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Abstract: In this research paper the identification and large implementation of a powerful SARS-CoV-2 vaccine may 

prevent considerable illnesses and fatalities from COVID-19 while minimizing the negative effects associated with 

non-pharmaceutical treatments. We used an enhanced, age-structured SEIHR model with social interaction matrices 

to evaluate age-related vaccination allocation strategies in India. We used specific to the state age patterns and disease 

transmission ratios calculated from confirmed COVID-19 incident cases between July 1 and August 31, 2020. How 

vaccination distribution tactics that prioritize distinct age groups reduce mortality and morbidity relative to one another, 

and how these strategies combine with concurrent non-pharmaceutical treatments [24], were looked into through 

simulations. Because of the uncertainty surrounding the development of the COVID-19 vaccine, we modified the 

vaccination features in the modeling simulations. The biggest relative reduction in mortality was obtained by 

allocating COVID-19 vaccines to older populations (those over 60 years old), regardless of vaccination effectiveness, 

control methods, rollout velocity, or immunity dynamics. Compared to other evaluated strategies, preferential 
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vaccination of this group typically resulted in bigger total symptomatic infections and more dramatic predictions of 

peak incidence. The overall plan success was significantly influenced by vaccination efficacy, immunity type, target 

coverage, and rollout pace. The relative mortality benefit compared to no vaccination was significantly impacted by 

the time necessary to achieve goal coverage. The results of our study back up worldwide guidelines for deciding on 

COVID-19 vaccination allocation for those over 65. As the frequency of vaccine distribution increased the relative 

discrepancies between allocation plans reduced. Vaccine allocation choices which are optimum will be determined 

according to vaccine characteristics, the strength of ongoing non-pharmaceutical medication, and specific to that area 

goals. In comparison to not having been vaccinated, there is a benefit. 

Keywords: basic reproduction number; stability analysis; disease free and endemic equilibrium; optimum control 

strategies. 

2020 AMS Subject Classification: 92C60. 

 

1. INTRODUCTION 

The World Health Organization, or WHO, stated in December 2019 that COVID-19 was a 

pandemic of worldwide threat after the identification of the disease's fifth human case by China's 

Wuhan City officials. on June 1, 2022, the virus had caused over 530 million infections and over 

6.2 million fatalities globally. The 2nd COVID-19 wave in India has been extremely serious; 

during the latter week of April 2021, around 30,000 new cases were confirmed daily. According 

to WHO data, as of December 15, 2022, there were over 6,637,512 confirmed COVID-19 instances 

and 646,740,524 confirmed cases of the virus. On February 14, 2020, the first COVID-19 case to 

be reported in Africa took place in Egypt [1]. 

Since COVID-19 symptoms take at least two to ten days to manifest, it might be challenging to 

segregate affected people in the early stages of the illness. The main signs and symptoms of 

COVID-19 are a high fever, respiratory difficulties, and a dry cough. When an infected person 

coughs or sneezes, respiratory droplets from them may enter the environment and spread the virus.  

People who have not previously been afflicted by the virus may contract it by breathing in 

contaminated air or by contacting infected objects. Such human transmission was widespread 

during the early phases of the COVID-19 outbreak since the general public was ignorant of these 
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risk factors and sick people were not quarantined, which allowed them to unintentionally spread 

the virus to other people [4]. 

(i)  Use soap and water or a hydro alcoholic solution to wash your hands often [5]. 

(ii)  If you cough or sneeze, cover your mouth and nose with the crease of your elbow or a 

handkerchief; promptly discard the handkerchief and wash your hands [5]. 

(iii) Steer clear of people who are sick with a fever and cough [5]. 

(iv) Seek medical attention as soon as you have a fever, cough, or trouble breathing [5]. 

(v)  Avoid unprotected direct contact with live animals and surfaces that have come into contact 

with animals in markets located in areas where cases of the new coronavirus are currently 

occurring [5]. 

(vi) It is best to refrain from consuming raw or undercooked meat or poultry. To prevent cross 

contamination with raw food, raw meat, milk, or organ meats should be handled carefully 

in accordance with acceptable food safety practices [5]. 

Novel virus infection outbreaks in humans are always a cause for concern for the public's health, 

particularly when little is known about the virus's properties, how it travels among individuals, the 

severity of the resulting infections, and available treatments. One of the most effective ways to 

address all of these issues is through mathematical modeling. Effective nondrug treatments, like 

social exclusion and personal protection, will be essential in managing the outbreak in the absence 

of COVID-19 vaccines or antivirals [5]. 

State wise in India, Maharashtra, Kerala, Karnataka, Andhra Pradesh and Tamil Nadu are the top 

five hotspot of COVID-19 virus spreads, In Maharashtra as on 09th December 2023 totally 

81,71,942 COVID-19 cases are conformed in that 8023379 are recovered and 148563 are Dead 

due to COVID-19, In Kerala as on 09th December 2023 totally 69,07,976 COVID-19 cases are 

conformed in that 6835931 are recovered and 72045 are Dead due to COVID-19, In Karnataka as 

on 09th December 2023 totally 40,88,956 COVID-19 cases are conformed in that 4048597 are 

recovered and 40359 are Dead due to COVID-19, In Andhra Pradesh as on 09th December 2023 

totally 23,40,677 COVID-19 cases are conformed in that 2325944 are recovered and 14733 are 

Dead due to COVID-19, In Tamil Nadu as on 09th December 2023 totally 36,10,774 COVID-19 
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cases are conformed in that 35,72,693 are recovered and 38,081 are Dead due to COVID-19 these 

data are published in MoHFW [23].   

Indian Government imposed various disease control strategy such as Lockdown, Social Distancing, 

Washing Hands Frequently Wearing Mask, Sanitize hands with alcohol base sanitizer and vaccine 

administer etc., In these Lock down helps us to make self-isolation by staying home and it helps 

us to recover from mild infection of COVID-19,  While maintaining six feet Social Distancing 

helps to avoid the disease spread through the tiny droplets in Public places meanwhile wearing 

mask will prevent the spread of tiny droplets through air. 

In light of the global rollout of COVID-19 vaccinations, we develop and examine a COVID-19 

model that accounts for treatment options, immunization of susceptible persons, and 

hospitalized/infected patient care. Several important biological and epidemiological aspects of 

COVID-19 are included in our suggested model, such as demographic characteristics 

(recruitment/birth and death). Pontryagin's maximum concept, which is employed in 

epidemiological models and outlined in, is used to achieve optimal control. A sensitivity analysis 

utilizing partial rank correlation coefficients is performed in order to determine which model 

parameters, when vaccination and treatment are adopted, have a bigger influence on the initial 

disease transmission R0. The results are graphically displayed. This identification is essential in 

order to guide policy decisions about which parameters to prioritize for data gathering or to slow 

the disease's progress [3]. 

 

2. MODEL FORMATIONS 

Based on the real situation we are going to form a Mathematical Modelling of Indian Pandemic 

COVID-19 Equations at any time t [38], we can subdivide the human population into five 

compartments namely S(t) Susceptible, E(t) Exposed, I(t) infected, H(t) Hospitalized and 

Removed R(t) respectively [24]. 
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Parameters Description 

𝐴 Birth Rate 

𝛽 Outflow of the S to E 

𝛼 Outflow of the E to I 

𝜙 Outflow of the I to H 

𝛿 Outflow of the H to R 

𝛾 COVID-19 induced death rate 

𝜖 Outflow of the E to S 

𝜆 Outflow of the E to H 

𝜃 Outflow of the I to R 

The parameter M mathematically stands for the Vaccine administered to the public portion from 

the category (R(t)), the parameter M stands for the Vaccine administered to the public should 

depend on time and should provide the best result in formulating an optimal control problem that 

we must maintain the infected person at a minimum level, regardless of where 0 ≤ M(t) ≤ 1. We 

have a propensity to draw up the expected COVID-19 scheme in Figure1 followed the above 

assumptions.  

 

Fig 1: Compartmental Diagram of SEIHR Model for Indian COVID-19 Pandemic 
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Under this Assumption the Mathematical Model of Indian Pandemic COVID-19 

�̇� = 𝐴 − 𝛽𝑆𝐸 − 𝛾𝑆 + 𝜖𝐸 

�̇� = 𝛽𝑆𝐸 − (𝛾 + 𝛼 + 𝜖 + 𝜆)𝐸               (1) 

𝐼̇ = 𝛼𝐸 − (𝛾 + 𝜙 + 𝜃)𝐼 

�̇� = 𝜆𝐸 + 𝜙𝐼 − (𝛾 + 𝛿)𝐻 

�̇� = 𝜃𝐼 + 𝛿𝐻 − 𝛾𝑅 

The initial states of the system (1) are 𝑆(0)  ≥  0, 𝐼(0)  ≥  0, 𝐸(0)  ≥  0, 𝑅(0)  ≥  0. 

We assume that control parameter N has a fixed value. In this section we mainly focus the study 

of uniformly boundedness solutions and the basic reproduction number, Stability Criteria for 

different equilibria and sensitivity analysis etc. 

 

3. UNIFORMLY BOUNDEDNESS OF INDIAN PANDEMIC COVID-19 EQUATIONS 

We verify the boundedness property of the system of nonlinear equations (1). The system  of 

nonlinear equations(1). are uniformly bounded. Based on the assumption that 

𝑍 = 𝑆 + 𝐸 + 𝐼 + 𝐻 + 𝑅 

Therefore 

𝑑𝑧

𝑑𝑡
=  
𝑑𝑆

𝑑𝑡
+
𝑑𝐸

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
+
𝑑𝐻

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
 

𝑑𝑧

𝑑𝑡
= A − γz 

𝑑𝑧

𝑑𝑡
+ γz = A 

Integrating above inequality by applying Birkhoff and Rota [2] theorem of differential equation 

we get 

𝑧 ≤
𝐴

𝛾
[1 − 𝑒−𝛾𝑡] + 𝑧0𝑒

−𝛾𝑡 

𝑁𝑜𝑤  𝑓𝑜𝑟  𝑡 → ∞ 

0 < 𝑧 ≤
𝐴

𝛾
 

Hence all the solutions of System of Nonlinear Equations (1) that are commence in {𝑅+
5  }  are 

restricted in the region  

{ 𝑧 ∈  𝑅+
5 :  0 < 𝑋(𝑆, 𝐸, 𝐼, 𝐻, 𝑅) ≤

𝐴

𝛾
+ 𝜖 
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For any  𝜖 > 0 and for 𝑡 → ∞ 

 

4. BASIC REPRODUCTION NUMBER OF INDIAN PANDEMIC COVID-19 EQUATIONS 

Basic reproduction number (R0) parameter plays an important role within the epidemic model for 

determinant the character of disease “The number of Secondary individual infected can caused 

by a single infected individual within the whole time interval” [5,9,22,44] 

�̇� = 𝛽𝑆𝐸 − (𝛾 + 𝛼 + 𝜖 + 𝜆)𝐸               (2) 

𝐼̇ = 𝛼𝐸 − (𝛾 + 𝜙 + 𝜃)𝐼 

�̇� = 𝜆𝐸 + 𝜙𝐼 − (𝛾 + 𝛿)𝐻 

We can write the above system as   

𝑑𝑦

𝑑𝑡
= 𝜑(𝑦) − Ψ(𝑦) 

Where  𝑦 = (
𝐸
𝐼
𝐻
)    𝜑(𝑦) =   (

𝛽𝑆𝐸
0
0

)    Ψ(𝑦) =  (

(𝛾 + 𝜖 + 𝛼 + 𝜆)𝐸
(𝛾 + 𝜙 + 𝜃)𝐼 −  𝛼𝐸
(𝛾 + 𝛿)𝐻 − 𝜆𝐸 − 𝜙𝐼

) 

 

The system of Nonlinear Equations (1) that`s 𝐸0 (
𝐴

𝛾
, 0,0 0,0)    a disease free equilibrium.  

Currently  the  Jacobian  matrix  of   𝜑  and Ψ  at  the  disease  free  equilibrium  are  

respectively  given  by 

𝐹 = 𝐽 (
𝜑

𝐸0
) = (

𝛽𝑆0 0 0
0 0 0
0 0 0

) 

𝑉 = 𝐽 (
Ψ

𝐸0
) = (

(𝛾 + 𝜖 + 𝛼 + 𝜆) 0 0

−𝛼 (𝛾 + 𝜙 + 𝜃) 0
−𝜆 −𝜙 (𝛾 + 𝛿)

) 

 

Then   𝑉−1 = 

(

 
 

1

(𝛾+𝜖+𝛼+𝜆)
0 0

𝛼

(𝛾+𝜖+𝛼+𝜆)(𝛾+𝜙+𝜃)

1

(𝛾+𝜙+𝜃)
0

𝜆

(𝛾+𝜖+𝛼+𝜆)(𝛾+𝜙+𝜃)(𝛾+𝛿)

𝜙

(𝛾+𝜙+𝜃)(𝛾+𝛿)

1

𝛾+𝛿)

 
 
  

 

The matrix's spectral radius is also known as the basic reproductive number (R0 )  (𝐹𝑉−1) and 

is indicated in the current model by  
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𝐹𝑉−1

= (
𝛽𝑆0 0 0
0 0 0
0 0 0

)

(

 
 
 
 

1

(𝛾 + 𝜖 + 𝛼 + 𝜆)
0 0

𝛼

(𝛾 + 𝜖 + 𝛼 + 𝜆)(𝛾 + 𝜙 + 𝜃)

1

(𝛾 + 𝜙 + 𝜃)
0

𝜆

(𝛾 + 𝜖 + 𝛼 + 𝜆)(𝛾 + 𝜙 + 𝜃)(𝛾 + 𝛿)

𝜙

(𝛾 + 𝜙 + 𝜃)(𝛾 + 𝛿)

1

𝛾 + 𝛿)

 
 
 
 

 

𝐹𝑉−1 =
𝛽𝑆0

(𝛾 + 𝜖 + 𝛼 + 𝜆)
 

𝑅0 =
𝛽𝐴

𝛾(𝛾 + 𝜖 + 𝛼 + 𝜆)
                                                      (3) 

 

 

 

Fig 2: Surface graph of R0 with respect to Disease Transmission Rate (β) and Covid -19 Death 

Rate (γ) 
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Fig 3: Contour graph of R0 with respect to Disease Transmission Rate (β) and Covid -19 Death 

Rate (γ) 

 

5. EQUILIBRIA SOLUTION OF INDIAN PANDEMIC COVID-19 

Two   possible   equilibria`s are available for the system of nonlinear equations (1), one is the 

disease-free equilibrium and the disease disappears in this disease-free equilibrium. And 

give  𝐸0(𝑆0, 0,0,0, 𝑅0) , Where 𝑆0 =
𝐴

𝛾
,   𝑅0 =

𝛽𝐴

𝛾(𝛾+𝜖+𝛼+𝜆)
    and the  other one is Endemic 

equilibrium point in this endemic equilibrium the infections present always and gives 

𝐸1(𝑆
∗, 𝐸∗, 𝐼∗, 𝐻∗, 𝑅∗) 

𝑆∗ =
(𝛾 + 𝜖 + 𝜆 + 𝛼)

𝛽
 

𝐸∗ =
𝐴𝛽 − 𝛾(𝛾 + 𝜖 + 𝜆 + 𝛼)

𝛽(𝛾 + 𝛼 + 𝜆)
 

𝐼∗ = 
𝛼𝐸∗

(𝛾+𝜃+𝜙)
                  (4) 

𝐻∗ =
𝜆𝐸∗ + 𝜙𝐼∗

(𝛾 + 𝛿)
 

𝑅∗ =
𝛿𝐻∗ + 𝜃𝐼∗

𝛾
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6. COVID-19 INDIAN PANDEMIC FOR LOCALLY ASYMPTOTICALLY STABLE 

We planned to examine the local asymptotic stability of both infected Free and Endemic 

Equilibria, If R0 < 1 then the disease free symmetry E0 is locally asymptotically stable if R0 > 1 

then the disease free equilibrium E0 is locally asymptotically unstable. [12,21,19,44] 

The disease free equilibrium of the system of Nonlinear Equation (1) is given by the following 

Jacobian Matrix 

𝐽 =

(

 
 

−𝛾 0 0 0 0
−𝛽𝑆0 −(𝛾 + 𝜖 + 𝜆 + 𝛼) 𝛼 𝜆 0

0 0 −(𝛾 + 𝜙 + 𝜃) 𝜙 𝜃
0 0 0 −(𝛾 + 𝛿) 𝛿
0 0 0 0 −𝛾)

 
 

 

|𝐽 − 𝜌𝐼| =

(

 
 

−𝛾 − 𝜌 0 0 0 0

−𝛽𝑆0 −(𝛾 + 𝜖 + 𝜆 + 𝛼) − 𝜌 𝛼 𝜆 0

0 0 −(𝛾 + 𝜙 + 𝜃) − 𝜌 𝜙 𝜃

0 0 0 −(𝛾 + 𝛿) − 𝜌 𝛿
0 0 0 0 −𝛾 − 𝜌)

 
 

 

The characteristic equation of the system Nonlinear equations (1) at its disease free equilibrium is 

given by 

(𝜌 + 𝛾)2(𝜌 + (𝛾 + 𝛿))(𝜌 + (𝛾 + 𝜙 + 𝜃))(𝜌 + (𝛾 + 𝜖 + 𝜆 + 𝛼)) = 0     (5) 

From the above Jacobian matrix if all the eigen value are non-positive only when R0 < 1. Then the 

system is locally asymptotically stable if R0 < 1 and it is unstable if R0 > 1. 

Note 1: If R0 increases to its value greater than 1 then the disease free equilibrium E0 losses 

its stability. 

Note 2: When R0 = 1 the system of nonlinear equations (1) permits  through a Transcritical 

bifurcation around its disease free equilibrium. When R0 < 1 the disease free equilibrium 

happens and locally asymptotically stable if R0 > 1 is the beginning criteria for both Present 

and asymptotic stability for endemic equilibrium point, At the beginning R0 > 1 then the 

disease free equilibrium reduces to unstable in nature. Then there is a change of feasibility 

besides stability occurs at R0 = 1. [12,21,19,44]. 

7. COVID-19 INDIAN PANDEMIC FOR ENDEMIC EQUILIBRIUM 

If R0 > 1 then the Endemic equilibrium E1 is locally asymptotically stable from the following 

Jacobian Matrix. 
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𝐽 =

(

 
 

−𝛾 − 𝛽𝐸∗ −𝛽𝑆∗ + 𝜖 0 0 0
𝛽𝐸∗ 𝛽𝑆∗ − (𝛾 + 𝜖 + 𝜆 + 𝛼) 0 0 0

0 𝛼 −(𝛾 + 𝜙 + 𝜃) 0 0
0 𝜆 𝜙 −(𝛾 + 𝛿) 0
0 0 𝜃 𝛿 −𝛾)

 
 

 

|𝐽 − 𝜌𝐼|

=

(

 
 

−𝛾 − 𝛽𝐸∗ − 𝜌 −𝛽𝑆∗ + 𝜖 0 0 0

𝛽𝐸∗ 𝛽𝑆∗ − (𝛾 + 𝜖 + 𝜆 + 𝛼) − 𝜌 0 0 0

0 𝛼 −(𝛾 + 𝜙 + 𝜃) − 𝜌 0 0

0 𝜆 𝜙 −(𝛾 + 𝛿) − 𝜌 0
0 0 𝜃 𝛿 −𝛾 − 𝜌)

 
 

 

The characteristic equation of the system (1) around its endemic equilibrium E2 is 

(𝜌 + 𝛾)(𝜌 + (𝛾 + 𝛿))(𝜌 + (𝛾 + 𝜙 + 𝜃)) 

(𝜌2 + 𝜌 (
𝐴𝛽−𝛾𝜖

(𝛾+𝛼+𝜆)
) +

(𝛾+𝛼+𝜆)2+𝛾(𝛾+𝜖+𝜆+𝛼)

(𝛾+𝛼+𝜆)
(𝑅0 − 1)) = 0        (6) 

Equation (5) shows that the first pair of roots are positive real and rest of the roots are Quadratic 

polynomial and all the other parametric values are positive. We accomplish that equation (1) is 

locally asymptotically steady everywhere its endemic equilibrium E1 in the view of Routh-Hurwitz 

criterion. 

 

8. SENSITIVITY ANALYSIS 

In this component, it is established whether modifying values for parameters impact the functional 

value of the reproduction number. It is vital to find the critical parameter that may act as a critical 

threshold for disease management. The sensitivity index for R0 to 𝛽, 𝛾, 𝜀, 𝛼 be as follows 

𝜕𝑅0
𝜕𝛽

=
𝐴

𝛾(𝛾 + 𝜆 + 𝛼 + 𝜖)
 

𝜕𝑅0
𝜕𝜖

=
−𝛽𝐴𝛾

(𝛾(𝛾 + 𝜆 + 𝛼 + 𝜖))
2 

𝜕𝑅0
𝜕𝛾

=
−𝛽𝐴(2𝛾 + 𝜆 + 𝛼 + 𝜖)

(𝛾(𝛾 + 𝜆 + 𝛼 + 𝜖))
2  

𝜕𝑅0
𝜕𝛼

=
−𝛽𝐴𝛾

(𝛾(𝛾 + 𝜆 + 𝛼 + 𝜖))
2 

(7) 
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𝜕𝑅0
𝜕𝜆

=
−𝛽𝐴𝛾

(𝛾(𝛾 + 𝜆 + 𝛼 + 𝜖))
2 

All partial derivatives are positive, therefore increasing any of the aforementioned factors enhances 

the basic reproductive number R0. The proportionate reaction to proportional stimulation can be 

utilized to assess elasticity. 

𝐸𝛽 =
𝛽

𝑅0
(
𝜕𝑅0
𝜕𝛽
) =

𝛽

𝑅0
(

𝐴

𝛾(𝛾 + 𝜆 + 𝛼 + 𝜖)
) = 1 (𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 

𝐸𝜖 =
𝜖

𝑅0
(
𝜕𝑅0
𝜕𝜖
) =

𝜖

𝑅0
(

−𝛽𝐴𝛾

(𝛾(𝛾 + 𝜆 + 𝛼 + 𝜖))
2) = −0.13  (𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 

𝐸𝛾 =
𝜃1
𝑅0
(
𝜕𝑅0
𝜕𝛾
) =

𝛾

𝑅0
(
−𝛽𝐴(2𝛾 + 𝜆 + 𝛼 + 𝜖)

(𝛾(𝛾 + 𝜆 + 𝛼 + 𝜖))
2 ) = −1.43  (𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 

𝐸𝛼 =
𝛼

𝑅0
(
𝜕𝑅0
𝜕𝛼
) =

𝛼

𝑅0
(

−𝛽𝐴𝛾

(𝛾(𝛾 + 𝜆 + 𝛼 + 𝜖))
2)  = −0.33  (𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 

𝐸𝜆 =
𝜆

𝑅0
(
𝜕𝑅0
𝜕𝜆
) =

𝜆

𝑅0
(

−𝛽𝐴𝛾

(𝛾(𝛾 + 𝜆 + 𝛼 + 𝜖))
2)  = −0.11  (𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 

From the above system of equations 𝐸𝛽 is positive, while 𝐸𝛾, 𝐸𝜖 , 𝐸𝜃, 𝐸𝛼 are all negative, t is all 

negative. This clearly shows that increasing the value of 𝛽  will increase the value of R0 while 

increasing the value of 𝜖, 𝛾, 𝜃, 𝛼 will decrease the value of R0, A highly sensitive parameter should 

be carefully analysed since tiny changes in the system might result in big numerical changes R0.  

 

Fig 4: Sensitivity Index R0 with respect to (β), (γ), (ϵ), (λ), (α) 

(8) 
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9. OPTIMAL CONTROL FOR COVID-19 INDIAN PANDEMIC 

Here M(t) stands for the Vaccine administered to the public it is one of the time varying control 

strategy implemented by Indian government, which gave the awareness of Vaccine administered 

to the public. Recent days it is very important strategy implemented by Indian Government which 

minimizes the virus spread between the peoples. In order to determine such a strategy, we can use 

the optimal control theory to minimise the spread of the virus between people, the main objective 

of the optimal control problem. We may construct the goal in the following way: [27,31] 

        �̇� = 𝐴 − 𝛽𝑆𝐸 − 𝛾𝑆 + 𝜖𝐸 − 𝑝𝑀𝑆 

�̇� = 𝛽𝑆𝐸 − (𝛾 + 𝛼 + 𝜖 + 𝜆)𝐸    

𝐼̇ = 𝛼𝐸 − (𝛾 + 𝜙 + 𝜃)𝐼 

�̇� = 𝜆𝐸 + 𝜙𝐼 − (𝛾 + 𝛿)𝐻 

�̇� = 𝜃𝐼 + 𝛿𝐻 − 𝛾𝑅 + 𝑝𝑀𝑆 

𝐽 = ∫ [𝑐1𝐼(𝑡) + 𝑐2𝑀(𝑡)] 𝑑𝑡
𝑡𝜏

0

                                                 (10) 

Subject to the model proposed (1). Where c1 is defined for the infected population and c2 is 

restricted to the control. The above functional aim is linear and regulated in bounded states. 

We can also use standard results to ensure optimum control and appropriate optimum states [8]. 

The aim is to determine the optimal control value N(t) in such a way such that 

𝐽(𝑀∗(𝑡)) = 𝑚𝑖𝑛
𝑁∈𝛺

𝐽(𝑀) 

𝛺 = {𝑀(𝑡): 0 ≤ 𝑎 ≤ 𝑀(𝑡) ≤ 𝑏 < 1,  0 ≤ 𝑡 ≤ 𝑡𝜏,   M(𝑡) is a Lebesgue Measurable} 

By Using Pontryagin`s Maximum Principal [8,28,37,44] to develop the required conditions for our 

optimal control and corresponding states. Then the Lagrangian is given by 

𝐿(𝐼.𝑀) = 𝑐1𝐼(𝑡) + 𝑐2𝑀(𝑡)                                           (11)  

 The Hamiltonian is defined as follows   

𝑉(𝐼, 𝑁, 𝜆1, 𝜆2, 𝜆3, 𝜆4) =  𝐿(𝐼. 𝑁) + 𝜆1 (
𝑑𝑆

𝑑𝑡
) + 𝜆2 (

𝑑𝐸

𝑑𝑡
) + 𝜆3 (

𝑑𝐼

𝑑𝑡
) + 𝜆4 (

𝑑𝐻

𝑑𝑡
) + 𝜆5 (

𝑑𝑅

𝑑𝑡
)    (12) 

A vice parameter of the Optimal Control M(t) exists according to the states S, E, I, H and R: 

𝜆1
′ (𝑡) = −

𝜕𝑉

𝜕𝑆
=  𝜆1(𝑡)[𝛽𝐸 + 𝛾 + 𝑝𝑀] − 𝜆2(𝑡)[𝛽𝐸] − 𝜆5(𝑡)[𝑝𝑀] 

(9) 



14 

R. RAMESH, G. ARUL JOSEPH 

𝜆2
′ (𝑡) = −

𝜕𝑉

𝜕𝐸
=  𝜆1(𝑡)[𝛽𝑆 − 𝜖] − 𝜆2(𝑡)[𝛽𝑆 − (𝛾 + 𝜖 + 𝛼 + 𝜆)] + 𝛼𝜆3(𝑡) + 𝜆 𝜆4(𝑡) 

𝜆3
′ (𝑡) = −

𝜕𝑉

𝜕𝐼
=  𝜆3(𝑡)[(𝜙 + 𝛾 + 𝜃)] − 𝜙 𝜆4(𝑡)  − 𝜃 𝜆5(𝑡) 

                  𝜆4
′ (𝑡) = −

𝜕𝑉

𝜕𝐻
= 𝜆4(𝑡)[𝛾 + 𝛿] − 𝛿 𝜆5(𝑡) 

                 𝜆5
′ (𝑡) = −

𝜕𝑉

𝜕𝐻
= 𝛾 𝜆5(𝑡)  

The transversally conditions were satisfying by the adjoin variables 

𝜆1(𝑡𝜏) = 0 , 𝜆2(𝑡𝜏) = 0,  𝜆3(𝑡𝜏) = 0,  𝜆4(𝑡𝜏) = 0, 𝜆5(𝑡) = 0    (13) 

We try to minimize the Hamiltonian using the control variable M(t), More over the Hamiltonian 

is linear in the control parameter, if we consider the optimal control is singular. Then the switching 

function as 

𝜑(𝑡) =
𝜕𝑉

𝜕𝑀
= 𝑐2 + (𝜆5 − 𝜆1)𝑝𝑆       (14)  

If switching function vanishes on non-trivial interval of time then the singular control occurs, and 

then the optimal control is to take its upper bound or its lower bound according as 

𝜕𝑉

𝜕𝑀
< 0  𝑜𝑟 > 0 to verify the singular case, we may assume that 

𝜕𝑉

𝜕𝑀
= 0. 

For some non-trivial interval. we calculate   
𝑑

𝑑𝑡
(
𝜕𝑉

𝜕𝑀
) = 0  After some simplifications of the time 

derivative of  
𝜕𝑉

𝜕𝑀
  we obtain 

0 =  
𝑑

𝑑𝑡
(
𝜕𝑉

𝜕𝑀
) =

𝑑

𝑑𝑡
[𝑐2 + (𝜆5 − 𝜆1)𝑝𝑆] =  − 𝜆1

′ 𝑝𝑆 − 𝜆1𝑝𝑆
′ + 𝜆5𝑝𝑆

′ + 𝜆5
′ 𝑝𝑆   (15) 

 

Using the system of equations (2) and (5) we obtain  

0 =  
𝑑

𝑑𝑡
(
𝜕𝑉

𝜕𝑀
) = −𝑝𝑆[ (𝜆2 − 𝜆1)𝛽𝐸 − 𝛾𝜆1] + 𝑝(𝜆5 − 𝜆1)(𝐾 − 𝛾𝑝𝑆)    (16) 

𝐻𝑒𝑟𝑒  𝐾 = 𝐴 − 𝛽𝑆𝐸 − 𝛾𝑆 + 𝜖𝐸 

The control parameter M will not exist for the fore said equations, hence calculation of second 

order derivative with respect to time is essential.  

0 =  
𝑑2

𝑑𝑡2
(
𝜕𝑉

𝜕𝑀
) =  {−𝛽𝐸(𝜆2

′ − 𝜆1
′ ) − 𝛽(𝜆2 − 𝜆1)𝐸′ + 𝛾𝜆1

′ } 𝑝𝑆 + 𝑝𝑆′[ 𝛾𝜆 − (𝜆2 − 𝜆1)𝛽𝐸] + 

(𝜆5
′ − 𝜆1

′ )𝐾𝑝 + (𝐴 − 𝛽(𝑆𝐸′ + 𝑆′𝐸) − 𝛾𝑆′ + 𝜖𝐸′)(𝜆5 − 𝜆1)𝑝 − 

𝑝𝛾𝑆′𝜆5 − 𝑝𝛾𝑆𝜆5
′                                                                                                                                         (17) 
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= (𝜆2 − 𝜆1)[𝛽𝛾𝐸 − (2𝛽
2𝑠2𝑝𝐸 + 𝛽2𝐸2𝑝𝑆)] + (𝜆5 − 𝜆1)[𝑝𝑀𝛾 − 𝛽𝑝

2𝑆𝐸𝑀] 

+(𝛾 + 𝜆 + 𝛼 + 𝜖)𝛽𝑝𝑆𝐸(1 + 𝜆2) + 𝛽𝑝𝑆𝐸(𝛾 − 𝜖 + 𝛼𝜆3 − 𝜆 𝜆4) − 𝛾
2𝜆1 

+(𝜆2 − 𝜆1)[𝛽
2𝑆𝐸2 + 𝛽𝛾𝑆𝐸 − 𝛽𝜖𝐸2 − 𝐴𝛽𝐸] + 𝛽𝑆𝐸[𝑝𝑀 − 𝛾𝜆] 

+(𝐴 − 𝜖𝐸 + 𝑝𝑆𝑀)𝛾𝜆 − 𝛾2𝜆𝑆 + {𝑝(𝜆5 − 𝜆1)[𝐴 − (𝐾 − 𝑝𝑆𝑀)(𝛽𝜖 + 𝛾) 

(𝛽𝑆 − 𝜖)[(𝛾 + 𝜆 + 𝛼 + 𝜖)𝐸 − 𝛽𝑆𝐸]} − (𝜆2 − 𝜆1)𝛽𝐾𝑝 − (𝜆5 − 𝜆1)[𝐾𝑝𝛾 − 𝐾𝑝
2𝑀] 

+𝜆5𝛾𝑝[𝑆𝛾 + 𝐾 − 𝑝𝑆𝑀]                                                                                                               (18) 

The above equation can be written in the form  

𝑑2

𝑑𝑡2
(
𝜕𝑉

𝜕𝑀
) = 𝜑1(𝑡)𝑀(𝑡) + 𝜑2(𝑡) = 0 

And we solve the singular control as 𝑀𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟 (𝑡) =  −
𝜑2(𝑡)

𝜑1(𝑡)
 

Provided 𝜑1(𝑡) ≠ 0 𝑎𝑛𝑑 𝑎 ≤  −
𝜑2(𝑡)

𝜑1(𝑡)
≤ 𝑏, where 

𝜑1(𝑡) = (𝜆5 − 𝜆1)[𝑝𝛾 − 𝛽𝑝
2𝑆𝐸] + 𝛽𝑝𝑆𝐸 + 𝛾𝜆𝑝𝑆 + (𝜆5 − 𝜆1)𝑝

2𝑆(𝛽𝜖 + 𝛾) − 𝑝2𝐾(𝜆5 − 𝜆1)

+ 𝜆5𝑝
2𝛾𝑆 

And 

𝜑2(𝑡) = (𝜆2 − 𝜆1)[𝛽𝛾𝐸 − (2𝛽
2𝑠2𝑝𝐸 + 𝛽2𝐸2𝑝𝑆)] 

+(𝛾 + 𝜆 + 𝛼 + 𝜖)𝛽𝑝𝑆𝐸(1 + 𝜆2) + 𝛽𝑝𝑆𝐸(𝛾 − 𝜖 + 𝛼𝜆3 − 𝜆 𝜆4) − 𝛾
2𝜆1 

+(𝜆2 − 𝜆1)[𝛽
2𝑆𝐸2 + 𝛽𝛾𝑆𝐸 − 𝛽𝜖𝐸2 − 𝐴𝛽𝐸] + 𝛽𝑆𝐸[−𝛾𝜆] 

+(𝐴 − 𝜖𝐸)𝛾𝜆 − 𝛾2𝜆𝑆 + {𝑝(𝜆5 − 𝜆1)[𝐴 − (𝐾)(𝛽𝜖 + 𝛾) 

(𝛽𝑆 − 𝜖)[(𝛾 + 𝜆 + 𝛼 + 𝜖)𝐸 − 𝛽𝑆𝐸]} − (𝜆2 − 𝜆1)𝛽𝐾𝑝 − (𝜆5 − 𝜆1)[𝐾𝑝𝛾] 

+𝜆5𝛾𝑝[𝑆𝛾 + 𝐾]                                                                                                                                     (19) 

Moreover, it should obey the Generalized Legendre clebsch criteria which is expressed as 

𝑑

𝑑𝑀
  
𝑑2

𝑑𝑡2
(
𝜕𝑉

𝜕𝑀
) = 𝜑1(𝑡) 

To be negative [25], the conclusion part of control profile is defined by  

If 
𝜕𝑉

𝜕𝑀
< 0,   𝑡ℎ𝑒𝑛 𝑀∗(𝑡) = 𝑏  

If 
𝜕𝑉

𝜕𝑀
> 0,   𝑡ℎ𝑒𝑛 𝑀∗(𝑡) = 𝑎 

If 
𝜕𝑉

𝜕𝑀
= 0,   𝑡ℎ𝑒𝑛 𝑀𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟 (𝑡) =  −

𝜑2(𝑡)

𝜑1(𝑡)
 

Hence the Control optimal provided  𝜑1(𝑡) < 0   𝑎𝑛𝑑   𝑎 ≤ −
𝜑2(𝑡)

𝜑1(𝑡)
≤ 𝑏. 
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Fig 5: Government control strategy of Vaccine admistred to the Public at 0% 

 

 

Fig 6: Government control strategy of Vaccine admistred to the Public at 100% 

 

10. NUMERICAL ANALYSIS 

We look at numerical outcomes in two scenarios: first, when the control is fixed, and second, when 

the control is applied optimally. For numerical simulations, we first consider the values of the 

parameters in Table 2. Since δ is the disease-induced rate of mortality and d is the natural death 

rate, we can conclude that δ > d. Using these characteristics as well as the basic conditions as a 
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starting point 𝑆(0) = 60, 𝐼(0) =1, 𝐸(0) = 1, 𝑅(0) = 190  We solve our proposed model (1) 

numerically. When R0 <1 and the solutions of model (1) converge to the DFE, as shown in Fig. 2, 

the numerical result is verified. 

 

Table II: Parameter meanings for model 

Parameters Description Values / Range Reference 

𝐴 Birth Rate 50 Assumed 

𝛽 Outflow of the S to E 0.8 [4] 

𝛼 Outflow of the E to I 0.79 [5] 

𝜙 Outflow of the I to H 0.2 Assumed 

𝛿 Outflow of the H to R [0.5, 2.3] Assumed 

𝛾 COVID-19 induced death 

rate 
(0,1) 

Assumed 

𝜖 Outflow of the E to S 0.4 [4] 

𝜆 Outflow of the E to H 0.35 [4] 

𝜃 Outflow of the I to R 0.3 [4] 

 

 

 

Fig 7 (a): Plot for Change in Susceptible Rate at disease free equilibrium point 
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Fig 7 (b): Plot for Change in Exposed Rate at disease free equilibrium point 

 
Fig 7 (c): Plot for Change in Infected Rate at disease free equilibrium point 

 

Fig 7 (d): Plot for Change in Hospitalized Rate at disease free equilibrium point 
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Fig 7 (e): Plot for Change in Recovered Rate at disease free equilibrium point 

 

Fig. 7(a), 7(b), 7(c), 7(d), 7(e) The solution curves for the model (Fig. 1) at disease free equilibrium 

point with. 

Figure 7(a), 7(b), 7(c), 7(d), 7(e) shows the numerical results of the system (Fig. 1) when 0 1R  . 

These figures show that all numerical solutions for the problem converged to the disease-free 

equilibrium,  E0 = (50, 0,0,17) for the case 0 1R  . 

 

 

Fig 8 (a) Plot for Change in Susceptible Rate at endemic equilibrium point 
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Fig 8 (b) Plot for Change in Exposed Rate at endemic equilibrium point 

 

Fig 8 (c) Plot for Change in Infected Rate at endemic equilibrium point 

 

Fig 8 (d) Plot for Change in Hospitalized Rate at endemic equilibrium point 
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Fig 8 (e) Plot for Change in Recovered Rate at endemic equilibrium point 

 

Fig. 8(a), 8(b), 8(c), 8(d), 8(e) The solution curves for the model (Fig. 1) at disease free equilibrium 

point with. 

Figure 8(a), 8(b), 8(c), 8(d), 8(e) shows the numerical results of the system (Fig. 1) When 0 1R  the 

numerical results of the system (Fig. 1) are depicted in Fig.4. These figures show that all numerical 

solutions converged to the Endemic equilibrium.  

 E* = (2.91, 23.19, 12.92,2.54, 8.42)  for the case 0 1R  . 

 

 

Fig 9 (a) Graph for Change in optimal control parameter M=(0.1,0.2,0.3,0.4,0.5) at Susceptible 

Rate  
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Fig 9 (b) Graph for Change in optimal control parameter M=(0.1,0.2,0.3,0.4,0.5) at Exposed Rate  

 

Fig 9 (c) Graph for Change in optimal control parameter M=(0.1,0.2,0.3,0.4,0.5) at Infected Rate  

 

Fig 9 (d) Graph for Change in optimal control parameter M=(0.1,0.2,0.3,0.4,0.5) at Hospitalized 

Rate  
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Fig 9 (b) Graph for Change in optimal control parameter M=(0.1,0.2,0.3,0.4,0.5) at Recovered 

Rate 

Fig. 9(a), 9(b), 9(c), 9(d), 9(e). Control parameter M's control approach is varied at 

M=(0.1,0.2,0.3,0.4,0.5) 

 

11. CONCLUSION 

In this work, we examined an optimum control model connected with a deterministic mathematical 

model of the COVID-19 vaccination epidemic. First, we determined the practical area in which 

the model is mathematically and epidemiologically well-posed. By applying the next-generation 

matrix approach, the fundamental reproduction number with respect to the disease-free 

equilibrium point is calculated. The sensitivity analysis of the model has been studied.  Next, 

using the basic reproduction number as a basis, we examined the disease free equilibrium point's 

local and global stability, vaccination imposed 100% validated under mathematical model, are 

some of the parameters analysed by the Indian government policies to determine the optimal 

control approximation. The model was extended to address the issue of administering vaccines for 

optimal control. Utilizing cost-effectiveness analysis and the Pontraygin's maximum principle, the 

optimal control model Applying the incremental cost effectiveness ratio, ascertain the lowest 

possible cost. The numerical simulation's result showed that each control factor that was 

used accounted for in the simulation assisted in lowering COVID-19 infections Significant 

measures can be taken to reduce the number of people who are susceptible to infection by 
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restricting their contact with susceptible individuals, wearing masks, social distancing, frequently 

hand wash by soap and quarantining sick individuals. The number of affected people will decline 

as the inhibitory values rise. The co-administration of immunization and therapy for those who are 

afflicted is the most effective way to decrease the COVID-19 infection, based on the findings 

of simulation with economical and optimal control examination 
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