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Abstract: Many cases of epidemiological data reported has an excessive value of zero. The number of excess zeros 

can be more than half, even up to 80% of all existing data. This can occur in cases of rare diseases that do not cause 

significant symptoms at the start of infection. Therefore, the number and the rise of reported cases becomes difficult 

to detect. This paper proposes several Bayesian methods which are mixture of several distributions, namely binomial, 

Poisson and zero-inflated Poisson, and discuss the extension of these models to spatial data with excess zeros. Spatial 

data is implemented with Bayesian hierarchical framework, using Besag-York-Mollié re-parameterization (BYM2) 

model for spatial random effects, and penalized complexity prior for latent level process in the mixture models of 

different types of zeros. Bayesian inference uses INLA (Integrated Nested Laplace Approximation) for more accurate 

and faster results for spatially based hierarchical data. We further review recent implementation of proposed Bayesian 

mixture models using female lymphatic filariasis cases in 2019 at 27 district city level in West Java, Indonesia, and 

its elevation as explanatory variable. Mixture models were compared using DIC, and the results obtained indicate that 
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mixture distributions between Binomial-Poisson and Binomial-zero-inflated Poisson type 1 produce suitable models 

for characteristic of excess zeros data around 67% with high extreme observation values in certain regions. 

Keywords: joint model; zero-inflated Poisson models; lymphatic filariasis disease mapping; zero-inflated data; 

mixture distribution. 

2020 AMS Subject Classification: 62H11, 62J02. 

 

1. INTRODUCTION 

Many observed events contain a large number of zero values (excess zeros). This incident 

does not only occur in the field of epidemiology, but also occur in other fields such as 

environmental studies. Observing the number of rain events in several areas in a particular season 

can produce excess zeros, which allows to occur throughout the season or even the year (e.g. see 

[1], [2]). More cases of excess zeros are found in discrete/count data in epidemiology, including 

cases of rare disease. Rare diseases often do not cause specific symptoms so the number of reported 

cases is often undetectable and ends up with the number of cases being zero or unreported. A 

minimal number of cases, even zero, can reduce serious attention to rare but contagious, this is a 

serious event that must be avoided. Having large proportion of zeros is inevitable and cannot be 

omitted from the analysis. Because zeros in the data structure have an implied meaning which also 

contains important information. Therefore, it is very necessary to have a model that can properly 

handle the case of excess zeros. This is because standard single distribution models such as the 

binomial, Poisson, negative binomial and even zero-inflated Poisson (ZIP) cannot fit proficiently 

for data with excess zeros problem [3]. 

Spatial or spatio-temporal count data are often based on single Poisson distribution. However, 

the problem that is often encountered in Poisson distribution modeling is overdispersion which can 

result in invalid model conclusions. One way to take care overdispersion problem is with a ZIP 

model. ZIP can be used to overcome overdispersion which comes from excess zeros data. ZIP is a 

model that combines zero values with a certain probability and non-zero events with a Poisson 

probability distribution [4]. Hence, Feng [5] compared and highlighted differences of zero-inflated 
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and hurdle models for modeling zero-inflated count data and did the simulation process. From the 

simulation result, hurdle and zero-inflated models perform almost equivalently in the overall 

model fit when there are no or few zero deflations. Then [6] used zero-inflated models such as 

Poisson, negative binomial, ZIP, zero-inflated negative binomial and hurdle regression to analyse 

number of antennal care service visits during pregnancy months in Ethiopia. The model’s results 

hurdle model was better fitted excess zeros data than any other ZIP models. 

Spatial and spatio-temporal modeling for zero-inflated data makes modeling increasingly 

complex [7] [8]. This is because the number of observations in each regional unit is increasing and 

also involves spatial (and/or temporal) influences between regions. Thus, in many recent 

publications on spatial and spatio-temporal modeling, models for excess zeros are carried out using 

a single distribution method, such as [9], [10], [11]. Single distribution methods such as zero 

inflated models are widely used and are known considered to fit well. However, on the other hand, 

if the response comes from two different distributions (occurrence and number of occurrence), and 

each can be modelled with the same factors (namely spatial influences), then the more appropriate 

model to use is a mixture model [4]. Mixture models are one way to make the model fit better, 

control various sources of uncertainty from each process, and certainly to obtain more accurate 

results. 

Mixture models, which are a combination of several distributions, can fit excellently on data 

with excess zeros rather than single distribution methods [12]. Recently, there are only a few 

publications that use mixture models in Bayesian spatial modeling for excess zeros data. Several 

mixture model publications are Lyme disease mapping in the Eastern United States [3] and male 

breast cancer in Ethiopia [4]. Lyme disease spatial and spatio-temporal data were implemented 

using INLA inferences with covariance Matérn model to describe spatial structure in each spatial 

coordinate. Mixture of two distributions produce logistic regression for probability of occurrence 

and log-linear regression for the number of occurrences that fit excess zeros proficiently. Bayesian 

spatial joint model also implemented to investigate rare event disease mapping such as male breast 

cancer in Iran [4]. Male breast cancer data are mapped using INLA inferences of mixture binomial 
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and zero-inflated Poisson models with BYM2 in order to define the spatial random effects in the 

level process. In Bayesian spatial mixture model, response from each distribution is arranged 

hierarchically. However, inference from the posterior distribution using the classical MCMC 

method can cause problems [13], especially convergence and time issues. Therefore, posterior 

inference from the complex spatial model is performed using INLA approach [14] [15].  In 

modeling with excess zero data, the binomial-Poisson mixture model is rarely used compared to 

ZIP model. However, in fact, the combination of these distributions is the basis of distribution for 

occurrence and number of occurrences, so its use can really be considered to handle cases of excess 

zeros data. 

This paper proposes mixture models and assumes responses of zero-inflated data come from 

two distributions: Binomial-Poisson and Binomial-ZIP with different types of zero. Each 

regression model for response corresponds to its link function (logit for binomial and log-linear 

for Poisson) which includes BYM2 as spatial random effects [16]. Parameters in mixture 

distribution are modelled using penalized complexity priors [17] and non-informative prior 

distribution [13]. As an application, excess zeros data are derived from female lymphatic filariasis 

cases in West Java and compare mixture models according to the deviance information criteria 

(DIC). The remainder of this paper is structured as follows: Section 2 provides a review of mixture 

models for data with excess zeros in Bayesian spatial framework. Section 3 discusses mixture 

model implementation in spatial count data at district city level of female lymphatic filariasis cases. 

The implementation divided in two cases according with and without elevation as explanatory 

variable. Finally, section 4 provides some conclusions, remarks and possible model developments 

for future publications. 

 

2. HIERARCHICAL SPATIAL BAYESIAN MIXTURE MODELS 

This section proposes and reviews some mixture models that can be implemented with excess 

zero response. We propose Binomial-Poisson, Binomial-ZIP mixtures with different types of zero. 

In zero-inflated data modelling, there are two types of zeros that can occur, i.e. the structural/true 
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zeros and sampling zeros. Structural zeros are conditions where true zeros/absent from an event 

actually occurs, while sampling zeros come from number of occurrences in area is reported zero 

based on change or mistake [4]. Although these three models’ approaches are similar, there is a 

fundamental difference between three models which lies in the probability form of Poisson 

distribution. 

2.1  Mixture Models 

Under Binomial-Poisson model, it is assumed to be two-stage process that generate zero and 

non-zero data. Binomial-Poisson mixture model for the set of 𝑛  independent and identically 

distributed observations of region 𝑖, 𝑌𝑖, 𝑖 = 1,2,3… , 𝑛 can be described as the mixture of a point 

mass at zero with Binomial distribution with 𝑛 = 1 and probability of successive zero is 𝑝, and a 

Poisson distribution for number of occurrences without concerning any type of zero: 

𝑃(𝑌𝑖 = 0) = 𝑝𝑖, 0 ≤ 𝑝𝑖 ≤ 1 (1) 

𝑃(𝑌𝑖 = 𝑘) =
(𝐸𝑖𝜃𝑖)

𝑘exp(−𝐸𝑖𝜃𝑖)

𝑘!
, 𝑘 = 0,1,2,… , 𝑛, 𝜆 > 0. (2) 

If there is only structural zero may occur in data, then mixture model used is Binomial-ZIP type0 

which assume to follow probability as: 

𝑃(𝑌𝑖 = 0) = 𝑝𝑖, 0 ≤ 𝑝𝑖 ≤ 1 (3) 

𝑃(𝑌𝑖 = 𝑘) = (1 − 𝑝𝑖)
(𝐸𝑖𝜃𝑖)

𝑘 exp(−𝐸𝑖𝜃𝑖)

𝑘! (1 − 𝑒−𝐸𝑖𝜃𝑖)
, 𝑘 = 1,2, … , 𝑛, 𝜆 > 0, (4) 

where 𝑌𝑖  denotes response of region 𝑖  with  𝜆 = 𝐸𝑖𝜃𝑖  as the mean of truncated Poisson 

distribution. If there are assumed that two types of zero may occur through processes, either by 

structural or sampling zero, then mixture model used is Binomial-ZIP type1 which assumed to 

follow probability as: 

𝑃(𝑌𝑖 = 0) = 𝑝𝑖, 0 ≤ 𝑝𝑖 ≤ 1 (5) 

𝑃(𝑌𝑖 = 𝑘) = (1 − 𝑝𝑖)
(𝐸𝑖𝜃𝑖)

𝑘 exp(−𝐸𝑖𝜃𝑖)

𝑘!
, 𝑘 = 0,1, … , 𝑛, 𝜆 > 0. (6) 

This probability function is a mixture of proportion of structural zeros (𝑝𝑖) and sampling zeros 

(1 − 𝑝𝑖). 

The interest now is in modeling the latent fields 𝑝𝑖 and 𝜃𝑖 using canonical link function. This 
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paper uses a Bayesian framework in spatial modeling for excess zero data, so there are three 

hierarchies that show the levels of modeling. The three levels modelling process can be written as: 

▪ Data Level 

 Successive Event   : 𝑌𝑖 = 1 ~ Binomial(𝑝𝑖) 

 Number of occurrences : 𝑌𝑖 = 𝑘 ~ Poisson(𝐸𝑖𝜃𝑖) 

▪ Process Level 

logit(𝑝𝑖) = 𝛼𝑍 + 𝛽𝛾𝑖 (7) 

log(𝜃𝑖) = 𝛼𝑂 + 𝛾𝑖 + log(𝐸𝑖) (8) 

with 𝛾𝑖 = [
1

√𝜏𝛾
(√𝜑𝑢𝑖 + √1 − 𝜑𝑣𝑖)].                (9) 

▪ Parameters Level 

𝛼𝑍, 𝛼𝑂~𝑁(0, 1/√0.0001) 

𝛽~𝑁(0, 0.01) 

𝑃 ((
1

√𝜏𝛾

) > (
0.5

0.31
)) = 0.01 

𝑃(𝜑 < 0.5) = 2/3. 

           

(10) 

At data level we divided in two data/responses i.e. probability of successive event which 

defined as Binomial probability distribution and number of occurrences as Poisson distribution. 

𝐸𝑖 is expected case in specific region 𝑖 to the whole population, and 𝜃𝑖 is relative risk of region 

𝑖 to its standard population [16]. In process level probability of successive event modelled using 

logistics regression and log-linear regression for number of occurrences, with 𝛼𝑍, 𝛼𝑂  are the 

intercept, 𝛾𝑖 is BYM2 used to model spatial random effects. BYM2 model is re-parameterization 

of BYM model with mixing parameter 𝜑 ∈ [0,1] and the precision parameter 𝜏𝛾. BYM2 consist 

of spatially structured component 𝑢𝑖 and an unstructured component 𝑣𝑖, while 𝛽 represents a 

shared spatial random component between two regressions. In parameters level 𝛼𝑍, 𝛼𝑂 are set to 

have normal prior distribution with large variance, 𝛽 is set to normal prior with mean 0 and 𝜎2 =

0.01. Mixing 𝜑 and precision parameters are set to penalized complexity prior [16], [17]. More 

explanation about BYM2 and penalized complexity (PC) prior we refer to [18] and [17]. 
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Mixture models have two likelihoods, one for successive event for region 𝑖 with Binomial 

distribution, 𝑍𝑖~Binomial(𝑝𝑖, 𝑛𝑖 = 1) , and one for number of occurrences with (truncated) 

Poisson distribution, 𝑂𝑖~(Trunc)Poisson(𝐸𝑖𝜃𝑖). Because the linear predictors for each response 

are different, the response matrix must also be adjusted to combine two responses with larger 

matrix dimensions. Response matrix can be formed from the combination of two column vectors 

for each process, namely number of occurrences in region 𝑖 can be zero or positive number, so 

the disease occurrence 𝑧𝑖 in region 𝑖 is defined as 

𝑧𝑖 = {
1, if an event occurs
0, otherwise

 (11) 

and the number of occurrences 𝑜𝑖 as 

𝑜𝑖 = {
NA, if an event doesn′t occur

occurrence number, otherwise.
 (12) 

Therefore, matrix response 𝑌 in mixture model can be written as 

𝑌 =

[
 
 
 
 
 
𝑧1 𝑁𝐴
⋮ ⋮
𝑧𝑛 𝑁𝐴
𝑁𝐴 𝑜1

⋮ ⋮
𝑁𝐴 𝑜𝑛]

 
 
 
 
 

. (13) 

However, literature that specifically studies the influence of demographics and geographic 

conditions in the context of statistical spatial Bayesian mixture modeling for excess zeros data is 

very rare. Therefore, in this paper the modeling will be expanded by including elevation as an 

explanatory variable, so equations (7) and (8) at the process level can be written as 

logit(𝑝𝑖) = 𝛼𝑍 + 𝛼𝑍,elev 𝑋elev + 𝛽𝛾𝑖 (14) 

log(𝜃𝑖) = 𝛼𝑂 + 𝛾𝑖 + 𝛼𝑂,elev 𝑋elev + log(𝐸𝑖) (15) 

which 𝛼𝑍,elev and 𝛼𝑂,elev state the influence of elevation in each region respectively. 

2.2  INLA Inference and Code 

INLA (Integrated nested Laplace approximation) makes it possible to perform approximate 

Bayesian inference on Gaussian latent models which are part of generalized linear mixed spatial 

models. Specifically, the model at the data level has the following form: 

𝑦𝑖|𝒙,𝚯 ~ π(𝑦𝑖|𝑥𝑖 , 𝚯), 𝑖 = 1,2, … , 𝑛, (16) 
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𝒙|𝚯 ~ 𝑁(𝝁(𝚯),𝑸(𝚯)−𝟏), 

𝚯 ~ π(𝚯) 

where 𝒚  are the observed data, 𝒙  represents a Gaussian field, and 𝚯  are parameters and 

hyperparameters. 𝝁(𝚯)  and 𝑸(𝚯)  each represent the mean and the precision (inverse of 

covariance) matrix. In many situations, observation in region 𝑖, 𝑦𝑖  are assumed to belong an 

exponential family with mean 𝜇𝑖 = 𝑔−1(𝜂𝑖). 𝜂𝑖  is the canonical link function of response in 

exponential family. Linear predictor 𝜂𝑖 can be written in additive form to accounts effects as: 

𝜂𝑖 = 𝛼 + ∑ 𝛽𝑘𝑧𝑘𝑖

𝑛𝛽

𝑘=1

+ ∑𝑓(𝑗)

𝑛𝑓

𝑗=1

(𝑢𝑗𝑖). (17) 

Here 𝛼  is the intercept, {𝛽𝑘}’s quantify the linear (fixed) effects of covariates {𝑧𝑘𝑖} on the 

response, and {𝑓(𝑗)(. )}’s are a set of random effects defined in terms of some covariates {𝑢𝑗𝑖}. 

Analytical approximation and numerical integration are combined to obtained approximated mean 

posterior distribution of the parameters. Let 𝒙 = (𝛼𝑍, 𝛼𝑂 , 𝛼𝑍,elev, 𝛼𝑂,elev, 𝛽)~𝑁(𝜇, 1/√𝜏) denote 

the vector of latent Gaussian and 𝒙∗ = (𝜏𝛾, 𝜑)  denote the vector parameter of the random 

components uses penalized complexity prior as stated in (10). For a more in-depth explanation on 

INLA inference we recommend referring to [16]. We implemented the mixture model with R-

INLA package with penalized complexity prior and BYM2 model formula with the following R-

code: 

formula = Y ~  -1 + mu.z + mu.o + x_elev.z +x_elev.o + 

  f(idarea, model = "bym2", graph = g, scale.model = TRUE, 

    constr = TRUE, 

    hyper = list(phi=list(prior="pc", 

                          param = c(0.5,2/3),initial=3), 

                 prec = list(prior="pc.prec", 

                             param = c(1,0.01), 

                             initial=1.5)))+ 

  f(idarea1,copy = 'idarea',fixed = FALSE) 
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r.bym2 <- inla(formula,family = c('binomial','poisson'), 

               data=df,E=E,verbose=F,control.predictor = 

list(compute=TRUE,link=TRUE), 

               control.compute = list(dic=TRUE,cpo=TRUE)) 

 

3. CASE STUDY: FEMALE LYMPHATIC FILARIASIS CASES IN WEST JAVA 

Lymphatic filariasis still exists in Indonesia, especially in specific provinces such as Papua, 

East Nusa Tenggara, and West Java. According to data from the Ministry of Health of the Republic 

of Indonesia, almost 13,000 cases of lymphatic filariasis have been recorded [19]. Lymphatic 

filariasis is a type of dangerous infectious disease and can cause physical disabilities for the 

sufferers. Lymphatic filariasis is caused by Filaria Worms which are transmitted by various types 

of mosquitoes. In Indonesia, it is currently known that there are 23 species of mosquitoes from the 

genera Anopheles, Culex, Mansonia, Aedes and Armigeres which can act as vectors for 

transmitting Filariasis. This disease is chronic and if sufferer do not receive prompt and optimal 

treatment it can cause permanent disabilities in form of enlargement of the legs, arms and genitals 

in both women and men [20]. 

Here we consider modeling female lymphatic filariasis disease counts in West Java, Indonesia. 

Data was taken from West Java provincial government website [21], in 2019 at district city 

observation unit level in 27 regions. Many cases of zero sufferers have been reported (with 67% 

zeros proportion), but there are several regions that show a very high number of cases compared 

to other regions. Some regions do not report cases, so in this case they are assumed to have zero 

(sampling) cases. Figure 1(a) shows a histogram of 27 district city in West Java province, and part 

(b) shows map distribution of cases in each district city. The histogram in Figure 1(a) clearly states 

that most region have zero cases. However, there are quite real differences in region that have a 

very high number of cases compared to other regions, namely in Tasikmalaya with 15 cases, Depok 

city with 11 cases, and Bandung City with 6 cases. The histogram displays a fairly extreme 

distribution of data on the right. Disease distribution in Figure 1(b) shows that regions with high 
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cases are quite spread across various areas of West Java. The pattern of spatial dependence between 

regions is quite clear, areas with zero cases are in the western to central part of West Java, while 

areas with high cases are spread across the northern and southern regions. Several geographic and 

demographic influences have been studied in several publications to determine their relationship 

with the number of lymphatic filariasis cases [22], [23]. 

 

 
 

(a) (b) 

Figure 1. The histogram (a) and the map (b) female filariasis cases in West Java at county level.  

 

We fitted three mixture models and reported mean posterior probability for fixed and random 

effects, standard deviation and DIC in Table 1. We divide modeling into two large parts, namely 

without elevation and with elevation as an explanatory variable. In modeling without elevation, 

fixed effect in form of intercepts, �̂�𝑧 and �̂�𝑂 have significant influence (with credibility interval 

(CI) does not contain zero) on Binomial-Poisson mixture model with negative values. However, 

on contrary, intercepts have significant influence on Binomial-ZIP type 0, and only intercept in 

logit regression, �̂�𝑧, has significant influence on Binomial-ZIP type 1 mixture model. 
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Table 1. Mean posterior probability, standard deviation and DIC 

Coefficients 
Binomial-Poisson Binomial-Poisson with Elevation 

Mean (95% CI) �̂� DIC Mean (95% CI) �̂� DIC 

Fixed Effects 

�̂�𝑧 

�̂�𝑂 

�̂�𝑍,elev 

�̂�𝑂,elev 

 

-1.622 (-3.332, -0.075) 

-1.679 (-3.661, -0.200) 

- 

- 

 

0.825 

0.871 

- 

- 68.18 

 

-0.967 (-3.332, 1.304) 

-1.491 (-3.933, 0.640) 

-0.306 (-1.031, 0.334) 

-0.191 (-1.484, 0.393) 

 

1.173 

1.162 

0.344 

0.400 68.36 

Random Effects 

1/√�̂�𝑢 

�̂� 

�̂� 

 

0.717 (0.306, 1.431) 

0.133 (0.032, 0.343) 

1.220 (0.680, 1.766) 

 

0.291 

0.081 

0.279 

 

0.653 (0.287, 1.292) 

0.155 (0.026, 0.443) 

1.227 (0.735, 1.712) 

 

0.260 

0.109 

0.248 

Coefficients 
Binomial-ZIP type 0 Binomial-ZIP type 0 with Elevation 

Mean (95% CI) �̂� DIC Mean (95% CI) �̂� DIC 

Fixed Effects 

�̂�𝑧 

�̂�𝑂 

�̂�𝑍,elev 

�̂�𝑂,elev 

 

-0.886 (-1.863, 0.044) 

1.207 (-0.251, 2.150) 

- 

- 

 

0.484 

0.614 

- 

- 
111.85 

 

-0.578 (-1.973, 0.779) 

0.594 (-1.362, 1.911) 

-0.121 (-0.485, 0.235) 

0.204 (-0.134, 0.555) 

 

0.699 

0.832 

0.183 

0.171 
111.99 

Random Effects 

1/√�̂�𝑢 

�̂� 

�̂� 

�̂� 

 

4.866 (1.014, 14.580) 

0.176 (0.010, 0.606) 

1.062 (0.466, 1.655) 

0.653 (0.473, 0.808) 

 

3.681 

0.159 

0.302 

0.086 

 

5.014 (0.903, 16.489) 

0.187 (0.012, 0.633) 

1.081 (0.482, 1.700) 

0.653 (0.473, 0.808) 

 

4.321 

0.166 

0.309 

0.086 

Coefficients 
Binomial-ZIP type 1 Binomial-ZIP type 1 with Elevation 

Mean (95% CI) �̂� DIC Mean (95% CI) �̂� DIC 

Fixed Effects 

�̂�𝑧 

�̂�𝑂 

�̂�𝑍,elev 

�̂�𝑂,elev 

 

-1.566 (-3.251, -0.039) 

-1.436 (-3.266, 0.030) 

- 

- 

 

0.815 

0.847 

- 

- 
71.66 

 

-0.995 (-3.363, 1.248) 

-1.468 (-3.962, 0.632) 

-0.261 (-0.905, 0.364) 

-0.073 (-0.073, 0.467) 

 

1.168 

1.165 

0.322 

0.277 
71.22 

Random Effects 

1/√�̂�𝑢 

�̂� 

�̂� 

�̂� 

 

0.803 (0.243, 2.012) 

0.136 (0.035, 0.331) 

1.218 (0.649, 1.794) 

0.066 (0.012, 0.182) 

 

0.467 

0.077 

0.291 

0.045 

 

0.645 (0.264, 1.334) 

0.125 (0.035, 0.295) 

1.209 (0.688, 1.710) 

0.062 (0.015, 0.155) 

 

0.278 

0.068 

0.260 

0.037 
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In models with elevation, three mixture models do not have significant intercepts for either 

logit or log-linear regressions. Likewise with elevation, three models state that there is not strong 

enough evidence to state that elevation has significant influence. From a geographical background, 

West Java has very diverse regional altitudes. Regions with high number of extreme cases stand 

at very different altitudes, such as Tasikmalaya (15 cases) at 411.66 meters above sea level (masl), 

Depok city (11 cases) at 87.8 masl, while Cimahi city (zero cases) at 794.36 masl. This supports 

evidence that in this case study no significant relationship was found between regional altitudes 

and number of female lymphatic filariasis cases. The standard deviation, �̂�, for fixed effects has 

the smallest value in Binomial-ZIP type 0, while other two mixture models have almost the same 

standard deviation. 

The posterior mean for random effects shows that Binomial-ZIP type 0 model has the highest 

mixing parameter value, �̂�. This shows that influence of spatial structure dependence in this case 

is around 17.6% and 18.7%, while spatial structure independence is around 82.4% and 81.3% for 

modeling with and without elevation respectively. �̂�  near to 1 shows the spatial pattern of 

occurrence and number for occurrences are similar in mixture model. Both with and without 

elevation modeling, �̂� is close to 1 with the most similar random effect values for both regressions 

is being Binomial-ZIP type 0. Meanwhile, 1/√�̂�𝑢 shows the marginal deviation from regression 

intercept (initial risk) 𝛼, independent in the graph. The highest marginal deviation is in Binomial-

ZIP type 0 with 
1

√�̂�𝑢
= 4.866, while the Binomial-Poisson and Binomial-ZIP type 1 models have 

almost the same small marginal deviation or in other word the models have large precision values. 

The mean posterior of zero probability for logistic regression are estimated the same �̂� = 0.653 

for Binomial-ZIP type 0 for both with and without elevation, and 0.066 and 0.062 for Binomial-

ZIP type 1 for with and without elevation modeling respectively. Binomial-ZIP type 1 gives lower 

probability owing to some zeros covered by Poisson distribution. According to DIC, Binomial-

Poisson and Binomial-ZIP type 1 performs better compared to Binomial-ZIP type 0. 

Low DIC values are shown by Binomial-Poisson and Binomial-ZIP type 1 models. To 

investigate in more detail the estimator values for the two models, Table 2 (without elevation 
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modeling) represents estimator values for spatial random component, 𝛾𝑖, the mean posterior of 

relative risk for occurrence probability and mean posterior of relative risk for number of 

occurrences in five highest case districts cities in West Java. In Table 2, both models show the 

same order for five regions with the highest number of lymphatic filariasis cases affecting women. 

The Binomial-Poisson model shows a higher probability of occurrence and number of occurrences 

compared to the Binomial-ZIP model. The region with the greatest probability and number of 

occurrences is Tasikmalaya. Table 3 shows modeling with elevation. Both models still show the 

same order, but there is a change in order of the relative risk of occurrence in logistic regression 

model. In this model, the greatest occurrence probability is in Depok city. 

Table 2. Top 5 counties with the highest relative risk, without elevation 

County Name 

Estimated Relative Risk (RR) for Z 

(occurrence probability) 

Estimated Relative Risk (RR) for O 

(number of occurrences) 

Binomial-

Poisson 

Binomial-ZIP 

Type 1 

Binomial-

Poisson 

Binomial-ZIP 

Type 1 

Tasikmalaya 0.955 0.947 27.721 27.776 

Depok City 0.934 0.922 18.532 18.573 

Sukabumi City 0.900 0.886 16.912 17.194 

Subang 0.881 0.864 10.272 10.355 

Bandung City 0.863 0.843 8.303 8.363 

 

Table 3. Top 5 counties with the highest relative risk, with elevation 

Estimated Relative Risk (RR) for Z 

(occurrence probability) 

Relative Risk (RR) for O  

(number of occurrences) 

Binomial-

Poisson 

Binomial-ZIP 

Type 1 

Binomial-

Poisson 

Binomial-ZIP 

Type 1 

0.948 

Depok City 

0.943 

Depok City 

27.772 

Tasikmalaya 

27.926 

Tasikmalaya 

0.946 

Tasikmalaya 

0.934 

Tasikmalaya 

18.616 

Depok City 

18.646 

Depok City 

0.906 

Subang 

0.898 

Subang 

17.226 

Sukabumi City 

18.063 

Sukabumi City 

0.840 

Sukabumi City 

0.808 

Sukabumi City 

10.355 

Subang 

10.438 

Subang 

0.804 

Majalengka 

0.789 

Majalengka 

8.367 

Bandung City 

8.588 

Bandung City 
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Disease mapping is based on the smallest DIC values in Binomial-Poisson model. Figure 2(a) 

presents a mapping of spatial random effects estimator which is the BYM2 component in 

regression equation, (b) presents estimated relative risk for occurrence probability and (c) 

estimated relative risk for number of occurrences. Left and right side of Figure 2 state for modeling 

without and with elevation respectively. In Figure 2(a), spatial random component is very capable 

of representing the spatial pattern of lymphatic filariasis cases very well. The model can detect 

region with a high number of extreme cases such as Tasikmalaya, Depok city and Subang which 

are marked with a strong red color. Likewise, the model very well detects regions with a low 

number of cases colored in white and green. The red color indicates disease potential is above 

average, whereas the green color indicates disease potential of region is below average with an 

average value of 0, and the average is indicated with white color. White region is clearly visible in 

model with elevation, namely Bandung which is in the central region of West Java. 

Figure 2(b) shows the same spatial pattern. However, if we see in more detail according to 

Tables 2 and 3, the chance of occurrence probability in model without elevation is Tasikmalaya, 

namely 0.955, while in model with elevation region with the largest occurrence probability is 

Depok city with a chance of 0.943. Figure 2(c) also shows the same spatial pattern with 

Tasikmalaya as the region with the largest number of occurrences, but in general model with 

elevation has a higher number of occurrences in all areas. 

 

  

(a) Estimated spatial random effects 𝛾𝑖 
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(b) Estimated relative risk for occurrence probability 

  

(c) Estimated relative risk for number of occurrences 

Figure 2. Binomial-Poisson without elevation (left), with elevation (right) 

 

4. CONCLUSIONS 

This paper establishes a spatial mapping of number of lymphatic filariasis cases affecting 

women in West Java. The modeling used proposes a mixture distribution method for spatial data 

with excessive zero. The proposed mixture distributions are Binomial-Poisson, Binomial-ZIP type 

0 and Binomial-ZIP type 1. The matrix structure is a combination of two responses, each of which 

has a regression equation, logistic regression for occurrence probability, and log-linear regression 

for number of occurrences. The spatial random component in both regressions uses BYM2 which 

is a combination of spatially structured and spatially unstructured random effects. Using the BYM2 

model in the proposed mixture models provide very good results. This is because BYM2 prior 

parameters are reparametrized using a scaled precision matrix. Therefore, the interpretation of 
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parameters is very clear, precision parameter indicates marginal deviation from the initial risk 

(intercept), and mixing parameter expresses the variation between spatial dependence and spatial 

independence of the data. In addition, BYM2 uses a PC prior which provides the advantage of a 

simpler model so that the spatial random component scaling technique becomes more efficient. 

Because there are two types of zeros in data, namely structural zero and sampling zero, we 

propose a combined Binomial-ZIP model of type 0 and type 1. In many case studies regarding data 

with excess zeros, the number of non-zero cases that occur has a value that is not very high or 

around zero. However, in this case study of lymphatic filariasis, the number of extreme events 

occurred in several regions, there were even some regions with 11 to 15 cases in 1 year for rare 

types of disease. For this reason, this paper also proposes a combined Binomial-Poisson 

distribution model. The Poisson distribution in this mixture model is expected to be able to 

overcome the phenomenon of regions that have a number of extreme cases. Inference uses INLA 

to avoid convergence issue of parameters posterior distribution, and selection of the best model 

uses smallest DIC. 

Finally, Bayesian spatial mixture model was applied to female lymphatic filariasis data in 27 

districts cities in West Java. The three proposed models can map lymphatic filariasis cases very 

well. Binomial-ZIP type 0 and Binomial-ZIP type 1 models have similar spatial estimation patterns 

but type 0 has a larger DIC value. This indicates that filariasis data contains not only structural 

zero but also sampling zero which must be taken into account in the analysis. The Binomial-

Poisson model has the smallest DIC value, this indicates that extreme case events can still be 

handled very well by Binomial-Possion model. For this reason, the Binomial-Poisson distribution 

to model zero-inflated data with the number of extreme cases in several regions can be considered 

for use in modeling. Tasikmalaya has the highest spatial risk compared to other counties. The 

probability of a lymphatic filariasis case occurring in this region is around 95% and the relative 

risk of lymphatic filariasis cases in Tasikmalaya can reach 27 times compared to its standard 

population. Furthermore, in this case there was no significant relationship between elevation and 

the number of female lymphatic filariasis cases in West Java. 
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Even though Binomial-Poisson mixture model has the best performance in this case study, 

exploration using comprehensive simulations still needs to be done. This is to further investigate 

the characteristics of zero-inflated data that are suitable for this model. In this case the proportion 

of zero data is around 67% with extreme event values in several regions which are very suitable 

for the Binomial-Poisson model. The mixture model used in this paper can be developed using 

other zero-inflated models, including the negative binomial distribution [24], or can even use the 

beta distribution [25]. Recently, studies on lymphatic filariasis using a differential equation 

approach have been carried out as in [26]. The development of modeling based on differential 

equations can also be developed into spatial modeling with regionalization based on stochastic 

differential equations on point spatial data. Moreover, the development of spatio-temporal and 

multivariate modeling for zero-inflated data with mixture models is also very interesting to study 

in future research. 
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