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Abstract. In this paper, we consider a four-compartmental model of HIV infection on CD4+T -cells with drug

therapy in order to study the transmission dynamics of disease. We examine the qualitative behaviour of the model

and analyze the sufficient criteria for the stability. In addition, we introduce a Caputo derivative fractional order

model and numerical simulations are carried out to illustrate the analytical results.
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1. INTRODUCTION

The Human Immunodeficiency Virus (HIV) primarily infects CD4+T cells. Acquired im-

munodeficiency syndrome (AIDS) is the advanced stage of HIV infection, which damages the

body’s ability to fight other infections. Antiretroviral therapy (ART) of HIV/AIDS requires

treating two or more antiviral medications concurrently, which improves the patients’ immune

system and extends their life.
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Reverse transcriptase inhibitors and protease inhibitors are two commonly known drugs. By

inhibiting the reverse transcription of HIV RNA into its proviral DNA, reverse transcriptase

inhibitors block the new infection. Whilst by disabling enzymes required for viral protein

production and assembly, protease inhibitors prevent the production of new infectious virus

particles.

Mathematical model plays an effective and efficient way to interpret the dynamics of HIV

infection on CD4+ T cells and antiretroviral therapy effect, to reduce HIV viral load. The drug

therapy model was transformed from ordinary differential equations to fractional differential

equations due to their association with memory systems in biological systems [1].

The fractional differentiation defined as Dα
t =

dα

dtα
, if α > 0 and fractional integral defined

as Dα
t =

∫ t
a(dτ)α , if α < 0 . There are three types of general fractional differential integrals:

Grunwald-Letnikov, Riemann-Liouville, and Caputo derivatives[2], [3]. We proposed the Ca-

puto fractional order differential model for drug therapy. The efficacy of HIV medication ther-

apy A.A.M Arafa, S.Z.Ridha, and M. Khalil discuss the plasma densities of uninfected CD4+T

-cells and infected cells devoid of viruses[4].

Around one million individuals will pass away from HIV-related illnesses globally in 2020.

28 million people have access to ARVs (antiretroviral medications) by the end of 2021. With

2 million new HIV infections recorded and an estimated 38 million individuals living with the

virus worldwide in 2020, AIDS-related illnesses claimed the lives of 680,000 people. A. J.

Ferrari and E. A. Santillan Marcus conducted a study on HIV infection in CD4+T -cells, as well

as the impact of treatment on infected patients. Their research resulted in the identification of

model solutions pertaining to existence, uniqueness, positive invariant, and stability aspects [5].

P.K. Srinivastava, M. Banerjee, and Peeyush Chandra explored drug treatment modeling for

HIV/AIDS disease. They specifically analyzed the impact of reverse transcriptase inhibitors on

the dynamics of HIV. Additionally, a straightforward model for HIV infection was examined by

Alans S. Perelson, Denise E. Kirchner, and Rob De. Boer. Furthermore, the authors investigated

different dynamic characteristics of HIV infection in CD4+T -cells.

In this study, zidovudine and azidothymidine are administered as part of the HIV infection

therapy combined with the protease inhibitor mp and the reverse transcription inhibitor mrt .
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The ordinary CD4+T -cell counting is 500-1400 cells/cubic a blood millimetre. Antiretroviral

therapy becomes necessary for the patient when there is a decline in the count of CD4+T -cells

[6]. This study focuses on the spread of HIV, which is depicted using a four compartmental

model. The basic reproduction number ℜ0 is determined through the next generation matrix. If

ℜ0≤ 1, the system is locally asymptotically stable. The drugs, protease inhibitor mp and reverse

transcription inhibitor mrt are shown to effectively reduce HIV plasma levels and increase the

count of CD4+T -cells, leading to improved life expectancy for HIV/AIDS patients.

2. MATHEMATICAL MODEL FORMULATION

2.1. HIV Virus Transmission with CD4+T - cells. Consider the following model,

(1)



dA
dt

= l + pA
[
1− A+I+D

Amax

]
−dAA− kDA,

dI
dt

= (1−mrt)kDA−δ I,

dD
dt

= (1−mp)Nδ I− cD,

dS
dt

= mpNδ I− cS.

where, A-non-infected CD4+T cells, I-Infected CD4+T cells, D-Infectious viruses, S-Non in-

fectious viruses, I-CD4+T cells source, δ -Infected cells death rate , k -Viral activity rate, N-

Bursting cells , dA-Death rate of target cell, Amax-Maximum CD4+T − cell , p-Growth rate of

CD4+T cells, c- Rate of clearance virus, mp-Protease inhibitor drugs and mrt-Reverse transcrip-

tase drugs.

dA
dt

= l + pA
[

1− A+ I +D
Amax

]
−dAA− kDA.

Disease free virus with initial conditions are, A(0) = A0, I(0) = 0,D(0) = 0,S(0) = 0.

A0 =
Amax

2p

[
(p−dA)+

√
(p−dA)2 +

4pl
Amax

]
.
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3. PRELIMINARIES

3.1. Invariant Region.

Theorem 1. The solution x(t) = (A, I,D,S)T to the equation (1) on t ≥ 0 and R4
+ Further more

A(t), I(t), D(t) and Amax are bounded.

Proof. System of mathematical model equation (1) is unique but not existence. The R4
+ is a non

negative.

Invariant region:

dA
dt A=0

= l ≥ 0,

dI
dt I=0

= (1−mrt)kDA≥ 0,

dD
dt D=0

= (1−mp)Nδ I ≥ 0,

dS
dt S=0

= mpNδ I ≥ 0.

From equation (1) we see that

dAtot

dt
= l + pA

[
1− A+ I +D

Amax

]
−dAA− kDA,

+(1−mrt)kDA−δ I +(1−mp)Nδ I− cD,

= l + pA
[

1− A+ I +D
Amax

]
−dAA−mrtkDA

−δ I +Nδ I−mpNδ I− cD,

= l + pA
[

1− A+ I +D
Amax

]
− (1−N +mpN)δ I

−(dA +mrtkD)A− cD.

dAtot

dt
> l + pA

[
1− A+ I +D

Amax

]
,

Atot = A+ I +D,

Atot = Amax,

dAtot

dt
> l ≥ 0.
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3.2. Equilibrium Point and Asymptotic Stability.

In this section, the equilibrium points are given by solving,

dA
dt

= 0,
dI
dt

= 0,
dD
dt

= 0,
dS
dt

= 0.

By [7], we obtain equilibrium points E0 and E are given below:

E0 = (A,0,0,0) and E = (A, I,D,S)

where,

A =
c

N(1−mp)(1−mrt)
,

I =
cD

(1−mp)Nδ
,

D =

[
[l +(p−dA)A]Amax− pA2]((1−mp)Nδ )

A [pc+(p+ kAmax)(1−mp)Nδ ]
,

S =
mpD

1−mp
.

�

3.3. Uninfected Steady State. The Jacobian matrix J(E0) provides an estimation for the

dis-infected steady state E0, based on the system of equation (1).

J(E0) =



p−dA−
2pA0

Amax

pA0

Amax
− pA0

Amax
− kA0 0

0 −δ k(1−mrt)A0 0

0 (1−mp)Nδ −c 0

0 mpNδ 0 −c


.

Eigenvalues can be evaluated by solving the characteristic equation det(λ I− J(E0)) = 0.

We have, (
λ − p+dA +

2pA0

Amax

)(
λ

3 +C∗1λ
2 +C∗2λ +C∗3

)
= 0.

C∗1 = δ +2c,

C∗2 = c2 +2δc− (1−mp)(1−mrt)NδkA0,

C∗3 = (1−mp)(1−mrt)NδkA0.
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Then, the eigenvalues are,

λ1 = p−dA−
2pA0

Amax
,

λ2 = (1−mrt)(1−mp)NδkA0−δc,

λ3 = −kc(1−mrt)A0,

λ4 = −c.

The Jacobian matrix of E is given, and the linearization system of equation (1), (2), (3) and (4)

at E.

J(E) =


L

−pA
Amax

−pA
Amax

0

(1−mrt)kD −δ (1−mrt)kA 0

0 (1−mp)Nδ −c 0

0 mpNδ 0 −c


.

Let L = dA + kD+ 2pA+pI+pD
Tmax

− p.

The Characteristic equation for matrices is, det(λ − J(E) = 0.

Therefore, (λ + c)(λ 3 +C1λ 2 +C2λ +C3) = 0.

where,

C1 = L+δ + c,

C2 = δc− (1−mrt)(1−mp)kNAδ +Lc+Lδ +
pA

Amax
kD,

C3 = L [δc− (1−mrt)(1−mp)kNAδ ]+ (1−mrt)kD
[

pAc
Amax

+
pA

Amax
(1−mp)Nδ

]
.

3.4. Proposition 1. [8] If all the eigenvalues λ = (λ1,λ2,λ3,λ4) of Jacobian (E) satisfied the

condition |arg(λ )|> απ

2
, then an Infected steady state E = (A, I,D,S) is asymptotically stable.

T (P) =



1 C1 C2 C3 0

0 1 C1 C2 C3

3 2C1 C2 0 0

0 3 2C1 C2 0

0 0 3 2C1 C2


.
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T (P) = 18C1C2C3 +(C1C2)
2−4C3C3

1−4C3
2−27C2

3 .

3.5. Proposition 2. [9, 10, 11] If T (P) is non-negative, then Routh-Hurwitz conditions are

satisfied, infected steady state E = (A, I,D,S) is asymptotically stable.

(i) T (P)> 0, C1 > 0, C3 > 0, C1C2 >C3.

(ii) T (P)< 0, C1 ≥ 0 C2 ≥ 0.

(iii) T (P)< 0, C1 > 0 C2 > 0 C1C2 =C3.

(iv) The infected steady state E is unstable if satisfied condition T (P)< 0, C1 < 0 C2 < 0.

3.6. Reproduction Number ℜ0. In this section, we obtain the reproduction number[12, 13],

The Model is given as follows:

dA
dt

= l + pA
[
1− A+I+D

Amax

]
−dAA− kDA,

dI
dt

= (1−mrt)kDA−δ I,

dD
dt

= (1−mp)Nδ I− cD,

dS
dt

= mpNδ I− cS.

Now,

F =

(1−mrt)kDA

0

 and V =

 δ I

−(1−mp)Nδ I + cD

 .
Where,

X = (I,D) = (x1,x2).

Hence,

F =


0 (1−mrt)kA

0 0

 ,

V =


δ 0

−(1−mp)Nδ c

 .
Therefore, ρ(FV−1) is given below,

ρ(FV−1) =

(
1
c

)
(1−mrt)(1−mp)NkA.
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Hence the reproduction number is,

ℜ0 =

(
1
c

)
(1−mrt)(1−mp)NkA.

Definition 1. [14] Let h(τ)∈ RK, for the fractional differential α is non integer, then the Caputo

derivative is defined by CDα
τ h(τ) = 1

Γk−α

∫
τ

0
(τ−ζ )k−α(hk)(ζ )

τ−ζ
dζ . Here k = [α]+1 with [α]

is the integer part of real number α . obviously CDα
τ h(τ)→ h′(τ) as α → 1.

Definition 2. [15] The function f from positive real number (R+) to real number (R) and

fractional order of integral α > 0 is defined as I α(h(τ)) =
1

Γk−α

∫ t
0
(τ−ζ )αh(ζ )

τ−ζ
dζ . Here

τ > 0 and 0 < α < 1.

Properties

(i) CDα
τ h(τ)∗I α(h(τ)) = 1,

(ii)CDα−1
t

dI
dt

=C Dα
t ,

(iii)CDα+β

τ h(τ) =C Dα
τ h(τ)∗C Dβ

τ h(τ),

(iv) I α+β (h(τ)) = I α(h(τ))∗I β (h(τ)).

4. MAIN RESULTS

4.1. Fractional order Mathematical Model Formulation: System of model equation non

infected CD4+T -cells, productively infected CD4+T -cells, infected virus and non infected virus

denoted by A, I, D, S and this model obtained from mathematical biology J.D.murray. In

dynamics of uninfected CD4+T cells . The system of mathematical model equation is given as

follows:

(2)



dA
dt

= l + pA
[
1− A+I+D

Amax

]
−dAA− kDA,

dI
dt

= (1−mrt)kDA−δ I,

dD
dt

= (1−mp)Nδ I− cD,

dS
dt

= mpNδ I− cS.

subject to initial condition A(0) = A0 ≥ 0, I(0) = I0 ≥ 0,D(0) = D0 ≥ 0,S(0) = S0 ≥ 0. The

Caputo fractional time derivative is used to illustrate the dynamics of CD4+T - cells for the HIV
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model in fractional form, The time-dependent kernal has been presented k(t−τ) =
1

Γα−1
(t−

τ)α−2 [16][17],[18].

dA
dt

=
∫ t

t0 k(t− τ)
[
l + pA

[
1− A+I+D

Amax

]
−dAA− kDA

]
dτ,

dI
dt

=
∫ t

t0 k(t− τ) [(1−mrt)kDA−δ I]dτ,

dD
dt

=
∫ t

t0 k(t− τ) [(1−mp)Nδ I− cD]dτ,

dS
dt

=
∫ t

t0 k(t− τ) [mpNδ I− cS]dτ.

[14][10] Apply the Caputo type derivative have order α−1,



CD
(α−1)
t

dA
dt

=C D(α−1)
t I−(α−1)

[
l + pA

[
1− A+I+D

Amax

]
−dAA− kDA

]
,

CD
(α−1)
t

dI
dt

=C D(α−1)
t I−(α−1) [(1−mrt)kDA−δ I] ,

CD
(α−1)
t

dD
dt

=C D(α−1)
t I−(α−1) [(1−mp)Nδ I− cD] ,

CD
(α−1)
t

dS
dt

=C D(α−1)
t I−(α−1) [mpNδ I− cS] .

The operator CD
(α−1)
t and I

−(α−1)
t are reciprocal together,

(3)



CDα
t =

[
l + pA

[
1− A+I+D

Amax

]
−dAA− kDA

]
,

CDα
t = [(1−mrt)kDA−δ I] ,

CDα
t = [(1−mp)Nδ I− cD] ,

CDα
t = [mpNδ I− cS] .

5. NUMERICAL SIMULATION

In this section, we explore the dynamic behaviour of our model (1) by changing the deriva-

tive order to a non-integer value. The numerical simulation is performed by Adams Bashforth

method using MATLAB [19] and time interval taken time t = [0,100] days.The α value has

been taken 0.6, 0.7 and 0.8 respectively. From the Figure (1)-(4), the trajectory of non-infected



10 K. KALAIYARASAN, M. RADHAKRISHNAN

CD4+T -cells (A), productively infected CD4+T -cells (I), infected virus (D) and non infected

virus (S) are provided. In the figure (1), uninfected CD4+T -cells time limit has been taken

t = [0,1000] . The graph has been obtained from the numerical values from Table 1 and use

MATLAB simulation. The system of equation (1) has modified incase Amax and A+ I +D

values are equal and considered the combination of drug therapy, protease inhibitor drugs

mp = 1 and reverse transcriptase inhibitor drugs mrt = 1. If the system of model equations are

A+ I +D = Amax, mrt = 1 and mp = 1, then Figure 5-8, illustrates the trajectory respectively.

TABLE 1. Description of Parameters

Description symbol Values

Non infected CD4+T -cells A 180 mm−3

Infected CD4+T -cells I 0.02 day−1

Infectious Viruses D 1.34X103virons

Noninfectious Viruses S 0.0001virons

CD4+cell source l 10mm−3day−1

Mortality rate of infected cells δ 0.5day−1

Virul activity rate k 3.45X10−5ml−1

Bursting cells N 480 virons cell−1

Mortality rate of Target cell dA 0.03day−1

Maximum CD4+T -cell Amax 1600mm−3

Rate of growth CD4+T -cell p 0.04day−1

Rate of clearance virus c 3day

Protease inhibitor drugs mp 0≤ mp ≤ 1

Reverse transcriptase drugs mrt 0≤ mrt ≤ 1



HIV INFECTION ON CD4+T -CELLS 11

FIGURE 1. A(t) for α ∈ 0.6,0.7,0.8 and t ∈ [0,1000].

FIGURE 2. I(t) for α ∈ 0.6,0.7,0.8 and t ∈ [0,100].
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FIGURE 3. D(t) for α ∈ 0.6,0.7,0.8 and t ∈ [0,100].

FIGURE 4. S(t) for α ∈ 0.6,0.7,0.8 and t ∈ [0,100].
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The system has changed as,

(4)



CDα
t = l−dAA− kDA,

CDα
t =−δ I,

CDα
t =−cD,

CDα
t = Nδ I− cS.

FIGURE 5. A(t) for α ∈ 0.6,0.7,0.8 and t ∈ [0,100].

FIGURE 6. I(t) for α ∈ 0.6,0.7,0.8 and t ∈ [0,100].
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FIGURE 7. D(t) for α ∈ 0.6,0.7,0.8 and t ∈ [0,100].

FIGURE 8. S(t) for α ∈ 0.6,0.7,0.8 and t ∈ [0,100].
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Reproduction number ℜ0=
(

1
c

)
(1−mrt)(1−mp)NkA. Consider Table 1 and ℜ0 = 0.9936.

By the Proposition (1), Routh-Hurwitz criteria are satisfied. Hence, C1 = 3.1287 > 0,C2 =

0.2853 > 0,C3 = 0.0569 > 0,C1C2 >C3 satisfied and T (P) =−3.1464 < 0. Therefore, infected

steady state E asymptotically stable.

6. CONCLUSION

We have established that the transmission of the HIV virus involving CD4+T -cells applies

to both the disease-free equilibrium and the endemic equilibrium. Furthermore, by introducing

a Caputo derivative fractional order model, we expand the scope of our analysis and provide

numerical simulations to illustrate our analytical findings. This study contributes to a deeper

understanding of HIV dynamics and provides the potential insights for the development of

effective treatment strategies.
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