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Abstract. Nitrogen component is usually found in the wastewater and too much nitrogen will cause difficulties

in managing the wastewater becoming a source of water for consumption. A natural way to reduce nitrogen in

the wastewater is by planting, for example, mangroves. In this paper, we consider a dynamical system of total

nitrogen transformation in a constructed wetland that has mangroves. The system has three compartments: the

concentration of mangrove biomass, the concentration of total nitrogen in the wastewater, and the soil solution.

In the system, there is a yield coefficient that measures how many nutrients the mangroves consume about how

much biomass they produce. We study the system with deterministic linear yield and stochastic yield. For the

deterministic system, we analyze the stability of the equilibria, perform some simulations to depict the phase

portrait and the numerical solutions, and provide a sensitivity analysis of the yield coefficient. For the stochastic

system, we present some numerical simulations of the solutions.
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1. INTRODUCTION

In wastewater, nitrogen compounds are frequently present, and if the wastewater is too pol-

luted with nitrogen, the water will stink and be unsafe to drink [1]. Removing nitrogen com-

pounds from wastewater is one area where conventional wastewater treatment systems continue
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to fall short of the current environmental standards [2]. In the meantime, wastewater treatment

using constructed wetlands is seen as a replacement for conventional treatment due to its lower

energy requirements, simplicity of use and maintenance, and superior therapeutic effectiveness,

is spreading globally in recent years to reduce water pollution, such as nitrogen compounds

removal [3, 4, 5, 6].

Constructed wetlands are a homeopathic alternative that may accurately and meticulously

mimic nature and its innate characteristics and functions [7]. Constructed wetlands integrate nu-

merous wetland ecosystem services through physical and ecological elements, such as biomass

production, cooling, habitat provision, and water filtration, which entails removing nutrients

like nitrogen [8, 7, 9].

The inclusion of carbon sources, such as agricultural biomass materials, can improve total

nitrogen removal and significantly enhance the quality of artificial wetlands [10]. Because of

their superior ability to furnish carbon and low cost, agricultural biomass materials make suit-

able optional carbon medium [11]. One of the plants that is widely used in constructed wetlands

to provide high-quality agricultural biomass is mangroves. They can support themselves and

respond differently under various environmental conditions [12, 13].

Bunwong et al. [1] proposed a model to describe the transformation of total nitrogen in a

constructed wetland filled with mangroves as follows

(1)



dT
dt

=
βST
k+S

−σT

dW
dt

= Q− (γ +α)W

dS
dt

= γW − 1
Y (S)

βST
k+S

−φS

where T , W , and S are mangrove biomass concentration, total nitrogen concentration in the

wastewater, and total nitrogen concentration in the soil solution, respectively. All the parameters

β , k, σ , Q, γ , α , φ are positive. The explanation of these dynamics can be seen in Fig. 1. Here,

Y (S) is called the yield coefficient defined as a measure of how many nutrients the mangroves

consume to how much biomass they produce.
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FIGURE 1. Total nitrogen transformation diagram

Bunwong et al. in [1] pointed out that the majority of earlier authors believed that the yield

coefficients were traditionally constants concerning chemostats considered ecologically as a

model of a simple lake [14], whereas empirical evidence has since been reported that the yield

coefficient may depend on the nutrient concentration [15]. In their study, Bunwong et al. ex-

amined the model with yield coefficient Y (S) =C+DS, where C and D are constant, following

the studies of Pilyugin and Waltman in [16] and Zhu and Huang in [15], which showed that the

constant yield might be replaced by a linear function. The model of Bunwong et al. [1] has

been utilized and developed by several authors for modeling other ecological engineering prob-

lems such as the study of rhizosphere microbial degradation in pollutant concentration removal

[17, 18, 19, 20].

In this research, we study the Bunwong et al. model with yield coefficient Y (S) = aS, where

a > 0. The equilibriums of the model and their local stability are analyzed. We also examine the

sensitivity analysis for parameter a to see its impact on the model’s variables. The deterministic

model then is developed into the stochastic model by considering the yield coefficient is random,

where the randomness appears in the parameter a, that is Y (S) = (a+ ε)S, where ε is Gaussian

white noise.
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2. MODEL WITH DETERMINISTIC YIELD

First, we study the model (1) with a yield coefficient defined as Y = aS, a > 0. Therefore, the

model (1) becomes

(2)



dT
dt

=
βST
k+S

−σT

dW
dt

= Q− (γ +α)W

dS
dt

= γW − βT
a(k+S)

−φS

,

where all the parameters are described in Table 1. All the initial values are positive.

TABLE 1. Description of parameters.

Parameter Description

β Maximum rate of plant growth feasible given an infinite amount of total

nitrogen in the soil solution

k Semi-saturation

σ Garbage level

Q Total nitrogen concentration input level

γ Total nitrogen exchange rate between wastewater and soil solution

α Total nitrogen loss rate in wastewater due to evaporation or runoff

a Rate of conversion of nutrients consumed to biomass produced

φ Total nitrogen loss rate in soil solution due to leaching or denitrification

The equilibriums of (2) are obtained by solving dT/dt = 0, dW/dt = 0, and dS/dt = 0

simultaneously. We get three equilibriums as follows

E∗1 =

(
0,

Q
γ +α

,
γQ

φ(γ +α)

)
, E∗2 =

(
0,

Q
γ +α

,
σk

β −σ

)
,

E∗3 =

(
ak

β −σ

[
γQ

γ +α
− φσk

β −σ

]
,

Q
γ +α

,
σk

β −σ

)
.
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In order to have ecological meanings, the equilibriums must be positive. Here we have posi-

tivity conditions for the equilibriums

(3) β > σ and
γQ

γ +α
>

φσk
β −σ

.

2.1. Local Stability Analysis. The local stability of each equilibrium is analyzed. First, we

calculate the Jacobian marix of the system (2) at any point E(T,W,S) as follows

(4) J(E) =


βS

k+S −σ 0 βkT
(k+S)2

0 −(γ +α) 0

− β

a(k+S) γ −
(

βT
a(k+S)2 +φ

)
 .

By using the Jacobian matrix (4), we have the following theorems about the local stability of

equilibriums of system (2).

Theorem 2.1. The local stability for each of the equilibriums of system (2) is given as follows:

(1) E∗1 is stable if σ > βγQ
kφ [γ+α]+γQ .

(2) E∗2 is unstable.

(3) E∗3 is stable.

Proof. The Jacobian matrix at equilibrium E∗1 is

J(E∗1) =


γQK−σ 0 0

0 −(γ +α) 0

−φ(γ+α)
a K γ −φ

 ,

where K = β/(kφ [γ +α]+ γQ). The characteristic equation is λ1 = γQK−σ , λ2 =−(γ +α),

and λ3 =−φ . We have the fact that all parameters are positive, thus λ2,λ3 < 0. The equilibrium

E∗1 is stable if λ1 is also negative. This will be satisfied if σ > (βγQ)/(kφ [γ +α]+ γQ).

For the case of E∗2 , we have the Jacobian matrix

J(E∗2) =


0 0 0

0 −(γ +α) 0

−β−σ

ak γ −φ

 .

Since this matrix is a (lower) triangular matrix, then its eigenvalues are the main diagonal. We

can see that this matrix has zero eigenvalue. Thus E∗2 is not stable.



6 SUNARSIH, MOCH. FANDI ANSORI, ZANI ANJANI RAFSANJANI, SURYOTO

For the case of E∗3 , the Jacobian matrix is

J(E∗3) =


0 0 aL

0 −(γ +α) 0

−β−σ

ak γ −
(L

k +φ
)
 ,

where L = β−σ

β

(
γQ

γ+α
− φσk

β−σ

)
. The characteristic equation of the Jacobian matrix is

0 = λ
3 + p1λ

2 + p2λ + p3,

where

p1 = γ +α +φ +
L
k
, p2 =

β −σ

k
L+(γ +α)

(
L
k
+φ

)
, p3 =

(γ +α)(β −σ)

k
L.

The positivity conditions (3) imply L, p1, p2, p3 > 0. From direct observation, we can see that

p1 p2 =

[
γ +α +φ +

L
k

][
β −σ

k
L+(γ +α)

(
L
k
+φ

)]
=

[
(γ +α)(β −σ)

k
L
]
+

[(
φ +

L
k

)(
β −σ

k
L
)]

+

[
γ +α +φ +

L
k

]
(γ +α)

(
L
k
+φ

)
>

(γ +α)(β −σ)

k
L = p3.

Thus, based on the Routh-Hurwitz stability criterion [21], i.e. the coefficients of the third-degree

of polynomial characteristic equation satisfy p1, p2, p2 > 0 and p1 p2 > p3, the equilibrium E∗3

is stable. �

2.2. Numerical Simulation of the Solution. Theorem 2.1 says that if the garbage level is too

high (σ > βγQ
kφ [γ+α]+γQ ), it will cause the system to converge to equilibrium E∗1 , which means the

mangrove biomass concentration is zero, or in other words, it vanishes. We simulate the phase

portrait and solution of system (2) in three cases when: (i) the garbage level is too high, (ii) it

is not too high but not too low, and (iii) it is too low. For the third case, we will show that there

exists Hopf bifurcation as shown by the appearance of the limit cycle.

For simulations, we use parameters’ value: β = 0.25, k = 1, Q = 1, γ = 0.15, α = 0.2,

φ = 0.1, and a = 0.5. These values are only for simulation purposes, but they still meet the

positivity conditions in (3). We present the phase portrait of system (2) in two cases, see Fig.
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2. In Fig. 2a, when the level of garbage is too high (for the simulation, we use σ = 0.25 which

is greater than βγQ
kφ [γ+α]+γQ = 0.20), the solution-pair trajectory (T,W,S) are seen to converge to

the equilibrium E∗1 = (0, 2.86, 4.29) with a stable node. The clear view of the phase portrait of

the system in orientation T S-plane is given in Fig. 2b.

When the level of garbage is not too high but not too low (in this case, we do simulation

with σ = 0.17), in Fig. 3a, the solution-pair trajectory (T,W,S) is seen to converge to E∗3 =

(1.353, 2.857, 2.125) with a stable spiral. The clear view of the phase portrait of the system in

orientation T S-plane is given in Fig. 3b.

When the level of garbage is too low (in this case, we simulate with σ = 0.15543), limit

cycles are seen in the solution-pair trajectory (T,W,S) in Fig. 4a. Fig. 4b provides a clear view

of the phase portrait of the system in the orientation T S-plane.

The solution of the system in each case is presented in Fig. 5. From the figures, we can

observe the dynamics of the solution over time.

(A) (B)

FIGURE 2. (a) Phase portrait of system (2) when the level of garbage is too high,

with various initial values. Panel (b) is the orientation of T S-plane showing a

stable node.
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(A) (B)

FIGURE 3. (a) Phase portrait of system (2) when the level of garbage is not too

high but not too low, with various initial values. Panel (b) is the orientation of

T S-plane showing the stable spiral.

(A) (B)

FIGURE 4. (a) Phase portrait of system (2) when the level of garbage is too low,

with various initial values. Panel (b) is the orientation of T S-plane showing the

appearance of the limit cycle.

2.3. Sensitivity Analysis. Sensitivity analysis can give interesting qualitative behavior of a

dynamical system by observing the effects of the parameters on the variables over time. This

method is frequently employed in literatures [22, 23, 24, 25, 26, 27, 28, 29].
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(A) (B) (C)

FIGURE 5. Numerical solution of dynamical system (2). Panel (a) is when the

level of garbage is too high. Panel (b) is when the level of garbage is not too

high but not too low. Panel (c) is when the level of garbage is too low.

In this paper, we focus on analyzing the sensitivity of the parameter of the yield coefficient,

that is a, to the variables of the system. For the other parameters, we do not analyze them

because their sensitivity has been studied in [28]. Let X = (T,W,S) and define a sensitivity

function V = ∂X
∂a = (∂T

∂a ,
∂W
∂a ,

∂S
∂a). In order to simplify the writings, let vT

a = ∂T
∂a , vW

a = ∂W
∂a , and

vS
a =

∂S
∂a . Let F = (F,G,H), where F = βST

k+S −σT , G = Q− (γ +α)W , H = γW − βT
a(k+S)−φS.

We have a system of ordinary differential equations of the sensitivity function as
dvT

a
dt

dvW
a

dt
dvS

a
dt

=
dV
dt

=
d
dt

∂X
∂a

=
∂

∂a
dX
dt

=
∂F

∂X
∂X
∂a

+
∂F

∂a
= J(X)V +

∂F

∂a

=


βS

k+S −σ 0 βkT
(k+S)2

0 −(γ +α) 0

− β

a(k+S) γ −
(

βT
a(k+S)2 +φ

)



vT
a

vW
a

vS
a

+


0

0
βT

a2(k+S)



=


[

βS
k+S −σ

]
vT

a + βkT
(k+S)2 vS

a

−(γ +α)vW
a

− β

a(k+S)v
T
a + γvW

a −
[

βT
a(k+S)2 +φ

]
vS

a +
βT

a2(k+S)

(5)
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In Fig. 6, the numerical solution of the system of sensitivity function (5) is plotted versus

time. In the case of too high garbage level, the parameter of yield coefficient a affects positively

to both variables T and S, as shown in Fig. 6a. However, in the long run, the effect is seen

disappearing. In the case of the garbage level is not too high but not too low, the yield coefficient

affects positively variable S at first, but then it does not affect at all when the time goes by, as

shown in Fig. 6b. In contrast, the yield coefficient stands to affect T positively as time passes.

When the level of garbage is too low, the yield coefficient initially affects variable S positively,

but as time passes, it has no effect. As shown in Fig. 6c, the yield coefficient is expected to

have a positive effect on T as the producing limit cycle progresses.

(A) (B) (C)

FIGURE 6. Sensitivity of parameter yield a to the variables. Panel (a) is when

the level of garbage is too high. Panel (b) is when the level of garbage is not too

high but not too low. Panel (c) is when the level of garbage is too low.

3. MODEL WITH STOCHASTIC YIELD

Now, consider the system (1) with a stochastic yield coefficient defined by Y = (a+ ε(t))S,

where ε(t) is a Gaussian white noise, ε(t) ∈ N(0,σ2
ε ). From Itô calculus, we have

(6) (a+ ε(t))dt = adt +σεdB(t),

where B(t) is a standard Wiener process.
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By substituting (6) into (1) and multiplying both sides with dt, we get

(7)



dT =

(
βST
k+S

−σT
)

dt

dW = (Q− (γ +α)W )dt

dS = (γW −φS)dt−
(

βT
k+S

)
(dt)2

(aSdt +σεSdB(t))

To simulate the stochastic model (7), we use the Euler-Maruyama method[30] and have the

following equations

(8)



Tt+1 = Tt +

(
βStTt

k+St
−σTt

)
∆t

Wt+1 =Wt +(Q− (γ +α)Wt)∆t

St+1 = St +(γWt−φSt)∆t−
(

βTt

k+St

)
(∆t)2

(a∆t +σεBt(∆t))

where Bt(∆t) ∈ N(0,∆t).

Similarly with previous simulations in Fig. 6, we simulate the stochastic model in three cases

based on the level of garbage. The stochastic model’s simulation uses ∆t = 1. In Fig. 7a, by

using standard deviation σε = 0.4, we simulate the stochastic model in the case of garbage level

is too high. Meanwhile in Figs. 7b and 7c, by using standard deviation σε = 0.05, we simulate

the stochastic model in the case of garbage level is not too high but not too low and when it is

too low, respectively. From the figures, we can observe that the randomness in yield coefficient

mostly affects the variable S, the total nitrogen concentration in soil solution, rather than the

variable T .

4. CONCLUSION

The stability of the system of total nitrogen transformation in a constructed wetland can be

observed through the level of garbage. When the level of garbage is too high, the mangrove

biomass will vanish. When the level of garbage is not too high, the system may be a stable

spiral or stable limit cycle.

The yield coefficient affects positively to the mangrove biomass concentration dynamics over

time with the sensitivity depending on the system’s behavior when reaching the equilibrium
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(A) (B) (C)

FIGURE 7. Numerical solution of stochastic model (7). Panel (a) is when the

level of garbage is too high. Panel (b) is when the level of garbage is not too

high but not too low. Panel (c) is when the level of garbage is too low.

(stable spiral or stable limit cycle). The yield coefficient also affects positively the total nitrogen

concentration in soil solution over time but in a long time, it does not affect at all.

When the system is studied with a stochastic yield coefficient, the numerical simulations

show that the dynamics of total nitrogen concentration in soil solution change drastically com-

pared with the dynamics of mangrove biomass concentration.
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