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Abstract: In this paper, we formulate and analyze a mathematical model to study the effect of pre-exposure 

vaccination and post-exposure treatment on the spread of rabies in domestic and stray dogs. The effective reproduction 

number (ℛe) was calculated using the next-generation matrix approach. Using the Castillo-Chavez method, the 

disease-free equilibrium (DFE) point is proven to be locally asymptotically stable if  ℛe < 1. Using the quadratic 

Lyapunov function, the endemic equilibrium (EE) point is determined to be globally asymptotically stable if  ℛe >

1.  In addition, sensitivity analysis of model parameters on ℛe  was carried out using the normalized forward 

sensitivity index method. Optimal control analysis using Pontryagin's minimal principle was carried out to minimize 

the number of exposed and infected individuals as well as the control costs of vaccinating susceptible individuals and 

treating exposed individuals. Numerical simulations were carried out to verify the analytical results using MATLAB 

software. The results of the sensitivity analysis show that the transmission rate in stray dogs and the vaccination rate 

of stray dogs are the most sensitive parameters and are key factors in reducing the prevalence of rabies. The 

implementation of a combination of two optimal controls (pre-exposure vaccination and post-exposure treatment) 
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results in a significant reduction in the number of cases in infected individuals, as demonstrated numerically by optimal 

control analysis. 

Keywords: rabies; effective reproduction number; sensitivity analysis; numerical simulations; optimal control. 
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1. INTRODUCTION 

Rabies is a zoonotic viral disease that causes progressive and fatal inflammation of the brain and 

spinal cord. Clinically, it has two forms, namely malignant rabies (characterized by hyperactivity 

and hallucinations) and paralytic rabies (characterized by paralysis and coma). Although fatal 

when clinical signs appear, rabies is completely avoidable. To prevent death from rabies, vaccines, 

medicines and technology have been used. Despite this, rabies still kills tens of thousands of people 

every year. Of these cases, approximately 99% are from infected dog bites. Rabies is estimated to 

cause 59,000 human deaths annually in more than 150 countries, with 95% of cases occurring in 

Africa and Asia. Due to unreported and uncertain estimates, this figure is likely an underestimate. 

The burden of the disease is largely borne by poor rural communities, with about half of cases 

caused by children under 15 years of age [1]. Rabies is estimated to cause 59,000 human deaths 

annually and WHO recommends intradermal administration of rabies vaccines, as this reduces the 

number of vaccines required and costs by 60–80% without compromising safety or efficacy. To 

control tropical diseases, rabies is included in the WHO Roadmap 2021–2030, which sets regional 

and progressive targets for targeted disease eradication. As a zoonotic disease, rabies requires close 

cross-sectoral coordination at the national, regional and global levels [2].  

The transmission of rabies to humans can occur either in stray animals such as stray cats, 

wolves, coyotes, foxes, raccoons, skunks, bats, and rodents, or domestic animals like dogs and cats, 

depending on the environmental context. Therefore, it is crucial to prevent its spread among both 

humans and animals. There are very effective vaccines available to immunize individuals either 

before or after exposure to rabies, such as Post-exposure prophylaxis (PEP). Pre-exposure 

prophylaxis (PrEP), is advised for individuals in high-risk occupations (e.g., laboratory workers 
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handling live rabies virus and viruses associated with rabies) and for those whose work or personal 

activities may put them close to bats or other potential mammals [2]. Today, vaccination has been 

carried out throughout the world to prevent the spread of the infectious disease rabies. In the field 

of public health, especially in the prevention and treatment of infectious diseases, significant 

progress occurred in the 20th century. To achieve these results, vaccination is necessary [3]. 

However, early studies only assumed that mandatory and/or voluntary vaccination should be 

carried out due to a lack of vaccination and knowledge. To date, network vaccination programs 

have proven more successful when random vaccinations are administered in pairs, combining 

targeted vaccination with regular immunization [4]. 

Until now, the mechanism of rabies spread is still being studied for prevention and mitigation 

purposes. One approach to understanding the dynamics of the spread of infectious diseases is 

through mathematical modelling. Many epidemic models are based on the classic SEIR 

(Susceptible-Exposed-Infectious-Recovered) model. Several rabies epidemic models based on the 

classical SEIR compartment model used to simulate rabies disease dynamics can be found in [5-

10] and the references therein. A deterministic model was created to examine the dynamics of dog-

to-human and dog-to-dog rabies transmission in China [5]. This model is a SEIR model, which 

looks at four groups in dog and human populations. The results of this study indicate that an 

efficient way to reduce human rabies in China is to reduce the fertility rate of dogs and increase 

dog vaccination coverage. Ruan et al. [10] built a SEIR basic type model for the spread of rabies 

virus between dogs and from dogs to humans and used the model to simulate human rabies data in 

China from 1996 to 2010. Subsequently, this basic model was modified to include pet dogs and 

stray dogs and applied the model to simulate human rabies data from Guangdong Province, China.  

Asamoah et al. [11] investigated the best strategy to stop the spread of rabies from dogs to humans, 

namely by using pre-exposure prophylaxis (vaccine) and post-exposure prophylaxis (treatment) as 

a result of public awareness. Furthermore, Taib et al. [12] proposed a deterministic compartmental 

model with the SEIRS framework to fit actual data regarding the number of rabies cases infected 

in humans in Sarawak from June 2017 to January 2019. The study results show that controlling 
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dog births can prevent the spread of rabies in the state and increasing dog vaccination coverage 

and reducing the number of newborn dogs would be a more effective strategy to deal with the 

current rabies outbreak in Sarawak. Hailemhicael et al. [14] constructed a mathematical model by 

dividing the dog population into two categories, namely: stray dogs and domestic dogs. On the 

other hand, the rabies virus tends to spread in both populations. In this model, disease control 

strategies use vaccination and culling of infected dogs, and the impact is studied. 

Optimal control theory is an effective mathematical technique for analyzing a variety of 

epidemiological models to determine the optimal control strategy to minimize the number of 

infected individuals [15]. More studies on the applications of optimal control to infectious diseases 

can be found in [16-21] and the references therein. Additional research on the use of optimum 

control for infectious diseases, including rabies, may be found in [22–25] and the reference therein. 

This research will expand the model [14] by adding treatment control for infected dogs and 

the method will be expanded by analyzing optimal control in a model of rabies transmission from 

a stray dog population to domestic dogs. The research aims to examine the optimal control of 

vaccination interventions for susceptible individuals (pre-exposure vaccination) and treatment of 

exposed individuals (post-exposure vaccination) in a model of rabies transmission from stray dogs 

to domestic dogs. The urgency of this research is because currently, the rate of rabies infection is 

still high, a significant number of deaths have occurred, and the administration of vaccines and 

treatment has not been optimal. The problem studied is still a real problem faced by people in the 

world. The facts on the ground also show that transmission of dogs from stray dogs to domestic 

dogs, a dog care system that is late in providing vaccinations and treatment after dogs are exposed, 

has an impact on increasing cases of rabies. Based on this, mathematical modelling of rabies 

transmission from stray dogs to domestic dogs is needed using optimal control, vaccination for 

susceptible dogs and treatment for exposed dogs to reduce rabies cases. 

Our paper is arranged as follows. In section 2, we formulate the rabies transmission model 

with pre-exposure vaccination and post-exposure vaccination. In section 3, the positivity and 

boundedness of the solutions, the equilibrium point, the fundamental reproduction number, and a 
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study of the equilibrium point's global stability are all covered in model analysis. Section 4 presents 

the sensitivity analysis of the effective reproduction number. In Section 5, the optimal control 

problem is defined, the existence of an optimal control is demonstrated and characterized, and 

numerical simulations are shown. Several conclusions are presented in Section 6. 

 

2. MODEL FORMULATION 

A SEIR model with pre-exposure vaccination and post-exposure treatment are formulated to study 

and analyze the dynamics of rabies infection. The total population of domestic dogs is denoted by 

𝑁𝑑  which consists of susceptible domestic dogs (𝑆𝑑 ), exposed domestic dogs (𝐸𝑑 ), infected 

domestic dogs (𝐼𝑑), and partially immune domestic dogs (𝑅𝑑). Meanwhile, the total stray dog 

population is denoted by 𝑁𝑠 which consists of susceptible stray dogs (𝑆𝑠), exposed stray dogs (𝐸𝑠), 

infected stray dogs (𝐼𝑠), and partially immune stray dogs (𝑅𝑠). The graphical representation of the 

proposed model is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1: Flow diagram for rabies transmission among domestic and stray dog subgroups. 

The detailed descriptions of all the parameters of the model are given in Table 1. Several 

assumptions used in constructing this model are as follows. 

1. Susceptible individuals (𝑆𝑑 and 𝑆𝑠) are vaccinated to become recovered subpopulations (𝑅𝑑 
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2. The spread of the disease is assumed to mean that stray dogs can transmit rabies to domestic  

  dogs but not vice versa. 

3. The exposed individuals (𝐸𝑑 and 𝐸𝑠) received treatment. 

4. Infected individuals with reported symptoms will be hospitalized. 

5. Natural death occurs in every subpopulation. 

6. Deaths due to rabies occur in subpopulations infected with 𝐼𝑑  and 𝐼𝑠. In this subpopulation  

  there is also culling of infected dogs. 

7. All parameters are assumed to be nonnegative. 

Table 1: The description and numerical values for the model parameters. 

Parameter Description Values Source 

Λ𝑑 The recruitment rate of domestic dogs 120 [7] 

𝛽𝑑𝑠 Transmission rate (stray dogs to domestic 

dogs) 

4.1e-6 [14] 

𝜎𝑑  Latency rate of domestic dogs 0.37 [6] 

𝜇𝑑 The natural death rate of domestic dogs 0.11 [10] 

𝜉𝑑  Domestic dog mortality due to disease 1 [10] 

𝜈𝑑  Rate of vaccination (domestic dogs) 0.54 [7] 

𝜔𝑑  Loss of immunity (domestic dog) 1 [10] 

𝜃𝑑  Treatment rate for exposed domestic dogs  0.25 [7] 

𝑐𝑑  Death rate of domestic dogs due to culling 0.5 [7] 

Λ𝑠  The recruitment rate of domestic dogs 250 [12] 

𝛽𝑠𝑠 Transmission rate in stray dogs 0.0087 Assumed 

𝜎𝑠 Latency rate of stray dogs 0.84 [9] 

𝜇𝑠 Natural death rate of stray dogs 0.32 [8] 

𝜉𝑠 Stray dogs' mortality due to disease 1 [10] 

𝜈𝑠 Rate of vaccination (stray dogs) 0.25 [13] 

𝜔𝑠 Loss of immunity (stray dogs) 0.5 [10] 

𝜃𝑠 Treatment rate for exposed stray dogs 0.25 Assumed 

𝑐𝑠 Death rate of stray dogs due to culling 0.1 [13] 
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Based on the assumptions and Figure 1, we get the rabies model as follows: 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝑑𝑆𝑑
𝑑𝑡

= Λ𝑑 + 𝜔𝑑𝑅𝑑 − (1 − 𝜈𝑑)𝛽𝑑𝑠𝑆𝑑𝐼𝑠 − (𝜈𝑑 + 𝜇𝑑)S𝑑,

𝑑𝐸𝑑
𝑑𝑡

= (1 − 𝜈𝑑)𝛽𝑑𝑠𝑆𝑑𝐼𝑠 − ((1 − 𝜃𝑑)𝜎𝑑 + 𝜃𝑑 + 𝜇𝑑)𝐸𝑑 ,

 
𝑑𝐼𝑑
𝑑𝑡

= (1 − 𝜃𝑑)𝜎𝑑𝐸𝑑 − (𝜇𝑑 + 𝑐𝑑 + 𝜉𝑑)𝐼𝑑,                        

 
𝑑𝑅𝑑
𝑑𝑡

= 𝜈𝑑𝑆𝑑 + 𝜃𝑑𝐸𝑑 − (𝜔𝑑 + 𝜇𝑑)𝑅𝑑,                                  

𝑑𝑆𝑠
𝑑𝑡

= Λ𝑠 + 𝜔𝑠𝑅𝑠 − (1 − 𝜈𝑠)𝛽𝑠𝑠𝑆𝑠𝐼𝑠 − (𝜈𝑠 + 𝜇𝑠)S𝑠,       

𝑑𝐸𝑠
𝑑𝑡

= (1 − 𝜈𝑠)𝛽𝑠𝑠𝛽𝑠𝑠𝑆𝑠𝐼𝑠 − ((1 − 𝜃𝑠)𝜎𝑠 + 𝜃𝑠 + 𝜇𝑠)𝐸𝑠,

𝑑𝐼𝑠
𝑑𝑡

= (1 − 𝜃𝑠)𝜎𝑠𝐸𝑠 − (𝜇𝑠 + 𝑐𝑠 + 𝜉𝑠)𝐼𝑠,                            

 
𝑑𝑅𝑠
𝑑𝑡

= 𝜈𝑠𝑆𝑠 + 𝜃𝑠𝐸𝑠 − (𝜔𝑠 + 𝜇𝑠)𝑅𝑠.                                      

 (1) 

with initial conditions 

𝑆𝑑(0) > 0,  𝐸𝑑(0) ≥ 0,  𝐼𝑑(0) ≥ 0, 𝑅𝑑(0) ≥ 0, 𝑆𝑠(0) > 0, 𝐸𝑠(0) ≥ 0, 𝐼𝑠(0) ≥ 0, 𝑅𝑠(0) ≥ 0. (2) 

 

3. MODEL ANALYSIS 

3.1. Positivity of the solutions 

Model system (1) describes the human population, it is very important to prove that all the solution 

of the system (1) is positive. We stated and proved the following lemma. 

Lemma 1. The solution (𝑆𝑑(𝑡), 𝐸𝑑(𝑡), 𝐼𝑑(𝑡), 𝑅𝑑(𝑡), 𝑆𝑠(𝑡), 𝐸𝑠(𝑡), 𝐼𝑠(𝑡), 𝑅𝑠(𝑡))  of the model (1) 

are nonnegative for all 𝑡 ≥ 0 with initial conditions nonnegative (2) in ℝ+0
8 . 

Proof. We apply the technique [26] to demonstrate this lemma. From model (1), we have  

𝑑𝑆𝑑

𝑑𝑡
|
𝑆𝑑=0

= Λ𝑑 + 𝜔𝑑𝑅𝑑 > 0,     
𝑑𝑆𝑠

𝑑𝑡
|
𝑆𝑠=0

= Λ𝑠 + 𝜔𝑠𝑅𝑠 > 0     

𝑑𝐸𝑑

𝑑𝑡
|
𝐸𝑑=0

= (1 − 𝜈𝑑)𝛽𝑑𝑠𝑆𝑑𝐼𝑠 > 0,  
𝑑𝐸𝑑

𝑑𝑡
|
𝐸𝑑=0

= (1 − 𝜈𝑑)𝛽𝑑𝑠𝑆𝑑𝐼𝑠 > 0, 

𝑑𝐼𝑑

𝑑𝑡
|
𝐼𝑑=0

= (1 − 𝜃𝑑)𝜎𝑑𝐸𝑑 > 0,     
𝑑𝐼𝑠

𝑑𝑡
|
𝐼𝑠=0

= (1 − 𝜃𝑠)𝜎𝑠𝐸𝑠 > 0, 
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𝑑𝑅𝑑

𝑑𝑡
|
𝑅𝑑=0

= 𝜈𝑑𝑆𝑑 + 𝜃𝑑𝐸𝑑 > 0,      
𝑑𝑅𝑠

𝑑𝑡
|
𝑅𝑠=0

= 𝜈𝑠𝑆𝑠 + 𝜃𝑠𝐸𝑠 > 0. 

Based on Lemma 2 in [27], the invariant region of the model (1) is ℝ+0
8 . As a result, the 

solution of the model (1) with initial conditions nonnegative is nonnegative. The proof of Lemma 

1 is complete                                                                  ∎ 

3.2. Invariant region 

Lemma 2. The solution (𝑆𝑑, 𝐸𝑑 , 𝐼𝑑, 𝑅𝑑, 𝑆𝑠, 𝐸𝑠, 𝐼𝑠, 𝑅𝑠)  of the model (1) with initial conditions  

𝑆𝑑(0), 𝐸𝑑(0), 𝐼𝑑(0), 𝑅𝑑(0), 𝑆𝑠(0), 𝐸𝑠(0), 𝐼𝑠(0), 𝑅𝑠(0)  nonnegative defined in the region   in 

ℝ+0
8  where Ω = {(𝑆𝑑, 𝐸𝑑 , 𝐼𝑑 , 𝑅𝑑 , 𝑆𝑠, 𝐸𝑠, 𝐼𝑠, 𝑅𝑠) ∈ ℝ+0

8 : 𝑁𝑑 ≤
Λ𝑑

𝜇𝑑
, 𝑁𝑠 ≤

Λ𝑠

𝜇𝑠
 } is positively invariant. 

Proof.  The total population is the population of domestic dogs and the population of stray dogs 

is 𝑁𝑑 = 𝑆𝑑 + 𝐸𝑑 + 𝐼𝑑 + 𝑅𝑑  and 𝑁𝑠 = 𝑆𝑠 + 𝐸𝑠 + 𝐼𝑠 + 𝑅𝑠,  respectively. By adding differential 

equations for the total population of the domestic dog and the stray dog, the model (1) produces 

the rate of change  

𝑑𝑁𝑑
𝑑𝑡

= Λ𝑑 − 𝜇𝑑𝑁𝑑 − (𝑐𝑑 + 𝜉𝑑)𝐼𝑑,

𝑑𝑁𝑠
𝑑𝑡

= Λ𝑠 − 𝜇𝑠𝑁𝑠 − (𝑐𝑠 + 𝜉𝑠)𝐼𝑠.

 

 

(3) 

 

Since 𝑐𝑑 + 𝜉𝑑 ≥ 0 and 𝑐𝑠 + 𝜉𝑠 ≥ 0, then we have 

{

𝑑𝑁𝑑
𝑑𝑡

≤ Λ𝑑 − 𝜇𝑑𝑁𝑑 ,

𝑑𝑁𝑠
𝑑𝑡

≤ Λ𝑠 − 𝜇𝑠𝑁𝑠.

 

 

(4) 

 

By integrating the first equation of (4) using the integral factor method and applying initial 

condition, we get  

𝑁𝑑(𝑡) ≤
Λ𝑑

𝜇𝑑
+ (𝑁𝑑(0) −

Λ𝑑

𝜇𝑑
) 𝑒−𝜇𝑑𝑡. (5) 

It is clear that, 0 ≤ 𝑁𝑑(𝑡) ≤
Λ𝑑

𝜇𝑑
  for all 𝑡 ≥ 0  whenever  0 ≤ 𝑁𝑑(0) ≤

Λ𝑑

𝜇𝑑
  for all 𝑡 ≥ 0. Thus, 
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𝑁𝑑 is nonnegative and bounded. Hence, the set Ω1 = {(𝑆𝑑, 𝐸𝑑 , 𝐼𝑑 , 𝑅𝑑) ∈ ℝ+0
4 : 𝑁𝑑 ≤

Λ𝑑

𝜇𝑑
} are the 

feasible solutions of the domestic dogs. 

In the same way, by integrating the second equation of (4) using the integral factor method 

and applying initial condition, we get 

𝑁𝑠(𝑡) ≤
Λ𝑠

𝜇𝑠
+ (𝑁𝑠(0) −

Λ𝑠

𝜇𝑠
) 𝑒−𝜇𝑠𝑡. (6) 

It is clear that, 0 ≤ 𝑁𝑠(𝑡) ≤
Λ𝑠

𝜇𝑠
  for all 𝑡 ≥ 0  whenever  0 ≤ 𝑁𝑠(0) ≤

Λ𝑠

𝜇𝑠
  for all 𝑡 ≥ 0. Thus, 

𝑁𝑠 is bounded. Hence, the set Ω2 = {(𝑆𝑠, 𝐸𝑠, 𝐼𝑠, 𝑅𝑠) ∈ ℝ+0
4 : 𝑁𝑠 ≤

Λ𝑠

𝜇𝑠
} are the feasible solutions of 

the stray dogs. Therefore, the region Ω = Ω1 × Ω2 is positively invariant and the model (1) is 

well-posed or biologically and epidemiologically. The proof of Lemma 2 is complete.         ∎ 

Next, for convenience in the discussion, we make the following substitutions 

𝒫𝑑 = (1 − 𝜃𝑑)𝜎𝑑 + 𝜃𝑑 + 𝜇𝑑, 𝒫𝑠 = (1 − 𝜃𝑠)𝜎𝑠 + 𝜃𝑠 + 𝜇𝑠, 𝑄𝑑 = 𝜇𝑑 + 𝑐𝑑 + 𝜉𝑑,  

𝑄𝑠 = 𝜇𝑠 + 𝑐𝑠 + 𝜉𝑠, 𝐴𝑠 = 𝜈𝑠 + 𝜇𝑠, 𝐴𝑑 = 𝜈𝑑 + 𝜇𝑑 , 𝐵𝑠 = 𝜔𝑠 + 𝜇𝑠, and 𝐵𝑑 = 𝜔𝑑 + 𝜇𝑑 . 

3.3. Disease-free Equilibrium point  

The model exhibits a disease-free equilibrium (DFE) point when we set the right-hand sides of the 

equations of the model (1) to zero. The DFE for the rabies model is a steady-state solution of 

disease without infection or disease (rabies). In the absence of rabies, model (1) has a disease-free 

equilibrium point, 𝐸0 = (𝑆𝑑
0, 𝐸𝑑

0, 𝐼𝑑
0, 𝑅𝑑

0, 𝑆𝑠
0, 𝐸𝑠

0, 𝐼𝑠
0, 𝑅𝑠

0), 

𝐸0 = (
𝐵𝑑Λ𝑑

𝜇𝑑(𝜔𝑑 + 𝜈𝑑 + 𝜇𝑑)
, 0,0,

𝜈𝑑Λ𝑑
𝜇𝑑(𝜔𝑑 + 𝜈𝑑 + 𝜇𝑑)

,
𝐵𝑠Λ𝑠

𝜇𝑠(𝜔𝑠 + 𝜈𝑠 + 𝜇𝑠)
, 0,0,

𝜈𝑠Λ𝑠
𝜇𝑠(𝜔𝑠 + 𝜈𝑠 + 𝜇𝑠)

). (7) 

3.4. The effective reproduction number  

Using the next-generation matrix method described by [28], we can calculate the effective 

reproduction number of the model (1). By using the notation as in [28], ℱ𝑖 is the rate at which 

new infections appear in compartment 𝑖  and 𝑉𝑖 is the rate of transfer of individuals into and out 

of compartment 𝑖.  Let 𝑋 = (𝐸𝑑, 𝐼𝑑 , 𝐸𝑠, 𝐼𝑠)
𝑇. The right-hand side of the model (1) is written as 

�̇� = ℱ𝑖(𝑋)−𝑉𝑖(𝑋), where 
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ℱ𝑖(𝑋) = [

(1 − 𝜈𝑑)𝛽𝑑𝑠𝑆𝑑𝐼𝑠
0

(1 − 𝜈𝑠)𝛽𝑠𝑠𝑆𝑠𝐼𝑠
0

] and 𝑉𝑖(𝑋) = [

𝒫𝑑𝐸𝑑
𝒬𝑑𝐼𝑑 − (1 − 𝜃𝑑)𝜎𝑑𝐸𝑑

𝒫𝑠𝐸𝑠
𝒬𝑠𝐼𝑠 − (1 − 𝜃𝑠)𝜎𝑠𝐸𝑠

]. 

Evaluating the Jacobian matrix of ℱ𝑖(𝑋) and 𝑉𝑖(𝑋) at the disease-free equilibrium point 𝐸0, we 

get, respectively,   

𝐹 =

[
 
 
 
 0 0
0 0

0
(1−𝜈𝑑)𝛽𝑑𝑠𝐵𝑑Λ𝑑

𝜇𝑑(𝜔𝑑+𝜈𝑑+𝜇𝑑)

0 0

0 0
0 0

0
(1−𝜈𝑠)𝛽𝑠𝑠𝐵𝑠Λ𝑠

𝜇𝑠(𝜔𝑠+𝜈𝑠+𝜇𝑠)

0 0 ]
 
 
 
 

 and 𝑉 = [

𝒫𝑑 0

−(1 − 𝜃𝑑)𝜎𝑑 𝒬𝑑

0 0
0 0

0 0
0 0

𝒫𝑠 0

−(1 − 𝜃𝑠)𝜎𝑠 𝒬𝑠

]. 

The next-generation matrix is 

𝐹𝑉−1 =

[
 
 
 
 0 0 (1−𝜈𝑑)𝛽𝑑𝑠Λ𝑑𝐵𝑑(1−𝜃𝑠)𝜎𝑠

𝜇𝑑(𝜔𝑑+𝜈𝑑+𝜇𝑑)𝒫𝑠𝑄𝑠

(1−𝜈𝑑)𝛽𝑑𝑠Λ𝑑𝐵𝑑
𝜇𝑑(𝜔𝑑+𝜈𝑑+𝜇𝑑)𝑄𝑠

0
0
0

0
0
0

0
(1−𝜈𝑠)𝛽𝑠𝑠Λ𝑠𝐵𝑠(1−𝜃𝑠)𝜎𝑠
𝜇𝑠(𝜔𝑠+𝜈𝑠+𝜇𝑠)𝒫𝑠𝑄𝑠

0

0
(1−𝜈𝑠)𝛽𝑠𝑠𝐵𝑠Λ𝑠
𝜇𝑠(𝜔𝑠+𝜈𝑠+𝜇𝑠)𝑄𝑠

0 ]
 
 
 
 

. 

Hence, the effective reproduction number of the model (1) is the spectral radius of matrix 𝐹𝑉−1, 

that is, 

ℛ𝑒 =
(1 − 𝜈𝑠)(1 − 𝜃𝑠)𝛽𝑠𝑠Λ𝑠𝜎𝑠𝐵𝑠
𝒫𝑠𝑄𝑠𝜇𝑠(𝜔𝑠 + 𝜈𝑠 + 𝜇𝑠)

 (8)  

The effective reproduction number, ℛ𝑒 , shows the average number of new infections that are 

caused by a single rabies-infected individual in a population during its infectious period with pre-

exposure vaccination and post-exposure treatment of domestic and stray dogs used to control 

strategies. 

3.5. Endemic equilibrium point 

When rabies is present in a population, model (1) has a steady-state 𝐸1 which is called the endemic 

equilibrium (EE) point. By solving the equilibrium conditions of the model (1) are obtained an 

endemic equilibrium point 𝐸1 = (𝑆𝑑
∗ , 𝐸𝑑

∗ , 𝐼𝑑
∗ , 𝑅𝑑

∗ , 𝑆𝑠
∗, 𝐸𝑠

∗, 𝐼𝑠
∗, 𝑅𝑠

∗), where  

𝑆𝑠
∗ =

𝒫𝑠𝒬𝑠

(1−𝜈𝑠)(1−𝜃𝑠)𝛽𝑠𝑠𝜎𝑠
, 
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𝐸𝑠
∗ =

(1−𝜈𝑠)(1−𝜃𝑠)𝐵𝑠Λ𝑠𝛽𝑠𝑠𝜎𝑠−𝒫𝑠𝒬𝑠(𝐴𝑠𝐵𝑠−𝜈𝑠𝜔𝑠)

(1−𝜈𝑠)(1−𝜃𝑠)𝛽𝑠𝑠𝜎𝑠(𝐵𝑠𝒫𝑠−𝜃𝑠𝜔𝑠)
,  

𝐼𝑠
∗ =

(1−𝜃𝑠)𝜎𝑠𝐸𝑠
∗

𝑄𝑠
, 𝑅𝑠

∗ =
𝜈𝑠𝑆𝑠

∗+𝜃𝑠𝐸𝑠
∗

𝐵𝑠
,  

𝑆𝑑
∗ =

𝐵𝑑Λ𝑑𝒫𝑑

(1−𝜈𝑑)𝛽𝑑𝑠𝐼𝑠
∗(𝜃𝑑𝜔𝑑−𝐵𝑑𝒫𝑑)+𝒫𝑑(𝜈𝑑𝜔𝑑−𝐴𝑑𝐵𝑑)

 ,    

𝐸𝑑
∗ =

(1−𝜈𝑑)𝛽𝑑𝑠𝐼𝑠
∗𝑆𝑑
∗

𝒫𝑑
, 𝐼𝑑

∗ =
(1−𝜃𝑑)𝜎𝑑𝐸𝑑

∗

𝑄𝑑
, 𝑅𝑑

∗ =
𝜈𝑑𝑆𝑑

∗+𝜃𝑑𝐸𝑑
∗

𝐵𝑑
. 

The effective reproduction number, ℛ𝑒 , shows the average number of new infections that are 

caused by a single rabies-infected individual in a population during its infectious period with pre- 

3.6. Global stability of DFE   

 The method of Castillo-Chavez et al. [29] is used to examine the global stability of DFE. Next, 

the model system (1) can be expressed as follows: 

Let 𝑌  stands for the number of the uninfected compartment, 𝑍  stand for the number of 

uninfected compartments, and 𝐸0 = (𝑌
0, 0) stands for the disease-free equilibrium point. Then, 

the model (1) can be expressed as follows:  

{

𝑑𝑌

𝑑𝑡
= 𝐹(𝑌, 𝑍),                        

𝑑𝑍

𝑑𝑡
= 𝐺(𝑌, 𝑍), 𝐺(𝑌, 0) = 0.

 (9) 

To ensure the global asymptotic stability of DFE, the following conditions (H1) and (H2) must 

be satisfied. 

(H1) For 
𝑑𝑌

𝑑𝑡
= 𝐹(𝑌, 0),  𝑌0 is globally asymptotically stable  

(H2)  𝐺(𝑌, 𝑍) = 𝐴𝑍 − �̂� (𝑌, 𝑍),   �̂� (𝑌, 𝑍) ≥ 0 for (𝑌, 𝑍) ∈ Ω and 𝐴 = 𝐷𝑍𝐺(𝑌
0, 0) is a     

    Metzler-matrix because the off-diagonal elements of 𝐴 are nonnegative.  

Consequently, the following theorem is true if the system satisfies the above conditions (𝐻1) and 

(𝐻2).  

Theorem 1.  The disease-free equilibrium 𝐸0 = (𝑌
0, 0) of the model (1) is globally asymptotically stable 

in Ω if ℛ𝑒 < 1. 

Proof. The model (1) can be written as 𝑌 = (𝑆𝑑 , 𝑅𝑑 , 𝑆𝑠, 𝑅𝑠), 𝑍 = (𝐸𝑑 , 𝐼𝑑 , 𝐸𝑠, 𝐼𝑠), and 



12 

MARSUDI, WURYANSARI M. KUSUMAWINAHYU, DARMAJID, AHMAD FITRI 

𝐸0 = (
𝐵𝑑Λ𝑑

𝜇𝑑(𝜔𝑑+𝜈𝑑+𝜇𝑑)
, 0,0,

𝜈𝑑Λ𝑑

𝜇𝑑(𝜔𝑑+𝜈𝑑+𝜇𝑑)
,

𝐵𝑠Λ𝑠

𝜇𝑠(𝜔𝑠+𝜈𝑠+𝜇𝑠)
, 0,0,

𝜈𝑠Λ𝑠

𝜇𝑠(𝜔𝑠+𝜈𝑠+𝜇𝑠)
). 

From the first equation of system (8), we have 

𝑑𝑌

𝑑𝑡
= 𝐹(𝑌, 𝑍) = [

Λ𝑑 + 𝜔𝑑𝑅𝑑 − (1 − 𝜈𝑑)𝛽𝑑𝑠𝑆𝑑𝐼𝑠 − 𝐴𝑑S𝑑
𝜈𝑑𝑆𝑑 + 𝜃𝑑𝐸𝑑 − 𝐵𝑑𝑅𝑑

Λ𝑠 + 𝜔𝑠𝑅𝑠 − (1 − 𝜈𝑠)𝛽𝑠𝑠𝑆𝑠𝐼𝑠 − 𝐴𝑠)S𝑠
𝜈𝑠𝑆𝑠 + 𝜃𝑠𝐸𝑠 − 𝐵𝑠𝑅𝑠

]. 

At the disease-free equilibrium point 𝐸0, we get 

𝑑𝑌

𝑑𝑡
= 𝐹(𝑌0, 0) =

[
 
 
 
Λ𝑑 + 𝜔𝑑𝑅𝑑

0 − 𝐴𝑑𝑆𝑑
0

𝜈𝑑𝑆𝑑
0 − 𝐵𝑑𝑅𝑑

0

Λ𝑠 + 𝜔𝑠𝑅𝑠
0 − 𝐴𝑠𝑆𝑠

0

𝜈𝑠𝑆𝑠
0 − 𝐵𝑠𝑅𝑠

0 ]
 
 
 

= [

0

0
0

0

] 

𝐹(𝑌0, 0) has a unique point of equilibrium 

𝑌0 = (
𝐵𝑑Λ𝑑

𝜇𝑑(𝜔𝑑+𝜈𝑑+𝜇𝑑)
,

𝜈𝑑Λ𝑑

𝜇𝑑(𝜔𝑑+𝜈𝑑+𝜇𝑑)
,

𝐵𝑠Λ𝑠

𝜇𝑠(𝜔𝑠+𝜈𝑠+𝜇𝑠)
,

𝜈𝑠Λ𝑠

𝜇𝑠(𝜔𝑠+𝜈𝑠+𝜇𝑠)
)  

which is globally asymptotically stable. Thus, condition (H1) is satisfied. 

Next, from the second equation of system (9), we have 

𝐺(𝑌, 𝑍) = [

(1 − 𝜈𝑑)𝛽𝑑𝑠𝑆𝑑𝐼𝑠 − 𝒫𝑑𝐸𝑑
(1 − 𝜃𝑑)𝜎𝑑𝐸𝑑 − 𝑄𝑑𝐼𝑑
(1 − 𝜈𝑠)𝛽𝑠𝑠𝑆𝑠𝐼𝑠 − 𝒫𝑠𝐸𝑠
(1 − 𝜃𝑠)𝜎𝑠𝐸𝑠 − 𝑄𝑠𝐼𝑠

]. 

It is clear that, 𝐺(𝑌, 0) = 0. Then, we get 

𝐴 = 𝐷𝑍𝐺(𝑌
0, 0) =

[
 
 
 

−𝒫𝑑 
(1 − 𝜃𝑑)𝜎𝑑

0
−𝑄𝑑

0
0

       (1 − 𝜈𝑑)𝛽𝑑𝑠𝑆𝑑
0

0
0
0
         

 0
  0

−𝒫𝑠
(1 − 𝜃𝑠)𝜎𝑠

 
(1 − 𝜈𝑠)𝛽𝑠𝑠𝑆𝑠

0

−𝑄𝑠           ]
 
 
 
. 

Here, 𝐴 is a Metzler-matrix since all off-diagonal entries of the matrix 𝐴 are non-negative. 

Then, we calculated �̂� (𝑌, 𝑍) = 𝐴𝑍 −  𝐺(𝑌, 𝑍), 

𝐺 (𝑌, 𝑍) == [

(1 − 𝜈𝑑)𝛽𝑑𝑠𝐼𝑠(𝑆𝑑
0 − 𝑆𝑑)

0

(1 − 𝜈𝑠)𝛽𝑠𝑠𝐼𝑠(𝑆𝑠
0 − 𝑆𝑠)

0

]. 

Since 𝑆𝑑
0 ≥ 𝑆𝑑  and 𝑆𝑠

0 ≥ 𝑆𝑠 , then �̂� (𝑌, 𝑍) ≥ 0.  As a result, condition (H2)  is satisfied. Here, 

condition (H1) and (H2)  is satisfied. Thus, 𝐸0 is globally asymptotically stable when ℛe < 1. 

The proof of Theorem 1 is complete.                                               ∎                               
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It can be observed from Theorem 1 that the globally asymptotically stable disease-free 

equilibrium point 𝐸0  is if ℛe < 1. Thus, the infected individuals eventually vanish and the 

disease dies out.  

3.7. Global stability of EE  

Using the Lyapunov function, the global asymptotic stability of the endemic equilibrium is 

explored. We will create a Lyapunov function by referring to [30, 31]. 

ℒ =
1

2
[(𝑆𝑑 − 𝑆𝑑

∗) + (𝐸𝑑 − 𝐸𝑑
∗) + (𝐼𝑑 − 𝐼𝑑

∗) + (𝑅𝑑 − 𝑅𝑑
∗ ) + (𝑆𝑠 − 𝑆𝑠

∗) + (𝐸𝑠 − 𝐸𝑠
∗) + (𝐼𝑠 − 𝐼𝑠

∗)

 +(𝑅𝑠 − 𝑅𝑠
∗)]2                                                                                                                                  

 (10) 

Clearly that ℒ ∶ ℝ+0
8 → ℝ is a continuous and differentiable function. Then, the derivative of ℒ 

along the solutions of the model (1) is given by 

𝑑ℒ

𝑑𝑡
= [(𝑆𝑑 − 𝑆𝑑

∗) + (𝐸𝑑 − 𝐸𝑑
∗) + (𝐼𝑑 − 𝐼𝑑

∗) + (𝑅𝑑 − 𝑅𝑑
∗ ) + (𝑆𝑠 − 𝑆𝑠

∗) + (𝐸𝑠 − 𝐸𝑠
∗) + (𝐼𝑠 − 𝐼𝑠

∗)

+ (𝑅𝑠 − 𝑅𝑠
∗)]

𝑑

𝑑𝑡
[𝑆𝑑 + 𝐸𝑑 + 𝐼𝑑 + 𝑅𝑑 + 𝑆𝑠 + 𝐸𝑠 + 𝐼𝑠 + 𝑅𝑠]. 

= [(𝑁𝑑 − 𝑁𝑑
∗) + (𝑁𝑠 − 𝑁𝑠

∗)] 
𝑑

𝑑𝑡
(𝑁𝑑 + 𝑁𝑠).       

From (3),  

𝑑𝑁𝑑
𝑑𝑡

= Λ𝑑 − 𝜇𝑑𝑁𝑑 − (𝑐𝑑 + 𝜉𝑑)𝐼𝑑
∗ ,   

𝑑𝑁𝑠
𝑑𝑡

= Λ𝑠 − 𝜇𝑠𝑁𝑠 − (𝑐𝑠 + 𝜉𝑠)𝐼𝑠
∗ (11) 

and all the solutions of the model (1) satisfy 

𝑆𝑑
∗ + 𝐸𝑑

∗ + 𝐼𝑑
∗ + 𝑅𝑑

∗ =
Λ𝑑 − (𝑐𝑑+𝜉𝑑)𝐼𝑑

∗

𝜇𝑑
,   𝑆𝑠

∗ + 𝐸𝑠
∗ + 𝐼𝑠

∗ + 𝑅𝑠
∗ =

Λ𝑠 − (𝑐𝑠 + 𝜉𝑠)𝐼𝑠
∗

𝜇𝑠
. (12) 

 

Substitute (11) and (12) into 
𝑑ℒ

𝑑𝑡
 gives 

𝑑ℒ

𝑑𝑡
= [(𝑁𝑑 −

Λ𝑑−(𝑐𝑑+𝜉𝑑)𝐼𝑑
∗

𝜇𝑑
) + (𝑁𝑠 −

Λ𝑠−(𝑐𝑠+𝜉𝑠)𝐼𝑠
∗

𝜇𝑠
)] [(Λ𝑑 − 𝜇𝑑𝑁𝑑 − (𝑐𝑑 + 𝜉𝑑)𝐼𝑑

∗) 

+(Λ
𝑠
− 𝜇

𝑠
𝑁𝑠 − (𝑐𝑠 + 𝜉𝑠)𝐼𝑠

∗)] 

= [(𝑁𝑑 −
Λ𝑑−(𝑐𝑑+𝜉𝑑)𝐼𝑑

∗

𝜇𝑑

) + (𝑁𝑠 −
Λ𝑠−(𝑐𝑠+𝜉𝑠)𝐼𝑠

∗

𝜇𝑠

)] [−𝜇
𝑑
(𝑁𝑑 −

Λ𝑑−(𝑐𝑑+𝜉𝑑)𝐼𝑑
∗

𝜇𝑑

)      

   −𝜇
𝑠
(𝑁𝑠 −

Λ𝑠−(𝑐𝑠+𝜉𝑠)𝐼𝑠
∗

𝜇𝑠

)] 

= −𝜇 [(𝑁𝑑 −
Λ𝑑

𝜇𝑑
+

(𝑐𝑑+𝜉𝑑)𝐼𝑑
∗

𝜇𝑑

) + (𝑁𝑠 −
Λ𝑠

𝜇𝑠
+

(𝑐𝑠+𝜉𝑠)𝐼𝑠
∗

𝜇𝑠

)] [(𝑁𝑑 −
Λ𝑑

𝜇𝑑
+

(𝑐𝑑+𝜉𝑑)𝐼𝑑
∗

𝜇𝑑

)      
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   + (𝑁𝑠 −
Λ𝑠

𝜇𝑠
+

(𝑐𝑠+𝜉𝑠)𝐼𝑠
∗

𝜇𝑠

)] 

≤ −𝜇 [(𝑁𝑑 −
Λ𝑑
𝜇𝑑
) + (𝑁𝑠 −

Λ𝑠
𝜇𝑠
)] [(𝑁𝑑 −

Λ𝑑
𝜇𝑑
) + (𝑁𝑠 −

Λ𝑠
𝜇𝑠
)] = −𝜇 [(𝑁𝑑 −

Λ𝑑
𝜇𝑑
) + (𝑁𝑠 −

Λ𝑠
𝜇𝑠
)]
2

 

< 0,  where  𝜇 = 𝑚𝑖𝑛{𝜇𝑑, 𝜇𝑠}. 

Consequently, 
𝑑ℒ

𝑑𝑡
< 0  for  ℛe > 1  indicates that the endemic equilibrium point 𝐸1  is 

asymptotically stable globally. The proof of Theorem 2 is complete.                      ∎    

 

4. OPTIMAL CONTROL PROBLEM 

In this section, we formulate the optimal control problem for rabies by including four time-

dependent controls in the model (1). The control variables 𝜈𝑑 and 𝜈𝑠 are the control efforts aimed 

at improving the immunity of susceptible domestic and stray dogs (pre-exposed prophylaxis), 

respectively. The control variables 𝜃𝑑 and 𝜃𝑠 are the control efforts aimed at treating the exposed 

domestic and stray dogs (post-exposed prophylaxis), respectively. The controls are bounded 

between 0 and 1 in the intervention time interval [0, 𝑇𝑓], where 𝑇𝑓  stands for the last time the 

controls were utilized. Thus, the model (1) became 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝑑𝑆𝑑
𝑑𝑡

= Λ𝑑 +𝜔𝑑𝑅𝑑 − (1 − 𝜈𝑑)𝛽𝑑𝑠𝑆𝑑𝐼𝑠 − 𝐴𝑑S𝑑 ,

𝑑𝐸𝑑
𝑑𝑡

= (1 − 𝜈𝑑)𝛽𝑑𝑠𝑆𝑑𝐼𝑠 − 𝒫𝑑𝐸𝑑,                          

 
𝑑𝐼𝑑
𝑑𝑡

= (1 − 𝜃𝑑)𝜎𝑑𝐸𝑑 −𝑄𝑑𝐼𝑑,                                

 
𝑑𝑅𝑑
𝑑𝑡

= 𝜈𝑑𝑆𝑑 + 𝜃𝑑𝐸𝑑 − 𝐵𝑑𝑅𝑑,                                  

𝑑𝑆𝑠
𝑑𝑡

= Λ𝑠 + 𝜔𝑠𝑅𝑠 − (1 − 𝜈𝑠)𝛽𝑠𝑠𝑆𝑠𝐼𝑠 − 𝐴𝑠S𝑠,    

𝑑𝐸𝑠
𝑑𝑡

= (1 − 𝜈𝑠)𝛽𝑠𝑠𝛽𝑠𝑠𝑆𝑠𝐼𝑠 − 𝒫𝑠𝐸𝑠,                       

𝑑𝐼𝑠
𝑑𝑡

= (1 − 𝜃𝑠)𝜎𝑠𝐸𝑠 − 𝑄𝑠𝐼𝑠,                                 

𝑑𝑅𝑠
𝑑𝑡

= 𝜈𝑠𝑆𝑠 + 𝜃𝑠𝐸𝑠 − 𝐵𝑠𝑅𝑠.                                   

 (13) 

with the initial conditions (2). 
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Our goal is to find optimal controls such as 𝜈𝑑
∗ , 𝜃𝑑

∗ , 𝜈𝑠
∗, and 𝜃𝑠

∗ that minimize the objective 

functional  

𝐽(𝜃𝑑 , 𝜈𝑑 , 𝜃𝑠, 𝜐𝑠) = ∫ (𝐴1𝐸𝑑 + 𝐴2𝐼𝑑 + 𝐴3𝐸𝑠 + 𝐴4𝐼𝑠

𝑇𝑓

0

 

+
1

2
𝐵1𝜃𝑑

2 +
1

2
𝐵2𝜈𝑑

2 +
1

2
𝐵3𝜃𝑠

2 +
1

2
𝐵4𝜈𝑠

2)𝑑𝑡 

(14) 

The constants 𝐴1 and 𝐴3 denote the weight of the exposed classes and 𝐴2 and 𝐴4 denote 

the weight of the infectious classes, respectively. The constants 𝐵𝑖 ≥ 0 (𝑖 = 1, 2, 3, 4)  are 

weights of the domestic dog and the stray dog controls, and 𝐵1𝜃𝑑
2, 𝐵2𝜈𝑑

2, 𝐵3𝜃𝑠
2, 𝐵4𝜈𝑠

2 describe the 

costs of rabies vaccination and treatment. In other words, we seek an optimal control triple 

(𝜃𝑑
∗ , 𝜈𝑑

∗ , 𝜃𝑠
∗, 𝜈𝑠

∗) such that  

    𝐽(𝜃𝑑
∗ , 𝜈𝑑

∗ , 𝜃𝑠
∗, 𝜈𝑠

∗) = min
𝜃𝑑,𝜈𝑑,𝜃𝑠,𝜐𝑠

{𝐽(𝜃𝑑 , 𝜈𝑑, 𝜃𝑠, 𝜐𝑠) ∶  𝜃𝑑 , 𝜈𝑑, 𝜃𝑠 , 𝜐𝑠 ∈ 𝑈}. (15) 

where 𝑈 = {(𝜃𝑑 , 𝜈𝑑 , 𝜃𝑠, 𝜐𝑠) ∶  0 ≤ 𝜃𝑑(𝑡) ≤ 1, 0 ≤ 𝜈𝑑(𝑡) ≤ 1, 0 ≤ 𝜃𝑠(𝑡) ≤ 1, 0 ≤ 𝜈𝑠(𝑡) ≤ 1, 

𝑡 ∈ [0, 1]} is the control set. 

4.1. Existence of the Optimal Controls 

In relation to the conclusion of Fleming and Rishel described in [32], the existence of an optimal 

control four that minimizes (14) subject to (13) is demonstrated. 

Theorem 3. For the rabies model (13) with control measures and initial conditions at 𝑡 = 0, 

exists an optimal control (𝜃𝑑
∗ , 𝜈𝑑

∗ , 𝜃𝑠
∗, 𝜈𝑠

∗) ∈ 𝛺  with a corresponding solution 

(𝑆𝑑
∗ , 𝐸𝑑

∗ , 𝐼𝑑
∗ , 𝑅𝑑

∗ , 𝑆𝑠
∗, 𝐸𝑠

∗, 𝐼𝑠
∗, 𝑅𝑠

∗), that minimizes the objective functional (14) over 𝑈.  

 The existence of optimal can be proved by showing that, the following conditions hold.  

(1)  The set of controls 𝑈 and the corresponding state variables is nonempty.  

(2)  The set of controls 𝑈 is closed and convex. 
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(3) The right-hand side of the state systems (17) is bounded by a linear function in both the state 

and control variables. 

(4) The integrand 𝐿 in the objective functional (18) is convex to control. 

(5) There exist constants 𝑘1 ≥ 0, 𝑘2 ≥ 0, and 𝑘3 > 1 that make the integrand 𝐿 in the objective 

functional (18) bounded by 

𝑘1(|𝜃𝑑|
2 + |𝜈𝑑|

2 + |𝜃𝑠|
2 + |𝜈𝑠|

2)𝑘3/2 − 𝑘2. 

Proof. We create the proof in the following steps: 

(1) Using the fact that all model states (𝑆𝑑, 𝐸𝑑, 𝐼𝑑 , 𝑅𝑑 , 𝑆𝑠, 𝐸𝑠, 𝐼𝑠, 𝑅𝑠) ∈ Ω are bounded below and 

above, any solutions to the state equations are also bounded. Because the state solutions are 

bounded, the Lipschitz property of the state system with respect to the state variables is 

satisfied. Hence, condition (1) is met.  

(2) By the definition, the control set 𝑈 = [0, 1]4 is closed. Again, we let 𝑦, 𝑧 ∈ 𝑈, so that 𝑦 =

(𝜃𝑑1, 𝜈𝑑1, 𝜃𝑠1, 𝜐𝑠1)  and 𝑧 = (𝜃𝑑2, 𝜈𝑑2, 𝜃𝑠2, 𝜐𝑠2) . Then, for every 𝜋 ∈ [0, 1],  we have 0 ≤

𝜋𝑦 + (1 − 𝜋)𝑧.  Additionally, we observe 𝜋𝑦 ≤ 𝜋  and (1 − 𝜋)𝑧 ≤ (1 − 𝜋).  Then 𝜋𝑦 +

(1 − 𝜋)𝑧 ≤ 𝜋 + (1 − 𝜋) = 1.  Hence, 0 ≤ 𝜋𝑦 + (1 − 𝜋)𝑧 ≤ 1,  for all 𝑦, 𝑧 ∈ 𝑈  and 𝜋 ∈

[0, 1]. 

(3)  From the system of differential equation (13), 

            
𝑑𝑁

𝑑𝑡
=

𝑑𝑁𝑑

𝑑𝑡
+
𝑑𝑁𝑠

𝑑𝑡
 

             = Λ𝑑 − 𝜇𝑑𝑁𝑑 − (𝑐𝑑 + 𝜉𝑑)𝐼𝑑 + Λ𝑠 − 𝜇𝑠𝑁𝑠 − (𝑐𝑠 + 𝜉𝑠)𝐼𝑠 

             ≤ Λ𝑑 + Λ𝑠 − 𝜇𝑑𝑁𝑑 − 𝜇𝑠𝑁𝑠 

             ≤ Λ𝑑 + Λ𝑠 − 𝜇𝑁, 

where 𝜇 = min(𝜇𝑑, 𝜇𝑠). 

Hence, lim
𝑡→∞

sup𝑁(𝑡) ≤
Λ𝑑+Λ𝑠

𝜇
. Therefore, all solutions of the model (13) are bounded. 

From the state equation system (13), the state equations are linearly dependent on the 

controls 𝜃𝑑 , 𝜈𝑑 , 𝜃𝑠, and 𝜐𝑠. Hence, the right-hand sides of the state systems (13) can be 
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written as a linear function of 𝜃𝑑 , 𝜈𝑑 , 𝜃𝑠, and 𝜐𝑠 with coefficients depending on time and 

state [33]. Thus, condition (3) holds. 

  (4) The integrand 𝐿 in the objective functional expressed by (14)  

𝐿 = 𝐴1𝐸𝑑 + 𝐴2𝐼𝑑 + 𝐴3𝐸𝑠 + 𝐴4𝐼𝑠 +
1

2
𝐵1𝜃𝑑

2 +
1

2
𝐵2𝜈𝑑

2 +
1

2
𝐵3𝜃𝑠

2 +
1

2
𝐵4𝜈𝑠

2 

is clearly convex since it is a quadratic function of (𝜃𝑑, 𝜈𝑑, 𝜃𝑠 , 𝜐𝑠)  on the control set U.  

It is left to demonstrate the existence of constants 𝑘1 ≥ 0, 𝑘2 ≥ 0, and 𝑘3 > 1 such that 𝐿 

satisfies 

    𝐿 = 𝐴1𝐸𝑑 + 𝐴2𝐼𝑑 + 𝐴3𝐸𝑠 + 𝐴4𝐼𝑠 +
1

2
𝐵1𝜃𝑑

2 +
1

2
𝐵2𝜈𝑑

2 +
1

2
𝐵3𝜃𝑠

2 +
1

2
𝐵4𝜈𝑠

2 

 ≥
1

2
(𝐵1𝜃𝑑

2 + 𝐵2𝜈𝑑
2 + 𝐵3𝜃𝑠

2 + 𝐵4𝜈𝑠
2) 

  ≥
1

2
(𝐵1𝜃𝑑

2 + 𝐵2𝜈𝑑
2 + 𝐵3𝜃𝑠

2 + 𝐵4𝜈𝑠
2) − 𝐵1  since 𝐵1𝜃𝑑

2 − 𝐵1 ≤ 0 

 ≥ 
𝟏

𝟐
min  {𝐵1, 𝐵2, 𝐵3, 𝐵4} (|𝜃𝑑|

2 + |𝜈𝑑|
2 + |𝜃𝑠|

2 + |𝜈𝑠|
2) − 𝐵1 

 = 𝑘1(|𝜃𝑑|
2 + |𝜈𝑑|

2 + |𝜃𝑠|
2 + |𝜈𝑠|

2)𝑘3/2 − 𝑘2, 

with 𝑘1 =
𝟏

𝟐
min  {𝐵1, 𝐵2, 𝐵3, 𝐵4}, 𝑘2 = 𝐵1, and 𝑘2 = 2. Thus, condition (4) also holds.  

The proof of Theorem 3 is complete.                                           ∎ 

    

4.2. Characterization of the Optimal Controls 

To obtain the necessary conditions for optimal control, we use Pontryagin's maximum [34] 

principle to the Hamiltonian function 𝐻 is defined for all 𝑡 ∈ [0, 𝑇𝑓] by 

    𝐻 = 𝐿 + ∑ 𝜆𝑖
8
𝑖=1 𝑓𝑖(𝑆𝑑, 𝐸𝑑 , 𝐼𝑑 , 𝑅𝑑 , 𝑆𝑠, 𝐸𝑠, 𝐼𝑠, 𝑅𝑠), (16) 

where 𝑓𝑖  is the right side of the differential equations of the ith state variable and 𝜆𝑖  are the 

respective adjoint variables for the state 𝑆𝑑, 𝐸𝑑 , 𝐼𝑑 , 𝑅𝑑 , 𝑆𝑠, 𝐸𝑠, 𝐼𝑠, and 𝑅𝑠. 

Theorem 4.  Given the optimal controls  (𝜃𝑑
∗ , 𝜈𝑑

∗ , 𝜃𝑠
∗, 𝜈𝑠

∗)  and the solutions 

𝑆𝑑
∗ , 𝐸𝑑

∗ , 𝐼𝑑
∗ , 𝑅𝑑

∗ , 𝑆𝑠
∗, 𝐸𝑠

∗, 𝐼𝑠
∗,  and 𝑅𝑠

∗  of the corresponding state system (13), there exist the adjoint 

variables 𝜆𝑗, 𝑗 = 1, 2, 3, 4, 5, 6, 7, 8 satisfying   
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𝑑𝜆1

𝑑𝑡
= (𝜆1 − 𝜆2)(1 − 𝜈𝑑)𝛽𝑑𝑠𝐼𝑠 + (𝜆1 − 𝜆4)𝜈𝑑 + 𝜆1𝜇𝑑 

 
𝑑𝜆2

𝑑𝑡
= −𝐴1 + (𝜆2 − 𝜆3)(1 − 𝜃𝑑)𝜎𝑑 + (𝜆2 − 𝜆4)𝜃𝑑 + 𝜆2𝜇𝑑  

 
𝑑𝜆3

𝑑𝑡
= −𝐴2  + 𝜆3(𝜇𝑑 + 𝑐𝑑 + 𝜉𝑑)  

 
𝑑𝜆4

𝑑𝑡
= (𝜆4−𝜆1)𝜔𝑑𝑅𝑑 + 𝜆4𝜇𝑑  

 
𝑑𝜆5

𝑑𝑡
= (𝜆5 − 𝜆6)(1 − 𝜈𝑠)𝛽𝑠𝑠𝐼𝑠 + (𝜆5 − 𝜆8)𝜈𝑠 + 𝜆5𝜇𝑠       

 
𝑑𝜆6

𝑑𝑡
= −𝐴3 + (𝜆6 − 𝜆7)(1 − 𝜃𝑠)𝜎𝑠 + (𝜆6 − 𝜆8)𝜃𝑠 + 𝜆6𝜇𝑠   

𝑑𝜆7
𝑑𝑡

=  −𝐴4 + (𝜆1 − 𝜆2)(1 − 𝜈𝑑)𝛽𝑑𝑠𝑆𝑑  + (𝜆5 − 𝜆6)(1 − 𝜈𝑠)𝛽𝑠𝑠𝑆𝑠 

  +𝜆7(𝜇𝑠 + 𝑐𝑠 + 𝜉𝑠)  

  
𝑑𝜆8

𝑑𝑡
= (𝜆8 − 𝜆5)𝜔𝑠 + 𝜆8𝜇𝑠,  

(17) 

with the transversality conditions at time 𝑇𝑓 , 

    𝜆𝑗 (𝑇𝑓) = 0, 𝑗 = 1, 2, 3, 4, 5, 6, 7, 8. (18) 

Furthermore, for 𝑡 ∈ [0, 𝑇𝑓], the optimal controls 𝜃𝑑
∗ , 𝜈𝑑

∗ , 𝜃𝑠
∗, and 𝜈𝑠

∗ are given by 

 𝜃𝑑
∗  = min {1,max {0,

(𝜆3−𝜆2)𝜎𝑑𝐸𝑑+(𝜆2−𝜆4)𝐸𝑑

𝐵1
}} .  

𝜈𝑑
∗ = min {1,max {0,

(𝜆2 − 𝜆1)𝛽𝑑𝑠𝑆𝑑𝐼𝑠 + (𝜆1 − 𝜆4)𝑆𝑑
𝐵2

}} . 

𝜃𝑠
∗ = min {1,max {0,

(𝜆7−𝜆6)𝜎𝑠𝐸𝑠+(𝜆6−𝜆8)𝐸𝑠

𝐵3
}} .      

𝜈𝑠
∗ = min {1,max {0,

(𝜆6 − 𝜆5)𝛽𝑠𝑠𝑆𝑠𝐼𝑠 + (𝜆5 − 𝜆8)𝑆𝑠
𝐵4

}} . 

(19) 

Proof. Referring to the Hamiltonian function (16), given by 

    𝐻 = 𝐴1𝐸𝑑 + 𝐴2𝐼𝑑 + 𝐴3𝐸𝑠 + 𝐴4𝐼𝑠 +
1

2
𝐵1𝜃𝑑

2 +
1

2
𝐵2𝜈𝑑

2 +
1

2
𝐵3𝜃𝑠

2 +
1

2
𝐵4𝜈𝑠

2 

+𝜆1(Λ𝑑 + 𝜔𝑑𝑅𝑑 − (1 − 𝜈𝑑)𝛽𝑑𝑠𝑆𝑑𝐼𝑠 − (𝜈𝑑 + 𝜇𝑑)S𝑑)  

+𝜆2((1 − 𝜈𝑑)𝛽𝑑𝑠𝑆𝑑𝐼𝑠 − ((1 − 𝜃𝑑)𝜎𝑑 + 𝜃𝑑 + 𝜇𝑑)𝐸𝑑) 

(20) 
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+𝜆3((1 − 𝜃𝑑)𝜎𝑑𝐸𝑑 − (𝜇𝑑 + 𝑐𝑑 + 𝜉𝑑)𝐼𝑑) 

+𝜆4(𝜈𝑑𝑆𝑑 + 𝜃𝑑𝐸𝑑 − (𝜔𝑑 + 𝜇𝑑)𝑅𝑑) 

+𝜆5(Λ𝑠 + 𝜔𝑠𝑅𝑠 − (1 − 𝜈𝑠)𝛽𝑠𝑠𝑆𝑠𝐼𝑠 − (𝜈𝑠 + 𝜇𝑠)S𝑠) 

+𝜆6((1 − 𝜈𝑠)𝛽𝑠𝑠𝑆𝑠𝐼𝑠 − ((1 − 𝜃𝑠)𝜎𝑠 + 𝜃𝑠 + 𝜇𝑠)𝐸𝑠) 

 +𝜆7((1 − 𝜃𝑠)𝜎𝑠𝐸𝑠 − (𝜇𝑠 + 𝑐𝑠 + 𝜉𝑠)𝐼𝑠)            

+𝜆8(𝜈𝑠𝑆𝑠 + 𝜃𝑠𝐸𝑠 − (𝜔𝑠 + 𝜇𝑠)𝑅𝑠).                                                                      

The adjoint system (13) is generated by partially differentiating the Hamiltonian function (20) 

to the corresponding state variables 𝑆𝑑, 𝐸𝑑, 𝐼𝑑, 𝑅𝑑 , 𝑆𝑠, 𝐸𝑠, 𝐼𝑠, and 𝑅𝑠 as 

    
𝑑𝜆1

𝑑𝑡
= −

𝜕𝐻

𝜕𝑆𝑑
, 
𝑑𝜆2

𝑑𝑡
= −

𝜕𝐻

𝜕𝐸𝑑
, 
𝑑𝜆3

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼𝑑
, 
𝑑𝜆4

𝑑𝑡
= −

𝜕𝐻

𝜕𝑅𝑑
, 
𝑑𝜆5

𝑑𝑡
= −

𝜕𝐻

𝜕𝑆𝑠
,  

𝑑𝜆6

𝑑𝑡
= −

𝜕𝐻

𝜕𝐸𝑠
,
𝑑𝜆7

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼𝑠
, and 

𝑑𝜆8

𝑑𝑡
= −

𝜕𝐻

𝜕𝑅𝑠
.                                     

(21) 

For 𝑡 ∈ [0, 𝑇𝑓], the optimal control 𝜃𝑑
∗ , 𝜈𝑑

∗ , 𝜃𝑠
∗, and 𝜈𝑠

∗ can be solved from the optimality condition, 

    

𝜕𝐻

𝜕𝜃𝑑
= 𝐵1𝜃𝑑 − 𝜆2(1 − 𝜎𝑑)𝐸𝑑 − 𝜆3𝜎𝑑𝐸𝑑 + 𝜆4𝐸𝑑 = 0, 

𝜕𝐻

𝜕𝜈𝑑
= 𝐵2𝜈𝑑 + 𝜆1(𝛽𝑑𝑠𝐼𝑠𝑆𝑑 − 𝑆𝑑) − 𝜆2𝛽𝑑𝑠𝐼𝑠𝑆𝑑 + 𝜆4𝑆𝑑 = 0,    

𝜕𝐻

𝜕𝜃𝑠
= 𝐵3𝜃𝑠 − 𝜆6(1 − 𝜎𝑠)𝐸𝑠 − 𝜆7𝜎𝑠𝐸𝑠 + 𝜆8𝐸𝑠 = 0, 

𝜕𝐻

𝜕𝜈𝑠
= 𝐵4𝜈𝑠 + 𝜆5(𝛽𝑠𝑠𝐼𝑠𝑆𝑠 − 𝑆𝑠) − 𝜆6𝛽𝑠𝑠𝐼𝑠𝑆𝑑 + 𝜆8𝑆𝑠 = 0. 

 

 

 

(22) 

Solving (30) for 𝜃𝑑 , 𝜈𝑑 , 𝜃𝑠, and 𝜐𝑠 yields 

    𝜃𝑑
∗ =

(𝜆3−𝜆2)𝜎𝑑𝐸𝑑+(𝜆2−𝜆4)𝐸𝑑

𝐵1
, 𝜈𝑑

∗ =
(𝜆2−𝜆1)𝛽𝑑𝑠𝑆𝑑𝐼𝑠+(𝜆1−𝜆4)𝑆𝑑

𝐵2
, 

𝜃𝑠
∗ =

(𝜆7−𝜆6)𝜎𝑠𝐸𝑠+(𝜆6−𝜆8)𝐸𝑠

𝐵3
, 𝜈𝑠
∗ =

(𝜆6−𝜆5)𝛽𝑠𝑠𝑆𝑠𝐼𝑠+(𝜆5−𝜆8)𝑆𝑠

𝐵4
. 

(23) 

By using the bounds on the control 𝜃𝑑 , 𝜈𝑑 , 𝜃𝑠 , and 𝜐𝑠, we get the following solutions 
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       𝜃𝑑
∗  = min {1,max {0,

(𝜆3−𝜆2)𝜎𝑑𝐸𝑑+(𝜆2−𝜆4)𝐸𝑑

𝐵1
}} .  

𝜈𝑑
∗ = min {1,max {0,

(𝜆2−𝜆1)𝛽𝑑𝑠𝑆𝑑𝐼𝑠+(𝜆1−𝜆4)𝑆𝑑

𝐵2
}} .  

𝜃𝑠
∗ = min {1,max {0,

(𝜆7−𝜆6)𝜎𝑠𝐸𝑠+(𝜆6−𝜆8)𝐸𝑠

𝐵3
}} .          

𝜈𝑠
∗ = min {1,max {0,

(𝜆6−𝜆5)𝛽𝑠𝑠𝑆𝑠𝐼𝑠+(𝜆5−𝜆8)𝑆𝑠

𝐵4
}} .        

 

 

(24) 

 

 

The proof of Theorem 4 is complete.                                                        ∎ 

 

5. NUMERICAL SIMULATIONS 

5.1 Sensitivity analysis of the effective reproduction number 

The sensitivity analysis discusses how the model parameters affect the effective reproduction 

number ℛe as well as the transmission of the disease. The purpose of the sensitivity index is to 

quantify the initial disease's spread as well as the relative change in  ℛe when one parameter 

changes while the others stay the same. The applications of a sensitivity index on parameters that 

have a high influence can help target interventions to control the spread of disease.  

We perform the analysis by applying the method of [35] to determine the sensitivity index of 

the model parameters. The normalized forward sensitivity index of the variable ℛe, that depends 

on the differentiability of a parameter 𝑘, is defined as, 

    Υ𝑘
 ℛe =

𝜕 ℛe

𝑘
×

𝑘

 ℛe
, (25) 

where Υ𝑘
 ℛe represent the sensitivity index and 𝑘 is the parameter in the effective reproduction 

number.  

Using parameter values in Table 1, we have the sensitivity indices o𝑓  ℛe (Table 2). The 

sensitivity index is from the most sensitive to the least sensitive. 
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      TABLE 2. The sensitivity indices of ℛe  

Parameter Value 

𝜇𝑠 -1.4161 

Λ𝑠 1 

𝛽𝑠𝑠 1 

𝜉𝑠 -0.7519 

𝜈𝑠 -0.5669 

𝜎𝑠 0.4750 

𝜃𝑠 -0.3667 

𝜔𝑠 0.1425 

𝑐𝑠 -0.0075 

 

The effective reproduction number of the model (1),  ℛe, is determined by the nine parameters 

and the sensitivity indices of  ℛe are presented in Table 2 (arrange from the most sensitive to the 

least) and graph of sensitivity indices of ℛe with respect to the model parameters can be seen in 

Figure 2 below. 

 

 

Figure 2. Graph of sensitivity indices of  ℛe with respect to the model parameters. 
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It can see that  𝛽𝑠𝑠, 𝜉𝑠, and 𝜈𝑠 have a high impact on ℛe. On the other hand, parameters that 

have a high sensitivity index but cannot be controlled are 𝜇𝑠 and Λ𝑠. The parameter has negative 

impacts and positive impacts on ℛe. The positive sign of sensitivity indices of  ℛe to the model 

parameters indicates that a decrease (or increase) in the value of each of the parameters in  

this case, leads to a decrease (or increase) in   ℛe .  On the contrary, the negative sign of the 

sensitivity indices of   ℛe to the model parameters indicates that an increase (or decrease) in the 

value of each of the parameters, in this case, leads to a decrease (or increase) in  ℛe. To illustrate, 

the index of treatment rate for exposed stray dogs (𝜃𝑠) is Υ𝜃𝑠
 ℛe = +0.1242. This implies that an 

increase (or decrease) by 10% in 𝜃𝑠  while other parameters remain constant, will be followed by 

an increase (or decrease) in the effective reproduction number ( ℛe) by 12.42 %. On the other hand, 

the index of vaccination rate for exposed stray dogs (𝜈𝑠)  has  a negative sensitivity index (-

0.8650). This implies that the effective reproduction number ( ℛe) will immediately decrease (or 

increase) by 86.5% upon a 10% increase (or decrease) in 𝜈𝑠  while all other parameters stay 

constant. Consequently, the indices for the remaining parameters are shown in Table 2. 

5.2 Numerical Simulations 

In this section, we performed numerical simulations to study the impact of various parameters on 

the spread of rabies infection. To perform this study, we used the following initial values 𝑆𝑑(0) =

3200,  𝐸𝑑(0) = 60,  𝐼𝑑(0) = 15,  𝑅𝑑(0) = 25, 𝑆𝑠(0) = 2800,  𝐸𝑠(0) = 80, 𝐼𝑠(0) = 20,  𝑅𝑠(0) =

0 and the set of parameter values given in Table 1. 

First, we choose 𝛽𝑠𝑠 = 0.0017. The numerical simulation of the model (1) shows that the 

disease-free equilibrium (DFE) point is globally stable for some other parameter values in Table 

1. The corresponding effective reproduction number is equal to  ℛe = 0.301326.  Figure 3 

illustrates the global stability of the disease-free equilibrium point proved in Theorem 1. Figure 

3(a) shows the dynamics of the population of susceptible domestic (𝑆𝑑), susceptible stray (𝑆𝑠), and 

infected domestic (𝐼𝑑).  Figure 3(b) shows the dynamics of the population of susceptible stray (𝑆𝑠), 

recovered stray (𝑅𝑠), and infected stray (𝐼𝑠). In these figures, all solution trajectories converge to 
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the disease-free equilibrium point 𝐸0 = (578.7, 0, 0, 512.3,598.7, 0, 0,182.5) for five different 

initial conditions. 

 

 

  

(a) (b) 

Figure 3. Simulation of the model (1) showing the global asymptotic stable of the 𝐸0.  

(a) the dynamics of 𝑆𝑑, 𝑆𝑠, and 𝐼𝑑 (b) the dynamics of 𝑆𝑠, 𝑅𝑠, and 𝐼𝑠. 

  

Second, the numerical simulation of the model (1) shows that the endemic equilibrium point 

is globally stable for 𝛽𝑠𝑠 = 0.0087  and some other parameter values in Table 1. The 

corresponding effective reproduction number is equal to ℛe = 1.54289 > 1. This implies that 

the rabies infection will persist in the population. Theorem 2 is numerically illustrated in Figure 4. 

Figure 4(a) shows the dynamics of the population of susceptible domestic (𝑆𝑑), susceptible stray 

(𝑆𝑠 ), and infected domestic ( 𝐼𝑑 ) and Figure 4(b) shows the dynamics of the population of 

susceptible stray (𝑆𝑠), recovered stray (𝑅𝑠), and infected stray (𝐼𝑠). In these figures, all solution 

trajectories converge to the endemic equilibrium point 𝐸1 = (578.5, 0.07, 0.01, 512.2, 

388.3, 83.9, 39.7,143.9) for five different initial conditions. 
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(a)  (b) 

Figure 4. Simulation of the model (1) showing the global asymptotic stable of the 𝐸1.  

(a) the dynamics of f 𝑆𝑑, 𝑆𝑠, and 𝐼𝑑 (b) the dynamics of 𝑆𝑑, 𝑅𝑠, and 𝐼𝑠. 

 

The numerical result illustrated in Figure 3 confirms that model (1) has only one unique 

positive endemic equilibrium point when  ℛe > 1.  This implies that the rabies infection will 

persist in the population. Theorem 2 is numerically illustrated in Figure 3. 

5.3 Numerical simulations of the optimal control 

In this section, we discuss the numerical results of the system (17) to investigate the effect of 

the following itemized optimal control strategies on the spread of the disease in a population. With 

the help of the software Matlab. This section focuses on demonstrating some numerical results of 

qualitative analysis and optimal control problem (17)-(19) through the forward-backwards Sweep 

method [10]. Using a forward fourth-order Runge-Kutta scheme and the conditions (20) and (21), 

we start with an initial guess for the controls over the time interval [0, 𝑇𝑓] and solve the state 

system (1). Using the new state values, the adjoint system (21) is solved by a backward fourth-

order Runge-Kutta scheme. The controls are updated using a convex combination of the previous 

control values and the new control values from (28). The iterative method is repeated until 

convergence. Furthermore, in describing the control strategy the parameter values are used in [8, 
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9] and weights at the end of the period (𝑇𝑓 = 8), 

    𝐴1 = 𝐴2 = 𝐴3 = 𝐴4 = 1, 𝐵1 = 20, 𝐵2 = 10, 𝐵3 = 40, 𝐵4 = 20.  (26) 

We examine and compare two different combinations of control intervention strategies for 

both domestic and stray dogs. The simulations of the optimal control are divided into three 

strategies: implementation of post-exposure treatment (𝜃𝑑,𝜃𝑠), implementation of pre-exposure 

vaccination (𝜈𝑑,𝜈𝑠), and implementation of the combination of pre-exposure vaccination (𝜈𝑑, 𝜈𝑠) 

and post-exposure treatment (𝜃𝑑 , 𝜃𝑠). 

• Strategy 1 (implementation of post-exposure treatment)  

 The combination of control of post-exposure treatment for domestic dogs (𝜃𝑑) and stray dogs 

(𝜃𝑠) is used to optimize the objective function 𝐽, whereas we set both domestic and stray dogs' 

pre-exposure vaccinations to zero (𝜈𝑑 = 𝜈𝑠 = 0). For both domestic and stray dogs, there is a 

significant reduction in the number of exposed individuals (𝐸𝑑,𝐸𝑠) and infected individuals (𝐼𝑑, 

𝐼𝑠) when compared to cases without controls (Figure 5(a-d)). The control profile is shown in Fig. 

5(e), and control 𝜃𝑑 is at the upper bound for about 1.1 years and the control of 𝜃𝑠 is at the upper 

bound for about 6.1 years. Then it gradually decreased to zero (the lower limit) at the end of the 

control period. The objective function value of Strategy 1 at the end of the control period is close 

to 𝐽 = 512.79.  

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

Figure 5. The simulation results of the model (1) show the effect of post-exposure 

treatment for domestic dogs (𝜃𝑑) and stray dogs (𝜃𝑠) on the spread of rabies. 

 

• Strategy 2 (implementation of pre-exposure vaccination)  

 The combination of control of pre-exposure vaccination for domestic dogs (𝜈𝑑) and stray dogs 

(𝜈𝑠) is used to optimize the objective function 𝐽, whereas we set both domestic and stray dogs' 

post-exposure treatment to zero (𝜃𝑑 = 𝜃𝑠 = 0) . For both domestic and stray dogs, there is a 

significant reduction in the number of infected individuals (𝐼𝑑,𝐼𝑠) when compared to cases without 

controls (Fig. 6(c-d). The control profile is shown in Fig. 6(e), and control 𝜈𝑠 is at the upper bound  

for about 4.7 years and the control of 𝜈𝑑 at the beginning of the period is around 0.14 and then 

drops to zero at the end of the control period (𝑇𝑓 = 8).  Then it gradually decreased to zero (the 

lower limit) at the end of the control period. The objective function value of Strategy 2 at the end 

of the control period is close to 𝐽 = 347.19. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 

(e) 

Figure 6. The simulation results of the model show the effect of post-exposure 

vaccination for domestic dogs (𝜈𝑑) and stray dogs (𝜈𝑠) on the spread of rabies. 

 

• Strategy 3 (implementation of pre-exposure vaccination and post-exposure treatment) 

The combination of control of pre-exposure vaccination and post-exposure treatment for 

domestic dogs (𝜈𝑑 , 𝜃𝑑) and stray dogs (𝜈𝑠, 𝜃𝑠) is used to optimize the objective function 𝐽. Strategy 

3 produces a pattern similar to Strategy 1. For both domestic and stray dogs, there is a significant 

reduction in the number of exposed individuals (𝐸𝑑 ,𝐸𝑠 ) and infected individuals (𝐼𝑑 ,𝐼𝑠 ) when 
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compared to cases without controls (Fig. 7(a-d)). The control profile is shown in Fig. 7(e), and 

control 𝜃𝑑 and 𝜃𝑠 are at the upper bound for about 0.4 and 1 years, respectively. Then it gradually 

decreased to zero at the end of the control period (𝑇𝑓 = 8). The objective function value of Strategy 

3 at the end of the control period is close to 𝐽 = 251.85. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 7. The simulation results of the model show the effect of the combination of pre-

exposure vaccination and post-exposure treatment for domestic dogs (𝜈𝑑, 𝜃𝑑) and stray dogs 

(𝜈𝑠, 𝜃𝑠)  on the spread of rabies. 
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The calculations above, it shows that by using parameter values as in Table 1 and using the 

objective function as in equation (18) with weights at the end of the control period (𝑇𝑓 = 8), the 

results obtained are that Strategy 3 (combination of pre-exposure vaccination and post-exposure 

treatment on domestic dogs and stray dogs) is a strategy with minimum objective function value 

over the 8 year intervention period. 

 

6. CONCLUSION 

In this study, rabies transmission in pet and stray dog populations with pre-exposure vaccination 

and post-exposure treatment was studied using a nonlinear mathematical model. The model has a 

disease-free equilibrium point and an endemic equilibrium point. The global dynamics of the 

model are determined by the effective reproduction number, which is obtained from the next 

generation matrix method. Using the next-generation matrix approach, the effective reproduction 

number  ℛe can be determined. It has been demonstrated that, assuming ℛe < 1, the disease-free 

equilibrium point is globally asymptotically stable using the Castillo-Chavez method. However, if 

 ℛe > 1, the endemic equilibrium will be globally asymptotically stable, which is proven using 

the nonlinear Lyapunov function. 

Sensitivity analysis and numerical simulations were carried out on model parameters that 

influence the spread of rabies in domestic and wild dog populations. The results of the sensitivity 

analysis shows that the transmission rate in wild dogs (𝛽𝑠𝑠) and the death rate for wild dogs due to 

a disease 𝜉𝑠 are the most sensitive (positive) parameters. This means that it plays an important 

role in influencing the spread of rabies in a population. On the other hand, the vaccination rate of 

stray dogs (𝜈𝑠) is the most sensitive (negative) parameter, which means that the vaccine is a key 

factor in reducing the prevalence of rabies. Next, the model was developed by considering pre-

exposure vaccination and post-exposure treatment in pet dogs and stray dogs as control variables. 

In addition, the existence of optimal control has been proven and Pontryagin's minimum principle 

is used to determine the analytical characterization of optimal control. Numerically, optimal 

control analysis shows that the application of a combination of two optimal controls (pre-exposure 
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vaccination and post-exposure treatment) results in a significant reduction in the number of cases 

in infected individuals. 
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