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Abstract:  Harvesting's effect on living organisms is one of the most important factors affecting the way they 

reproduce. In this paper, we proposed a mathematical model to study the effect of harvest on two species with 

competition between them. The Holling type –II functional response has been considered, four equilibrium points are 

biologically accepted, The locall stability of these points was analyzed , and The stability of the positive point was 

analyzed locally and globally. the local bifurcation of the system at these points was also  studied, and they were all 

of the type saddle-node bifurcation. In addition, the persist conditions were found. Finally, the system was analyzed 

numerically. 
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 1. INTRODUCTION 

   In the ecosystem, there is a group of living organisms that interact with each other and compete. 

Mathematics has a major role in explaining these interactions between these organisms.This is 

done by formulating mathematical models that describe these interactions; among these 
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interactions or effects are the effects of competition, harvest, coexistence, and others [1], [6], [13], 

[20], [37]. It is not limited to formulating mathematical models in the ecosystem but mathematics 

has a major role in formulating mathematical models in broad fields such as medicine, biology, 

chemistry, and others. [2], [5], [6], [8], [9], [12],[18], [24]- [29], [34], [35], [38], [39]. The dynamic 

relationship between living organisms is considered one of the most important relationships that 

researchers have been interested in studying on a large scale since ancient times. This relationship 

still plays a major role in researchers’ interest in studying it [3], [10], [11], [18], [19], [37], [41], 

[44], [46]. The study of the effect of harvesting is not limited to organisms within the same variety, 

Rather, it studies the effect of harvesting on living organisms within different species, as is the 

case with compete, its study is not limited to organisms within one species However, there are 

many studies on the effect of competition on organisms within different species [7], [14], [15], 

[22], [30], [32]- [34], [36], [38]-[40], [42], [43],[45],[47], [49]. The effect of harvesting on the 

ecosystem is an important part of researchers, interest in studying environmental models. There 

are also different types of harvesting functions, including linear harvesting, harvesting that 

depends on the presence of a constant, non-linear harvesting, proportional harvesting that depends 

on density, and others [21], [23], [33]. In this paper, a two-species model telling both harvesting 

of type linear and competition is proposed and analyzed. The effects of the harvest and competition 

on the dynamic behavior of the two species model fit throughout analytically as fine as numerically. 

Also studied the bifurcation and got a clear result.   

 

2. ASSUMPTIONS OF THE MODEL 

      Suppose we have a model consisting of two species 𝑥  and 𝑦, with competition between them 

according to Lotka Volterra type (2) of functional response, both of which are affected by the 

harvested. 

Can be offered the model by the following two differential equations:  
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𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) −

𝛽1𝑥𝑦

𝛼1 + 𝑥
− 𝑒1𝑞1𝑥 = 𝑥𝑓1(𝑥, 𝑦) 

                                  
𝑑𝑦

𝑑𝑡
= 𝑠𝑦 (1 −

𝑦

𝑙
) −

𝛽2𝑥𝑦

𝛼2 + 𝑦
− 𝑒2𝑞2𝑦 = 𝑦𝑓2 (𝑥, 𝑦)                           (1)   

Here, model (1) has been analyzed with the initial conditions 𝑥(0) ≥ 0 and  𝑦(0) ≥ 0, 

where each parameter of system (1) is let to be positive, it can be described as follows: 𝑘, 𝑙 are the 

carrying capacities of both  𝑥 and 𝑦,  respectively. In addition to their growth rate 𝑟 and 𝑠; each of 

𝛽1  and 𝛽2  are competition coefficients; 𝛼1  , 𝛼2   are half-saturation constants; finally 𝑒1𝑞1  and 

𝑒2𝑞2 represents the harvesting rate of each of the above species. 

 

3. BOUNDEDNESS 

Theorem 1. All solutions 𝑥(𝑡) and 𝑦(𝑡) of  the system (1), which start in  𝑅+
2  are uniformly 

bounded.   

Proof: let  (𝑥(𝑡) , 𝑦(𝑡))  be any solution of the system (1) with a nonnegative initial condition.  

Now, for 𝑤(𝑡) = 𝑥(𝑡) + 𝑦(𝑡), we contain 
𝑑𝑤

𝑑𝑡
=

𝑑𝑥

𝑑𝑡
+

𝑑𝑦

𝑑𝑡
 

𝑑𝑤

𝑑𝑡
= 𝑟𝑥 −

𝑟𝑥2

𝑘
−

𝛽1𝑥𝑦

𝛼1 + 𝑥
− 𝑒1𝑞1𝑥 + 𝑠𝑦 −

𝑠𝑦2

𝑙
−

𝛽2𝑥𝑦

𝛼2 + 𝑦
− 𝑒2𝑞2𝑦 

Hence,   
𝑑𝑤

𝑑𝑡
+ 𝑚𝑤(𝑡) ≤ 𝑟𝑘 + 𝑠𝑙 = 𝜇 ,  

Where, 𝑚 = 𝑚𝑖𝑛{𝑒1𝑞1𝑥, 𝑒2𝑞2𝑦 } ,  

 Then , 𝑤(𝑡) ≤ 𝜇 − 𝜇𝑒−𝑚𝑡 + 𝑤0𝑒
−𝑚𝑡 

Where  𝑤0 = 𝑤(𝑥(0), 𝑦(0)) 

Hence,  ∀ 𝑇 ≥ 0 we have that 0 ≤ 𝑤(𝑇) ≤ 𝜇) 

 So, all solutions of system (1) which are initiated in 𝑅+
2  are enter to the region 

 𝜑 = {(𝑥(𝑡), 𝑦(𝑡)) ∈ 𝑅+
2 : 𝑤 = 𝑥 + 𝑦 ≤ 𝜇 + 𝜀, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝜀 > 0}.                                                               
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4. EXISTENCE OF EQUILIBRIA POINT AND THEIR STABILITY 

In this section, the existence and the local stability analysis of all the equilibrium points of 

system (1) are studied, and four equilibrium points are found, namely: 

1. The vanishing equilibrium point  E0 = (0,0). 

2. The point on the 𝑥 − axis is  𝐸1 = (�̌�, 0),  we call it the axial equilibrium point where    

�̌� =
𝑘(𝑟−𝑒1𝑞1)

𝑟
    exists if the following condition holds: 

                                          𝑟 > 𝑒1𝑞1                                                                                  (2)           

3. The axial equilibrium point on the 𝑦 − axis is given by 𝐸2 = (0, �̅�), where  

               �̅� =
𝑙(𝑠−𝑒2𝑞2)

𝑠
    exists if the following condition holds: 

                                             𝑠 > 𝑒2𝑞2                                                                                (3)                             

4. The positive equilibrium point 𝐸3 = (�̇�, 𝑦 ̇ ), where �̇� =
𝑙𝛼2𝑎1+�̇�(𝑎1𝑙−𝑠𝛼2𝛽2+𝑠�̇�)

𝑙𝛽2
  exisit if the 

following condition holds: 

                               𝑎1𝑙 > 𝑠𝛼2𝛽2 + 𝑠�̇�                                                                  (4) 

and 𝑦 is the  positive solution of the following polynomial 

              𝐴𝑦4 + 𝐵𝑦3 + 𝐶𝑦2 + 𝐷𝑦 + 𝐸 = 0   

             Where 𝐴 =
− 𝑟𝑠2

𝑙2𝛽2
2     

             𝐵 =
2𝑟𝑠

𝑙𝛽2
2 (𝑎1 −

𝑠𝛼2

𝑙
),      

            𝐶 =
2𝑟𝑠𝛼2𝑎1

𝑙𝛽2
2 −

𝑟𝑠𝑎3

𝑙𝛽2
−

𝑟

𝛽2
2 (𝑎1 −

𝑠𝛼2

𝑙
)
2

,         

            𝐷 = (
𝑟𝑎3

𝛽2
−

2𝑟𝛼2𝑎1

𝛽2
2 ) (𝑎1 −

𝑠𝛼2

𝑙
) − 𝑘𝛽1,        

           𝐸 = 𝑎2 +
𝑟𝑎1𝑎3𝛼2

𝛽2
−

𝑟𝑎1
2𝛼2

2

𝛽2
2             

Where  𝑎1 = 𝑠 − 𝑒2𝑞2 > 0, 𝑎2 = 𝑟𝑘𝛼1 − 𝑒1𝑞1 > 0 and 𝑎3 = 𝑘 − 𝛼1 > 0 

Therefore, by the discard rule of sign, the above equation has a positive root, say  𝑦 ̇  either if the 

following condition 
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𝑚𝑎𝑥 {
𝑠𝛼2

𝑙
,
𝑙𝑠𝛽2𝑎3 + 𝑙 (𝑎1 −

𝑠𝛼2

𝑙
)
2

2𝑠𝛼2
,
𝛼2𝑎1

2

𝑎3
−

𝑎2𝛽2

𝑟𝑎3𝛼2
} < 𝑎1 <

𝑎3𝛽2

2𝛼2
−

𝑘𝛽1𝛽2
2

2𝑟𝛼2 (𝑎1 −
𝑠𝛼2

𝑙
)
 

hold. Or when 𝐵 , 𝐶, 𝐷  and 𝐸 are all positive. 

Otherwise, system (1) could not have a positive fixed point depending on the sign of 𝐵 , 𝐶, 𝐷  and 

𝐸 

Now, the local behavior of the above stable points has been calculated by finding the Jacobian 

matrix of the system (1) around each point and extracting the eigenvalues of the matrix. Where 

Jacobian matrix of the system (1) at (𝑥, 𝑦) be able to be written as: 

                      𝐽 = [
𝑟 − 2

𝑟

𝑘
𝑥 −

𝛼1𝛽1𝑦

(𝛼1+𝑥)2
− 𝑒1𝑞1 −

𝛽1𝑥

𝛼1+𝑥

−
𝛽2𝑦

𝛼2+𝑦
𝑠 − 2

𝑠

𝑙
𝑦 −

𝛼2𝛽2𝑥

(𝛼2+𝑦)2
− 𝑒2𝑞2

]                 (5)  

The Jacobian matrix of the system (1) at the vanishing critical point E0 = (0,0) can be written in 

the following form: 

                                𝐽(𝐸0) = [
𝑟 − 𝑒1𝑞1 0

0 𝑠 − 𝑒2𝑞2
]                                                         (6)                  

Hence, the eigenvalues of  𝐽(𝐸0) will be in the following form 

𝜆0𝑥 = 𝑟 − 𝑒1𝑞1   and  𝜆0𝑦 = 𝑠 − 𝑒2𝑞2 

This means that the point 𝐸0 is locally asymptotically stable if and only if the following 

conditions are met 

                                          𝑟 < 𝑒1𝑞1 and  𝑠 < 𝑒2𝑞2                                                           (7)                                               

The Jacobian matrix of the system (1) at  E1 = (�̌�, 0).can be written in the following form: 

                                         𝐽(𝐸1) = [
𝑟 − 2

𝑟

𝑘
�̌� − 𝑒1𝑞1 −

𝛽1�̌�

𝛼1+�̌�

0 𝑠 −
𝛽2�̌�

𝛼2
2 − 𝑒2𝑞2

]                          (8)                                

Hence, the eigenvalues of  𝐽(𝐸1) will be in the following form 

                      𝜆1𝑥 = −𝑟 + 𝑒1𝑞1 < 0   under existence condition 

                                  and   𝜆1𝑦 = 𝑠 −
𝛽2�̌�

𝛼2
− 𝑒2𝑞2 
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This means that the point 𝐸1 is locally asymptotically stable if and only if the following 

condition is met 

                                             𝑠 <
𝛽2�̌�

𝛼2
+ 𝑒2𝑞2                                                                     (9) 

The Jacobian matrix of the system (1) at E2 = (0, �̅�) can be written in the following form: 

                              𝐽(𝐸2) = [
𝑟 −

𝛽1�̅�

𝛼1
− 𝑒1𝑞1 0

−
𝛽2�̅�

𝛼2+�̅�
𝑠 − 2

𝑠

𝑙
�̅� − 𝑒2𝑞2

]                                   (10) 

Hence, the eigenvalues of  𝐽(𝐸1) will be in the following 

                                             𝜆2𝑥 = 𝑟 −
𝛽1�̅�

𝛼1
− 𝑒1𝑞1 

                                   and     𝜆2𝑦 = −𝑠 + 𝑒2𝑞2 < 0 under existence condition 

This means that the point 𝐸2 is locally asymptotically stable if and only if the following 

condition is met 

                                             𝑟 <
𝛽1�̅�

𝛼1
+ 𝑒1𝑞1                                                                   (11) 

Finally, The Jacobian matrix of the system (1) at  E3 = (�̇�, �̇�) can be written in the following 

form: 

               𝐽(𝐸3) = [
𝑟 − 2

𝑟

𝑘
�̇� −

𝛼1𝛽1�̇�

(𝛼1+�̇�)2
− 𝑒1𝑞1 −

𝛽1�̇�

𝛼1+�̇�

−
𝛽2�̇�

𝛼2+�̇�
𝑠 − 2

𝑠

𝑙
�̇� −

𝛼2𝛽2�̇�

(𝛼2+�̇�)2
− 𝑒2𝑞2

]                (12) 

Then, computing |𝐽(𝐸3) − 𝐼𝜆| = 0 gives: 

𝜆2 − 𝑇𝑟(𝐽(𝐸))𝜆 + 𝐷𝑒𝑡(𝐽(𝐸3)) = 0, 

where, 𝑇𝑟(𝐽(𝐸3)) = 𝑟 −
2𝑟�̇�

𝑘
−

𝛼1𝛽1�̇�

(𝛼1+�̇�)2
− 𝑒1𝑞1 + 𝑠 − 2

𝑠

𝑙
�̇� −

𝛼2𝛽2�̇�

(𝛼2+�̇�)2
− 𝑒2𝑞2, 

𝐷𝑒𝑡(𝐽(𝐸3)) = [𝑟 − 2
𝑟

𝑘
�̇� −

𝛼1𝛽1�̇�

(𝛼1+�̇�)2
− 𝑒1𝑞1] [𝑠 − 2

𝑠

𝑙
�̇� −

𝛼2𝛽2�̇�

(𝛼2+�̇�)2
− 𝑒2𝑞2] − [

𝛽1𝛽2�̇��̇�

(𝛼1+�̇�)(𝛼2+�̇�)
]. 

By the Routh–Hurwitz criterion, 𝐸3 is a locally asymptotical stable point if and only if 

𝑇𝑟(𝐽(𝐸3)) < 0 and 𝐷𝑒𝑡(𝐽(𝐸3)) > 0.  

Theorem 2. Suppose that E3 of system (1) is locally asymptotically stable in 𝑅+
2 , and let  
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The following terms verified: 

                                                     
𝑟

𝑘
>

𝛽1�̇�

𝑅1
  and  

𝑆

𝑙
>

𝛽2�̇�

𝑅2
                                                  (13)             

Then  E3 is globally asymptotically stable in the R+
2 . 

Proof: 

Consider the following positive definite function 

                                                    U(𝑥, 𝑦) = [𝑥 − �̇� − �̇�𝑙𝑛
𝑥

�̇�
] + [𝑦 − �̇� − �̇�𝑙𝑛

𝑦

�̇�
] 

Clearly U: R+
2 → R  is  C1 . Now  

                
𝑑𝑈

𝑑𝑡
=

𝑥−�̇�

𝑥

𝑑𝑥

𝑑𝑡
+

𝑦−�̇�

𝑦

𝑑𝑦

𝑑𝑡
  

              = −(𝑥 − �̇�)2 [
𝑟

𝑘
−

𝛽1�̇�

𝑅1
] − (𝑥 − �̇�)(𝑦 − �̇�) [

𝛽1

𝛼1+𝑥
+

𝛽2

𝛼2+𝑦
] − (𝑦 − �̇�)2 [

𝑠

𝑙
−

𝛽2�̇�

𝑅2
] 

Clearly,  
dU

dt
< 0  under the local stability condition and condition (13).  

Hence, U is strictly a Lyapunov function. Thus, we obtained global asymptotically stable in the 

 R+
2  at E3. 

 

5. LOCAL BIFURCATION 

        Sotomayor's theory was used in this part of the research to find out whether stable states have 

local bifurcation conditions close to them. Most researchers used Sotomayors' theory to study some 

different types of bifurcation, such as saddle nodes transcortical and pitchfork bifurcation [4], [12], 

[16], [22], [26], [31], [32], [48]. Further, model (1) can be reformulated as follows: 

𝑑𝑁

𝑑𝑡
= 𝐹(𝑁) with 𝑁 = [

𝑥
𝑦], and 𝐹 = [

𝑥𝑓1(𝑥, 𝑦)

𝑦𝑓2(𝑥, 𝑦)
]. 

Now, the Jacobian matrix at any point is given by (10). Then, for non-zero vector 𝐴 =

(𝑎1, 𝑎2, )
𝑇: 

𝐷𝐹 =

[
 
 
 
 

 

(𝑟 − 𝑒1𝑞1 −
2𝑟𝑥

𝑘
−

𝛼1𝛽1𝑦

(𝛼1 + 𝑥)2
)𝑎1 −

𝛽1𝑥

(𝛼1 + 𝑥)
𝑎2

−
𝛽2𝑦

(𝛼2 + 𝑦)
𝑎1 + (𝑠 − 𝑒2𝑞2 −

2𝑠𝑦

𝑙
−

𝛼2𝛽2𝑥

(𝛼2 + 𝑦)2
) 𝑎2]
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and, 

𝐷2𝐹(𝑋, 𝑋) =

[
 
 
 
 (

𝛼1𝛽1𝑦

(𝛼1 + 𝑥)3
−

𝑟

𝑘
) 2𝑎1

2 −
2𝛼1𝛽1 

(𝛼1 + 𝑥)2
𝑎1𝑎2

−2𝛼2𝛽2𝑎1𝑎2

(𝛼2 + 𝑦)2
− (

𝑠

𝑙
−

𝛼2𝛽2𝑥

(𝛼2 + 𝑦)3
) 2𝑎2

2

]
 
 
 
 

 

𝐷3𝐹(𝑋, 𝑋) =

[
 
 
 
 
−6𝛼1𝛽1𝑦𝑎1

3

(𝛼1 + 𝑥)4
+

6𝛼1𝛽1𝑎1
2𝑎2

(𝛼1 + 𝑥)3

2𝛼2𝛽2𝑎1𝑎2
2

(𝛼2 + 𝑦)3
+

6𝛼2𝛽2𝑥𝑎2
3

(𝛼2 + 𝑦)4 ]
 
 
 
 

 

Theorem 3. If  𝑟 = 𝑟∗, then system (1) takes a saddle-node bifurcation at 𝐸0. 

Proof:   Based on the  𝐽(𝐸0), given in (4) system (1) has a zero eigenvalue at 𝐸0, it's called  

𝜆0𝑥 = 0, at  𝑟∗ = 𝑒1𝑞1 and  𝐽∗(𝐸0) = 𝐽(𝐸0, 𝑟
∗ ), becomes: 

𝐽∗(𝐸0, 𝑟
∗) = [

0 0
0 𝑠 − 𝑒2𝑞2

] 

Now, assume  𝐴[0] = (𝑎1
[0]

, 𝑎2
[0]

)
𝑇

 is an eigenvector related with  𝜆0𝑥 = 0, then 

(𝐽∗(𝐸0) − 𝜆0x𝐼)𝐴
[0] = 0 gives 𝐴[0] = (𝑎1

[0]
, 0)

𝑇

. where 𝑎1
[0]

 be any nonzero real number. 

Assume that  𝐵[0] = (𝑏1
[0]

, 𝑏2
[0]

)
𝑇

  is an eigenvector related with  𝜆0x = 0 of the (𝐽∗(𝐸0, 𝑟
∗))

𝑇
.  

𝐽∗𝑇(𝐸0, 𝑟
∗) = [

0 0
0 𝑠 − 𝑒2𝑞2

] 

Then ((𝐽∗(𝐸0))
𝑇 − 𝜆0𝑥𝐼)𝐵

[0] = 0 gives 𝐵[0] = (𝑏1
[0]

, 0)
𝑇

, where 𝑏1
[0]

 be any nonzero real 

number. 

Now, to know whether the bifurcation of the saddle nodes meets the conditions, the following is 

calculated 

𝜕𝐹

𝜕𝑟
= 𝐹𝑟(𝑁, 𝑟) = (

𝜕𝑓1
𝜕𝑟

,
𝜕𝑓2
𝜕𝑟

)
𝑇

= (1 −
𝑥

𝑘
, 0)

𝑇

 

So 𝐹𝑟(𝐸0, 𝑟
∗) = (1,0)𝑇and hence (𝐵[0])

𝑇
𝐹𝑟 = (𝑏1

[0]
, 0)

𝑇
(1,0)𝑇 = 𝑏1

[0]
≠ 0.  
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So, the first condition was fulfilled through the bifurcation of the saddle node, while the 

bifurcation through the transcortical and the pitchfork did not fulfill its conditions. 

Accordingly 

𝐷2𝐹𝑟(𝐸0, 𝑟
∗)𝐴[0]  = (

−2𝑒1𝑞1(𝑎1
[0]

)2

𝑘
, 0)

𝑇

 

Hence,  

(𝐵[0])
𝑇
[𝐷2𝐹𝑟(𝐸0, 𝑟

∗)𝐴[0]] = (𝑏1
[0]

, 0)
𝑇
(
−2 𝑒1𝑞1(𝑎1

[0]
)2

𝑘
, 0)

𝑇

= −2𝑒1𝑞1𝑏1
[0]

(𝑎1
[0]

)2 ≠ 0. 

This means that the bifurcation of the saddle nodes fulfills the second condition. So, the 

bifurcation of the saddle nodes of system (1) is verified at 𝐸0 with 𝑟 = 𝑟∗. 

Theorem 4:  If  𝑠 = 𝑠∗, then system (1) takes a saddle-node bifurcation at 𝐸1. 

Proof: depending on 𝐽(𝐸1) given in (7), then system (1) has a zero eigenvalue at 𝐸1which’s 

called 𝜆1𝑦 = 0, at 𝑠∗ =
𝛽2�̂�

𝛼2
+𝑒2𝑞2 and  𝐽∗(𝐸1) = 𝐽(𝐸1, 𝑠

∗ ), becomes: 

𝐽∗(𝐸1, 𝑠
∗) = [−𝑟 + 𝑒1𝑞1

−𝛽1�̂�

𝛼1 + �̂�
0 0

] 

Now, Assume that  𝐴[1] = (𝑎1
[1]

, 𝑎2
[1]

)
𝑇

is an eigenvector related with  𝜆1𝑦 = 0, thus 

(𝐽∗(𝐸1) − 𝜆1y𝐼)𝐴
[1] = 0 gives 𝐴[1] = (

−𝛽1𝑘

𝑟𝛼1+𝑘(𝑟−𝑒1𝑞1)
𝑎2

[1]
, 𝑎2

[1]
)
𝑇

. where 𝑎2
[1]

 be any nonzero real 

number. 

Assume that 𝐵[1] = (𝑏1
[1]

, 𝑏2
[1]

)
𝑇

  is  an eigenvector related to  𝜆1y = 0 of the matrix 

(𝐽∗(𝐸1, 𝑠
∗))

𝑇
.  

𝐽∗𝑇(𝐸1, 𝑠
∗) = [

−𝑟 + 𝑒1𝑞1 0
−𝛽1�̂�

𝛼1 + �̂�
0
] 
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Then ((𝐽∗(𝐸1))
𝑇 − 𝜆1𝑦𝐼)𝐵[1] = 0 gives 𝐵[1] = (0, 𝑏2

[1]
)
𝑇

, where 𝑏2
[1]

 be any nonzero real 

number. 

Now, to know whether the bifurcation of the saddle nodes meets the conditions, the following is 

calculated 

𝜕𝐹

𝜕𝑠
= 𝐹𝑠(𝑁, 𝑠) = (

𝜕𝑓1
𝜕𝑠

,
𝜕𝑓2
𝜕𝑠

)
𝑇

= (0, 1 −
𝑦

𝑙
)
𝑇

 

So 𝐹𝑠(𝐸1, 𝑠
∗) = (0,1)𝑇and hence (𝐵[1])

𝑇
𝐹𝑠 = (0, 𝑏2

[1]
)
𝑇
(0, 1)𝑇 = 𝑏2

[1]
≠ 0. So, the first 

condition was fulfilled through the bifurcation of the saddle node, while the bifurcation through 

the transcortical and the pitchfork did not fulfill its conditions. 

Now, 

                                   𝐷2𝐹𝑠(𝐸1, 𝑠
∗)𝐴[1]  =

[
 
 
 

−2𝑟(𝑎1
[1]

)2

𝑘
−

2𝛼1𝛽1𝑎1
[1]

𝑎2
[1]

(𝛼1+�̂�)2

−2𝛽2𝑎1
[1]

𝑎2
[1]

𝛼2
2 −

2𝑠∗(𝑎2
[1]

)
2

𝑙
−

2𝛽2�̂�(𝑎2
[1]

)2

𝛼2
2 ]

 
 
 

  

Hence,  

(𝐵[1])
𝑇
[𝐷2𝐹𝑠(𝐸1, 𝑠

∗)𝐴[1]] = (0, 𝑏2
[1]

)
𝑇

[
 
 
 
 
 −2𝑟(𝑎1

[1]
)2

𝑘
−

2𝛼1𝛽1𝑎1
[1]

𝑎2
[1]

(𝛼1 + �̂�)2

−2𝛽2𝑎1
[1]

𝑎2
[1]

𝛼2
2 −

2𝑠∗ (𝑎2
[1]

)
2

𝑙
−

2𝛽2�̂�(𝑎2
[1]

)2

𝛼2
2 ]

 
 
 
 
 

 

  =−2𝑏2
[1]

[
𝛽2𝑎1

[1]
𝑎2

[1]

𝛼2
+ (

𝑠∗

𝑙
+

𝛽2�̂�

𝛼2
2 ) (𝑎2

[2]
)2] ≠ 0 

This means that the bifurcation of the saddle nodes fulfills the second condition. So, the 

bifurcation of the saddle nodes of system (1) is verified at 𝐸1 with 𝑠 = 𝑠∗. 

Theorem 5.  If  𝑟 = 𝑟∗∗, then system (1) at 𝐸2 takings a saddle-node bifurcation  provided  

                                        𝑘𝛽1
2�̅� + 𝑟∗∗(𝑎1

[2]
)2𝛼1

2 > 𝛽1𝛼1𝑎1
[2]

𝑎2
[2]

                                     (14) 

Proof:  Depend on   𝐽(𝐸2) given in (10), system (1) has a zero eigenvalue at 𝐸2 which’s called   

𝜆2𝑥 = 0, at 𝑟∗∗ =
𝛽1�̅�

𝛼1
+𝑒1𝑞1 and 𝐽∗(𝐸2) = 𝐽(𝐸2, 𝑟

∗∗ ), becomes: 
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𝐽∗(𝐸2, 𝑟
∗∗) = [

0 0
−𝛽2�̅�

𝛼2 + �̅�
  −𝑠 + 𝑒2𝑞2

] 

Now, assume that 𝐴[2] = (𝑎1
[2]

, 𝑎2
[2]

)
𝑇

 is  an  eigenvector corresponding to 𝜆2𝑥 = 0, thus 

(𝐽∗(𝐸2) − 𝜆2x𝐼)𝐴
[2] = 0 gives 𝐴[2] = (𝑎1

[2]
,

𝛽2�̅�

(𝑠−𝑒2𝑞2)(𝛼2+�̅�)
𝑎1

[2]
)
𝑇

. where 𝑎1
[2]

 be any nonzero real 

number. 

Let 𝐵[2] = (𝑏1
[2]

, 𝑏2
[2]

)
𝑇

 be an eigenvector related  with  𝜆2x = 0 of the matrix (𝐽∗(𝐸2, 𝑟
∗∗))

𝑇
.  

𝐽∗𝑇(𝐸2, 𝑟
∗∗) = [

0
−𝛽2�̅�

𝛼2 + �̅�
0 −𝑠 + 𝑒2𝑞2

] 

Then ((𝐽∗(𝐸2))
𝑇 − 𝜆2𝑥𝐼)𝐵

[2] = 0 gives 𝐵[2] = (𝑏1
[2]

, 0)
𝑇

, where 𝑏1
[2]

 be any nonzero real 

number. 

Now, to know whether the bifurcation of the saddle nodes meets the conditions, the following is 

calculated 

𝜕𝐹

𝜕𝑟
= 𝐹𝑟(𝑁, 𝑟) = (

𝜕𝑓1
𝜕𝑟

,
𝜕𝑓2
𝜕𝑟

)
𝑇

= ( 1 −
𝑥

𝑘
, 0)

𝑇

 

So 𝐹𝑟(𝐸2, 𝑟
∗∗) = (1, 0)𝑇and hence (𝐵[2])

𝑇
𝐹𝑟 = (𝑏1

[2]
, 0)

𝑇
(1,0)𝑇 = 𝑏1

[2]
≠ 0. So, the first 

condition was fulfilled through the bifurcation of the saddle node, while the bifurcation through 

the transcortical and the pitchfork did not fulfill its conditions. 

Now, 

                                   𝐷2𝐹𝑠(𝐸2, 𝑠
∗)𝐴[2]  =

[
 
 
 (

𝛽1�̅�

𝛼1
2 −

𝑟∗∗

𝑘
) 2(𝑎1

[2]
)2 −

2𝛽1𝑎1
[2]

𝑎2
[2]

𝛼1

−2𝛼2𝛽2𝑎1
[2]

𝑎2
[2]

(𝛼2+�̅�)2
−

2𝑠(𝑎2
[2]

)
2

𝑙 ]
 
 
 

  

Hence,  
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(𝐵[2])
𝑇
[𝐷2𝐹𝑠(𝐸2, 𝑠

∗)𝐴[2]] = (𝑏1
[2]

, 0)
𝑇

[
 
 
 
 
 −2𝑟∗∗(𝑎1

[2]
)2

𝑙
−

2𝛽1𝑎1
[2]

𝑎2
[2]

𝛼1
+

2𝛽1
2�̅�

𝛼1
2

−2𝛼2𝛽2𝑎1
[2]

𝑎2
[2]

(𝛼2 + �̅�)2
−

2𝑠 (𝑎2
[2]

)
2

𝑙 ]
 
 
 
 
 

 

                                   =2𝑏1
[2]

[
𝑟∗∗(𝑎1

[2]
)2𝛼1

2−𝛽1𝛼1𝑎1
[2]

𝑎2
[2]

+𝑘𝛽1
2�̅�

𝛼1
2𝑘

] ≠ 0  Under condition (14). 

This means that the bifurcation of the saddle nodes fulfills the second condition. So, the 

bifurcation of the saddle nodes of system (1) is verified at 𝐸2 with 𝑟 = 𝑟∗∗ 

Theorem 6.If  𝑠 permissions through  

                               𝑠∗∗ = −
𝛽1𝛽2�̇��̇�

(𝛼1+�̇�)(𝛼2+�̇�)𝑎11
+ 2

𝑠∗∗�̇�

𝑙
+

𝛼2𝛽2�̇�

(𝛼2+�̇�)2
+ 𝑒2𝑞2 

 then system (1) takes a saddle-node bifurcation at 𝐸3 only if the following conditions hold 

                                                   𝑟 > 𝛼1𝛽1𝑘�̇�                                                                15(a)                          

                                                      �̇� ≠ 𝑙                                                                        15(b)                   

                  𝑟 + 𝑠 − 𝑒2𝑞2 < 2
𝑟

𝑘
�̇� +

𝛼1𝛽1�̇�

(𝛼1+�̇�)2
+ 𝑒1𝑞1 + 2

𝑠

𝑙
�̇� +

𝛼2𝛽2�̇�

(𝛼2+�̇�)2
                           15(c)                 

Proof:  𝐽(𝐸3), given by (12) at 𝑠 = 𝑠∗∗ can be inscribed as: 

𝐽∗(𝐸3, 𝑠
∗∗) =

[
 
 
 𝑟 − 2

𝑟

𝑘
�̇� −

𝛼1𝛽1�̇�

(𝛼1 + �̇�)2
− 𝑒1𝑞1 −

𝛽1�̇�

𝛼1 + �̇�

−
𝛽2�̇�

𝛼2 + �̇�
𝑠∗∗ − 2

𝑠∗∗

𝑙
�̇� −

𝛼2𝛽2�̇�

(𝛼2 + �̇�)2
− 𝑒2𝑞2]

 
 
 

 

 The calculation tells that 𝐷𝑒𝑡(𝐽∗(𝐸3)) = 0. Then 𝐽∗(𝑀3) has a zero eigenvalue, say  𝜆3𝑦 = 0 

with the second eigenvalue 𝜆32 = 𝑟 + 𝑠 − 𝑒2𝑞2 − 2
𝑟

𝑘
�̇� −

𝛼1𝛽1�̇�

(𝛼1+�̇�)2
− 𝑒1𝑞1 − 2

𝑠

𝑙
�̇� −

𝛼2𝛽2�̇�

(𝛼2+�̇�)2
< 0 

under condition 15(c). Now, let 𝐴[3] = (𝑎1
[3]

, 𝑎2
[3]

)
𝑇

 be the eigenvector corresponding to 𝜆3𝑦 =

0, thus (𝐽∗(𝐸3) − 𝜆3y𝐼)𝐴
[3] = 0 gives 𝐴[3] = (

(𝑠∗∗𝐿−2𝑠∗∗𝑦−̇𝑒2𝑞2𝐿)(𝛼2+�̇�)2−𝛼2𝛽2�̇�𝐿

𝛽2�̇�𝐿(𝛼2+�̇�)
𝑎2

[3]
, 𝑎2

[3]
)
𝑇

. 

where 𝑎2
[3]

 be any nonzero real number. 

Let 𝐵[3] = (𝑏1
[3]

, 𝑏2
[3]

)
𝑇

  be an eigenvector related to  𝜆3y = 0 of the  (𝐽∗(𝐸3, 𝑠
∗∗))

𝑇
.  
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𝐽∗𝑇(𝐸3, 𝑠
∗∗) =

[
 
 
 
 𝑟 − 2

𝑟

𝑘
�̇� −

𝛼1𝛽1�̇�

(𝛼1 + �̇�)2
− 𝑒1𝑞1 −

𝛽2�̇�

𝛼2 + �̇�

−
𝛽1�̇�

𝛼1 + �̇�
𝑠∗∗ − 2

𝑠∗∗

𝑙
�̇� −

𝛼2𝛽2�̇�

(𝛼2 + �̇�)2
− 𝑒2𝑞2]

 
 
 
 

 

 

Then ((𝐽∗(𝐸3))
𝑇 − 𝜆3𝑦𝐼)𝐵[3] = 0 gives : 

𝐵[3] = (
[(𝑠∗∗𝑙−2𝑠∗∗𝑦−̇𝑒2𝑞2𝑙)(𝛼2+�̇�)2−𝛼2𝛽2�̇�𝑙](𝛼1+�̇�)

𝛽1�̇�𝑙(𝛼2+�̇�)2
𝑏2

[3]
 , 𝑏2

[3]
)
𝑇

, where 𝑏2
[3]

 be any nonzero real 

number. 

Now, to know whether the bifurcation of the saddle nodes meets the conditions, the following is 

calculated 

𝜕𝐹

𝜕𝑠
= 𝐹𝑠(𝑁, 𝑠) = (

𝜕𝑓1
𝜕𝑠

,
𝜕𝑓2
𝜕𝑠

)
𝑇

= (0, 1 −
𝑦

𝑙
)
𝑇

 

 So  𝐹𝑠(𝐸3, 𝑠
∗∗) = (0,1 −

�̇�

𝑙
)
𝑇

and (𝐵[3])
𝑇
𝐹𝑠∗∗ = (𝑏1

[3]
 , 𝑏2

[3]
)
𝑇

(0, 1 −
�̇�

𝑙
)
𝑇

= ( 1 −
�̇�

𝑙
) 𝑏2

[3]
≠ 0 

under condition 15(b). 

 Therefore, the first condition was fulfilled through the bifurcation of the saddle node, while the 

bifurcation through the transcortical and the pitchfork did not fulfill its conditions. 

Now, 

                                  𝐷2𝐹𝑠(𝐸3, 𝑠
∗∗)𝐴[3]  = [

(
𝛼1𝛽1�̇�

(𝛼1+�̇�)3
−

𝑟

𝑘
) 2(𝑎1

[3]
)2 −

2𝛼1𝛽1 

(𝛼1+�̇�)2
𝑎1

[3]
𝑎2

[3]

−2𝛼2𝛽2𝑎1
[3]

𝑎2
[3]

(𝛼2+�̇�)2
− (

𝑠∗∗

𝑙
−

𝛼2𝛽2�̇�

(𝛼2+�̇�)3
) 2(𝑎2

[3]
)2

] 

Hence,  

(𝐵[3])
𝑇
[𝐷2𝐹𝑠(𝐸1, 𝑠

∗∗)𝐴[3]] = (𝑏1
[3]

, 𝑏2
[3]

)
𝑇

[
 
 
 
 (

𝛼1𝛽1�̇�

(𝛼1 + �̇�)3
−

𝑟

𝑘
) 2(𝑎1

[3]
)2 −

2𝛼1𝛽1 

(𝛼1 + �̇�)2
𝑎1

[3]
𝑎2

[3]

−2𝛼2𝛽2𝑎1
[3]

𝑎2
[3]

(𝛼2 + �̇�)2
− (

𝑠∗∗

𝑙
−

𝛼2𝛽2�̇�

(𝛼2 + �̇�)3
)2(𝑎2

[3]
)2

]
 
 
 
 

 

 =𝑏1
[3]

[
2(𝑎1

[3]
)
2
(−𝑟+𝛼1𝛽1𝑘�̇�)−2𝛼1𝛽1𝑎1

[3]
𝑎2

[3]

𝑘(𝛼1+�̇�)2
] − 2𝑏2

[3]
[
𝛼2𝛽2𝑙𝑎1

[3]
𝑎2

[3]
+(𝑠∗∗+𝛼2𝛽2�̇�)(𝑎2

[3]
)2

𝑙(𝛼2+�̇�)2
] ≠ 0 under 

condition 15(a).  
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This means that the bifurcation of the saddle nodes fulfills the second condition. So the 

bifurcation of the saddle nodes of system (1) is verified at 𝐸3 with 𝑠 = 𝑠∗∗. 

 

6. PERSISTENCE ANALYSIS 

      In this section, we will study the persistence of model (1). We say that the model persists if and 

only if each species is alive. Mathematically, it means that system (1) persists if the solution of a 

system with a positive initial condition does not have an omega limit set on the boundary of its 

domain. For more detail, see [50]. Now, we can establish the persistence condition of system (1) 

in the following theorem. 

Theorem 7. Suppose that the following sets of conditions  

                                           𝑟 > 𝑒1𝑞1 and  𝑠 > 𝑒2𝑞2                                                        (16)             

hold. Then, system (1) persists.  

Proof: Let 𝑤(𝑥, 𝑦) = 𝑥𝑎𝑦𝑏 , such that 𝑎 and 𝑏 are positive constants. Clear that  𝑤(𝑥, 𝑦) > 0, 

for each (𝑥, 𝑦) ∈ 𝑅+
2  and when 𝑥 or 𝑦 → 0 then 𝑤(𝑥, 𝑦) → 0 therefore , 

𝜑(𝑥, 𝑦) =
�̇�

𝑤
= 𝑏 [𝑠 (1 −

𝑦

𝑙
) −

𝛽2𝑥

𝛼2 + 𝑦
− 𝑒2𝑞2] + 𝑎 [𝑟 (1 −

𝑥

𝑘
) −

𝛽1𝑦

𝛼1 + 𝑥
− 𝑒1𝑞1] 

Now, since exclusive probable omega limit sets to the system (1) on the border of  𝑥𝑦- plane are 

the critical points 𝐸0, 𝐸1 and 𝐸2. So, system (1) is uniformly persistent. conditional that 

𝜑(𝑥, 𝑦) > 0 at the  𝐸0, 𝐸1 and 𝐸2.  

Now, meanwhile      

                              𝜑(𝐸0) = 𝑏[𝑠 − 𝑒2𝑞2] + 𝑎[𝑟 − 𝑒1𝑞1] ; 

                              𝜑(𝐸1) = 𝑏 [𝑠 −
𝛽2�̌�

𝛼2
− 𝑒2𝑞2] ; 

                              𝜑(𝐸2) = 𝑎 [𝑟 −
𝛽1�̅�

𝛼1
− 𝑒1𝑞1]  . 

It follows that,  𝜑(𝐸0) > 0,  𝜑(𝐸1) > 0  and    𝜑(𝐸2) > 0 under conditions 15. Then, system (1) 

is uniformly persistent.                                                                                       ▪ 
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7. NUMERICAL ANALYSIS WITH DISCUSSION 

      In this section, system (1) is studied numerically using MATLAB, and a phase plane with a 

time series are obtained with the following set of parameters: 

𝑟 = 1.2;  𝛽1 = 0.2; 𝛼1 = 0.3; 𝑒1 = 0.1; 𝑞1 = 0.4; 𝑙 = 40;  𝑠 = 0.9; 𝛽2 = 0.3; 𝛼2 = 0.4; 𝑒2 =

0.1; 𝑞2 = 0.3; 𝑘 = 30.                                                                                    (17) 

Now, for different values of the growth rate of the first species  𝑥 (𝑟) and keeping all parameters 

as shown in Eq. (17), We noticed  a clear effect on the  system dynamics (1)  as shown in Fig. (1) 

(a-f). 

 

Fig(1):(a) time series of system(1)at data given in (16) with 𝑟 = 1.1            (b) phase plane of(a). 

            (c) time series of system(1)at data given in (16) with 𝑟 = 0.9           (d) phase plane of (c). 

            (e) time series of system(1)at data given in (16) with 𝑟 = 0.74         (f) phase plane of (e). 
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According to the above figure, it is observed that the phase plane of system (1) approaches a global 

asymptotic equilibrium point 𝐸3 = (22.9,25.56) for 𝑟 ≥ 1.1  As shown in the Fig. (1)(a-b), while 

it approaches to  two different points, 𝐸2 = (0,38.67) and 𝐸3 = (20.44,25.59) for 0.75 ≤ 𝑟 ≤

1.1  as show in the Fig (1)(c-d) ,finally for 𝑟 < 0.75 system (1) approaches to 𝐸2 = (0,38.67) and 

losses the persist as show in Fig.(1)(e-f). In order to know the effect of the harvest of   the species 

𝑥 (i.e., parameter  𝑞1) with all parameters as shown in Eq. (16), We noticed  a clear effect on 

system dynamics (1)  as shown in the Fig.(2) (a-f)  

 

Fig. (2): (a) time series of system(1)at data given in (16) with 𝑞1 = 1               (b) phase plane of(a). 

               (c) time series of system(1)at data given in (16) with 𝑞1 = 1 .36        (d) phase plane of (c). 

               (e) time series of system(1)at data given in (16) with 𝑞1 = 3.1           (f) phase plane of (e). 

Noticeably,  as 𝑞1  when it decreases The numerical analysis we analyzed shows that the phase 

plane of system (1) approaches to global asymptotic equilibrium point 𝐸3 = (21.67,25.57) for 

 𝑞1 ≤ 1.35  As shown in the Fig. (2)(a-b), While it approaches to  two different points,  𝐸2 =
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(0,38.67) and 𝐸3 = (20.42,25.59)  for 1.35 <  𝑞1 ≤ 3  as show in the Fig (2)(c-d) ,finally for 

 𝑞1 > 3 system  (1) losses persist and approach to an axial point 𝐸2 = (0,38.67)   as show in 

Fig.(2)(e-f). 

In specific proportions to influence competition of the species 𝑥 (i.e. parameter  𝛽1 ) with all 

parameters as shown in Eq. (16), We noticed  a clear effect on the  system dynamics (1)  as shown 

in the Fig. (3) (a-f)  

 

Fig.(3): (a) time series of system(1)at data given in (16) with 𝛽1 = 0.23             (b) phase plane of(a). 

              (c) time series of system(1)at data given in (16) with 𝛽1 = 0.24             (d) phase plane of (c). 

              (e) time series of system(1)at data given in (16) with 𝛽1 = 0.34             (f) phase plane of (e). 

Remarkably,  for a small value of  𝛽1, 𝛽1 ≤ 0.23  the numerical analysis we analyzed shows that 

the phase plane of system (1) approaches the global asymptotic equilibrium point 𝐸3 =

(22.57,25.56) as shown in the Fig. (3)(a-b), While with a slight change of 𝛽1,  0.23 < 𝛽1 ≤ 0.33  

system (1) approaches to two different points, 𝐸2 = (0,38.67) and 𝐸3 = (22.17,25.57) show in 
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the Fig (3)(c-d), finally for 𝛽1 > 0.33 system (1) losses persist and approach an axial point 𝐸2 =

(0,38.67)   as show in Fig.(3)(e-f). 

In order to know the effect of the growth rate of  species 𝑦 (i.e., parameter  s ) with all parameters 

as shown in Eq. (16), We noticed  a pure effect on the  system dynamics (1)  as shown in the Fig. 

(4) (a-h)  

 

Fig. (4): (a) time series of system(1) with data given in (16) at 𝑠 = 0.29          (b) phase plane of(a). 

               (c) time series of system(1) with data given in (16) at  𝑠 = 1               (d) phase plane of (c). 

               (e) time series of system(1) with data given in (16) at  𝑠 = 1.5           (f) phase plane of (e). 

               (g) time series of system(1) with data given in (16) at  𝑠 = 2.91        (h) phase plane of (e). 

For a small value of 𝑠, (𝑠 ≤ 0.32) the numerical analysis we analyzed shows that the phase plane 

of system (1) approaches to 𝐸1 = (28.99,0) and losses persist as shown in the Fig. (4)(a-b), While 
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with a slight change of  𝑠 ,  0.32 < 𝑠 ≤ 1   system (1) approaches to the global asymptotic 

equilibrium point  𝐸3 = (23.27,27) as shown in Fig (4)(c-d). However, the solution of system (1) 

approaches to two different points,  𝐸2 = (0,39.2)  and 𝐸3 = (21.96,31.34)  as 1 < 𝑠 < 2.91   

shown in the Fig (4)(e-f), finally for 𝑠 ≥ 2.91 system  (1) losses persist once again  and approach 

to axial point 𝐸2 = (0,39.59) as show in Fig (4)(g-h). 

In order to know the impact of competition of the species 𝑦 (i.e., parameter  𝛽2  ) with all 

parameters as shown in Eq. (17), We noticed  a clear effect on the  system dynamics (1)  as shown 

in the figure (5) (a-d):      

 

Fig. (5) (a) time series of system(1) with data given in (16) at 𝛽2 = 0.8               (b) phase plane of(a). 

                (c) time series of system(1) with data given in (16) at  𝛽2 = 0.99          (d) phase plane of (c). 

With a small change in the values of 𝛽2 , 𝛽2 < 0.89  notice that the solution of system (1) 

approaches to a global asymptotically stable point 𝐸3 = (28.45,3.15), as shown in Fig. (5) (a-b), 

while system (1) losses it persists and approaches to axial equilibrium point 𝐸1 = (29,0) for 𝛽2 ≥

0.89 as shown in Fig. (5) (c-d). 

Finally, the dynamic behavior of the system (1) is studied under the influence of harvesting of 

species y (i.e. parameter 𝑞2) with all parameters as shown in Eq. (17) as shown in the figure (6) 

(a-d): 
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Fig.(6):   (a) time series of system(1) with data given in (16) at 𝑞2 = 5    (b) phase plane of (a). 

                (c) time series of system(1) with data given in (16) at  𝑞2 = 7   (d) phase plane of (c). 

As the effects of the harvest 𝑞2increase until  (𝑞2 ≤ 5.99) We noticed that the dynamic behavior 

of system (1) still persist and approaches to global asymptotically stable point 𝐸3 = (28.19,4.63) 

as show in Fig.(6)(a-b), while system (1) losses persist and approaches to 𝐸1 = (28.99,0) for 

(𝑞2 > 5.99) as show in Fig.(6)(c-d). 

 

8. CONCLUSION 

       In order to study the effect of harvest and competition on an ecological system consisting of 

two species, with studying the effect of changing the growth rate for both species. The dynamic 

behavior of the system (1) is studied theoretically by finding conditions for local stability of points 

and global stability of positive points with finding the conditions for the bifurcation. And the 

persist conditions of the system (1) as well derived. 

Now, we conclude that the effects of changes in parameters on the dynamic behavior of system (1) 

based on the numerical study in section (7) are as follows: 
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 Regarding the effect of a change in the growth rate of the first species while   keeping all 

parameters as they are in the Eq. (16)  we observed that the phase plane of system (1) approaches 

to globally asymptotically equilibrium point 𝐸3for ( 𝑟 ≥ 1.1), while the solution of system (1) 

approaches to 𝐸2 and 𝐸3 when (0.75 ≤ 𝑟 ≤ 1.1) According to the initial conditions, if the initial 

condition falls within the basin of attraction for the point 𝐸2 , the solution approaches to  𝐸2 while 

if the initial condition falls within the basin of attraction for the point 𝐸3 , the solution approaches 

to  𝐸3. Finally for ( 𝑟 < 0.75) system  (1) losses persistence. 

The effect of varying harvest rate and v competition rate  of the first species on the dynamical 

behavior of system (1)  (i.e. parameter 𝑞1 and 𝛽1)  respectively, it has the same effect as the growth 

rate on the dynamic behavior of the system(1) . 

Regarding the effect of varying of growth  rate  of second species 𝑦 ( i.e. parameter 𝑠 ) on the 

dynamical behavior of system (1)  while   keeping all parameters as they are in the Eq. (17)  we 

observed that for small value of growth rate   ( 𝑠 ≤ 0.32) the phase plane of system (1) loss persist 

and approaches to 𝐸1  ,while  approaches to globally asymptotically equilibrium point  𝐸3 

when(0.32 < 𝑠 ≤ 1) , while the solution of system (1) approaches to 𝐸2 and 𝐸3 when (1 < 𝑠 <

2.91) ,according to the initial conditions, if the initial condition falls within the basin of attraction 

for the point 𝐸2 , the solution approaches to  𝐸2 while if the initial condition falls within the basin 

of attraction for the point 𝐸3   ,finally for (𝑠 ≥ 2.91) system  (1) also losses persistence and 

approaches to 𝐸2. 

Regarding the effect of harvest rate  of the second species on the dynamical behavior of system (1)  

while   keeping all parameters as they are in the Eq. (16)  we observed that for ( 𝑞2 ≤ 5.99) the 

phase plane of system (1) approaches to globally asymptotically equilibrium point in the 

𝐼𝑛𝑡. 𝑅+
2  ,while for (𝑞2 > 5.99) system  (1) losses persistence. Regarding the effect of varying of 

competition rate  of the second species on the dynamical behavior of system (1)  while   keeping 

all parameters as they are in the Eq. (17)  we observed that for small value of competition rate   



22 

DINA SULTAN AL-JAF 

( 𝛽2 < 0.89) the phase plane of system (1) approaches to globally asymptotically equilibrium 

point in the 𝐼𝑛𝑡. 𝑅+
2  ,while  for (𝛽2 ≥ 89) system  (1) losses persistence. 
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