) P(Xn+1 = x|Xn = xn) = P(X1 = j|X0 = i) = pi j,

where j+ i = 1.

The transition probability matrix can be written as:

(3.3) P =

p11 p12

p21 p22

 .
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The elements of P are nonnegative and, given that the state at time n is i, the process must be

somewhere at time n+1 which means that the elements in each row must sum to one.

3.3.3. Wind Prediction Using Markov Chain Algorithm: A Python-Based Approach. The

wind prediction algorithm based on the Markov chain is a computational method implemented

in Python to forecast wind patterns. The algorithm leverages the principles of the Markov chain,

which models the probabilistic transition between different states based on historical data.

In this algorithm, historical speed wind data, is used to estimate the transition probabilities

between different wind states. By analyzing the patterns and dependencies in the historical data,

the algorithm predicts the likelihood of wind transitioning from one state to another over time.

The algorithm involves the following steps:

(1) Data preprocessing: The historical wind data is collected and prepared for analysis. This

may involve cleaning the data, handling missing values, and ensuring data consistency.

(2) State discretization: The continuous wind data is discretized into a set of states to fa-

cilitate the Markov chain modeling. The number and definition of states depend on the

specific application and desired granularity.

(3) Transition probability estimation: The transition probabilities between different wind

states are calculated based on the historical data. This involves analyzing the frequency

and occurrence of state transitions.

(4) Markov chain modeling: The transition probabilities are used to construct a transition

matrix that represents the Markov chain. Each element of the matrix corresponds to the

probability of transitioning from one state to another.

(5) Wind prediction: Given an initial wind state, the Markov chain algorithm uses the tran-

sition matrix to iteratively forecast the wind state at future time steps. The prediction is

based on the current state and the calculated transition probabilities.

(6) Evaluation and validation: The accuracy and performance of the wind predictions are

evaluated using appropriate metrics and compared against observed wind data to assess

the algorithm’s effectiveness.
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By employing this algorithm, researchers and practitioners can obtain insights into future

wind patterns, which can be valuable for various applications such as renewable energy plan-

ning, environmental modeling, and decision-making processes that involve wind-dependent ac-

tivities.

The Algorithm. import random

def calculate transition matrix(states, transition probabilities):

transition matrix = {}

for i in range(len(states)):

current state = states[i]

transition matrix[current state] = {}

cumulative prob = 0.0

for j in range(len(states)):

next state = states[j]

prob = transition probabilities[i][j]

cumulative prob += prob

transition matrix[current state][next state] = cumulative prob

return transition matrix

def predict wind speed(initial state, transition matrix, steps):

current state = initial state

predicted speeds = [current state]

for in range(steps):

rand = random.random()

for next state in transition matrix[current state]:

if rand < transition_matrix[current_state][next_state]:

current state = next state

break

predicted speeds.append(current state)

return predicted speeds

def main():
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# Define wind speed states and transition probabilities

states = [

[84/90, 3/90],

[0, 3/90]

]

transition probabilities = [

[0.6, 0.4],

[0.2, 0.8]

]

# Calculate the transition matrix

transition matrix = calculate transition matrix(states, transition probabilities)

# Set initial wind speed state and prediction steps

initial state = [84/90, 3/90]

prediction steps = 10

# Predict wind speeds

predicted speeds = predict wind speed(initial state, transition matrix, prediction steps)

# Print the predicted wind speeds

print(”Predicted Wind Speeds:”, predicted speeds)

3.3.4. Results. In the subsequent analysis, we take into account the seasonal variations in

wind speed as proposed by Karatepe and Corscadden [8]. represented by Markov graphs

and their corresponding stochastic matrices. For each season—Winter, Spring, Summer, and

Autumn—we’ve developed a distinct Markov graph that encapsulates the state transitions of

wind speed specific to that time of year. Concurrently, we’ve created a stochastic matrix for

each season, presenting a quantitative representation of the probabilities associated with each

state transition within the Markov graph. Together, the graphs and matrices illustrate the dy-

namic and complex nature of wind speed as it fluctuates seasonally, serving as a predictive

tool that can guide decision-making in fields such as fishing, renewable energy generation, and

meteorology.
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In our study focusing on wind speed prediction in the region of Casablanca, we identified

two distinct states: a favorable and an unfavorable condition for fishing. According to Agmour

et al. [1], the favorable state is characterized by wind speeds ranging from 1 to 5 km/h. In these

conditions, fishing operations are typically unhindered, and safety levels are optimal.

On the other hand, the unfavorable state is associated with higher wind speeds ranging from

29 to 38 km/h. These conditions present significant challenges to fishing operations, as they are

typically accompanied by moderate waves and increased chances of spray. These conditions

can pose operational difficulties and safety risks for fishermen.

Seasonal Wind Speed Variations: Autumn (September-November). During Autumn, from Sep-

tember through November, wind speed variations demonstrate distinct patterns. These varia-

tions are represented using a Markov graph and a corresponding stochastic matrix.

The Markov graph visually depicts the transitions between different wind speed states. Con-

versely, the stochastic matrix numerically encapsulates these transition probabilities. Each ma-

trix entry, denoted as pi j, represents the probability of transitioning from state i to state j.

Favorable Least−Un f avorable86
91

5
91

1
91

90
91

FIGURE 1. Markov graph, from 1 September to 30 November

Here is the Autumn season’s stochastic matrix:

(3.4) P1 =

86
91

5
91

1
91

90
91

 .
In Figure 1, during September to November, there’s a 94.5% chance of staying in the ”Fa-

vorable” wind state and a 5.5% chance of moving to ”Least-Unfavorable”. Conversely, the
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”Least-Unfavorable” state shows a 98.9% likelihood of remaining and only a 1.1% chance of

reverting to ”Favorable”.

Seasonal Wind Speed Variations: Winter (December-February). During Winter, from December

through February, wind speed variations exhibit unique patterns. These variations are illustrated

using a Markov graph and a corresponding stochastic matrix.

Favorable Least−Un f avorable88
89

1
89

1
89

88
89

FIGURE 2. Markov graph, from 1 December to 28 February

Here is the Winter season’s stochastic matrix:

(3.5) P2 =

88
89

1
89

1
89

88
89

 .
For the December to February period, as illustrated in Figure 2, the ”Favorable” wind state

has a high stability with a 88/89 probability of remaining unchanged and only a 1/89 chance of

shifting to the ”Least-Unfavorable” state. The ”Least-Unfavorable” state mirrors this stability,

with an 88/89 likelihood of maintaining its status and a 1/89 probability of converting to the

”Favorable” state.

Seasonal Wind Speed Variations: Spring (March-May). During Spring, from March through

May, wind speed variations exhibit unique patterns. These variations are illustrated using a

Markov graph and a corresponding stochastic matrix.

Here is the Spring season’s stochastic matrix:
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Favorable Least−Un f avorable86
91

5
91

2
91

89
91

FIGURE 3. Markov graph, from 1 March to 31 May

(3.6) P3 =

86
91

5
91

2
91

89
91

 .
In Figure 3, for March to May, the ”Favorable” wind state has an 86/91 probability of persist-

ing and a 5/91 chance of transitioning to ”Least-Unfavorable”. The ”Least-Unfavorable” state

is more stable, with an 89/91 probability of maintaining itself, while there’s a 2/91 chance it

will switch to the ”Favorable” state.

Seasonal Wind Speed Variations: Summer (June-August). During Summer, from June through

August, wind speed variations exhibit distinct patterns. These variations are illustrated using a

Markov graph and a corresponding stochastic matrix.

Favorable Least−Un f avorable91
91

0

46
91

45
91

FIGURE 4. Markov graph, from 1 June to 31 August
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Here is the Summer season’s stochastic matrix:

(3.7) P4 =

91
91

0
91

46
91

45
91

 .
During the summer months of June to August, as depicted in Figure 4, the ”Favorable”

wind state showcases a complete stability, with a probability of 91/91, indicating it remains

consistently in the ”Favorable” state without any transition to the ”Least-Unfavorable” state.

Conversely, the ”Least-Unfavorable” state has a higher transition rate, with a 46/91 chance of

switching to the ”Favorable” state and a 45/91 probability of remaining in its current state.

Remark 3.1. In this study, the original matrices were transformed into stochastic matrices for

use in Markov chain models. The transformation ensured all entries were nonnegative and

each row’s sum was 1, aligning with key properties of stochastic matrices. Adjustments were

made carefully, maintaining data integrity while ensuring suitability for modeling transition

probabilities.

4. SIMULATION

In this section, we aim to simulate the previously mentioned model that estimates the profits

of two fishermen exploiting a Tritrophic Prey-Predator system, with special attention given to

the impact of wind speed. To validate the local asymptotic stability and existence of the three

fish populations, we use the parameters of system (2.1) as detailed in Table 1.

The economic parameters are obtained from system (2.30) and can be found in Table 2.

Profits are then calculated and tabulated in Table 3. This simulation allows us to explore the

potential effects of wind speed on the profitability of fishing within a Tritrophic Prey-Predator

system, providing valuable insights for fishermen, fisheries management, and policymakers.

TABLE 1. Biological parameters for the Tritrophic system

Prey Middle predator Top predator

r1 = 5 r2 = 4 r3 = 3

α = 9.10−6 ᾱ = 8.10−6 β̄ = 2.10−6

β = 7.10−6 δ = 6.10−6 δ̄ = 10−6
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TABLE 2. Economic parameters for the Tritrophic system

Prey Middle predator Top predator

p1 = 1 p2 = 3 p3 = 5

q1 = 0.005 q2 = 0.02 q3 = 0.01

c1 = 0.01 c1 = 0.01 c1 = 0.01

c2 = 0.015 c2 = 0.015 c2 = 0.015

TABLE 3. The Total profit estimation considering the wind speed

p1 p2 p3 Π1 Π2

20 30 60 96.223 95.221

220 400 510 612.420 611.418

2200 3000 5100 6145.254 6144.25

20000 30000 6000 71496.944 71495.942

where (p1, p2, p3) are the price of three fish populations and their corresponding fishing profit

(Π1,Π2).

The table shows how the price points of three fish populations (p1, p2, p3) affect the cor-

responding fishing profits (Π1,Π2). As the fish prices increase, the fishing profits rise corre-

spondingly. However, our study findings emphasize that external factors like wind speed can

significantly influence this relationship, potentially altering the expected profits. Thus, our bioe-

conomic model integrates these dynamics to predict and optimize outcomes, providing valuable

insights for resource management in marine fisheries.

5. DISCUSSION

Our study presents a comprehensive exploration of the impact of wind speed on the prof-

itability of dual-fishermen exploitation of a tritrophic prey-predator fish population. Using a

bioeconomic model incorporating wind speed as a significant factor, we carried out simulations

based on the predicted wind speed in the region of Casablanca. The following plot illustrates

the profitability for two fishermen under two conditions: one considering the effect of wind
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(marked as ’with Wind Effect’) and the other without any wind effect. The x-axis represents

different fishing populations, and the y-axis indicates the profit obtained.

0 2500 5000 7500 10000 12500 15000 17500 20000
Fishing Population

0

10000

20000

30000
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60000

70000
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it

Fisherman Profit With Wind Effect
Fisherman Profit Without Wind Effect

Figure 5: Fisherman profit comparison: with and without wind effect

In Figure 5, we observe a slight deviation in our study’s results compared to those obtained

by Bentounsi et al. [3]. In our investigation, we incorporated wind speed as a factor and applied

the simulation to the predicted wind speed in the region of Casablanca. The wind speed, which

was stable, appeared to positively impact profits. Additionally, we found that price also played

a significant role in profit maximization. From these observations, we can infer the positive

effect of wind speed on profit. However, if additional significant factors are considered, the

results may vary. This variability underlines the importance of investigating the impact of other

parameters on fishermen’s profit.

Our study has clearly shown that wind speed significantly affects the profitability of dual-

fishermen exploitation of a tritrophic prey-predator fish population, emphasizing the importance

of incorporating environmental factors in bioeconomic modeling.

However, given the regional specificity of wind patterns, validation of the Markov chain

model across different geographical areas is necessary. Future studies should aim to explore
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the interplay of various environmental factors and extend the application of computational and

predictive tools for enhanced accuracy and sustainability in fisheries management.

In summary, our findings underscore the pivotal role of wind speed in fisheries profitability,

implying the need for a more environmentally comprehensive approach in fisheries management

6. CONLUSION

This study offers valuable insights into the seasonal wind speed variations and their potential

impacts on fishing activities. Using the Markov chain approach, the study could model and

predict wind speed across different seasons, providing a data-driven framework to better under-

stand wind speed variations and their influence on ecosystem dynamics and fishing practices.

The research indicated that wind speed has a profound effect on fishing trip decisions and

profitability, reinforcing the need for accurate and timely weather forecasting in aiding fish-

ermen to make safe, informed decisions. Additionally, the study demonstrated the efficacy

of employing Markov chains for wind speed prediction, contributing a new perspective to the

existing body of literature in this field.

While the study has successfully addressed its research objectives, there are potential av-

enues for future research. This includes exploring the impact of other weather variables on

fishing activities, integrating more comprehensive data sets, and utilizing advanced data analyt-

ics techniques for prediction.

Overall, understanding the dynamics of wind speed variations and their influences on vari-

ous sectors, such as fishing, holds paramount importance in climate change research, fisheries

management, and renewable energy sectors.

7. DATA AVAILABILITY

The datasets analysed during the current study are available publicly in the websites; [www.onp.ma]

and [www.windguru.cz].
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