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Abstract: Amensalism is an ecological relationship in which one species experiences harm while the other remains 

unaffected. When one organism stops another from proliferating or living without causing harm to itself, this type of 

symbiotic relationship takes place. This research is interested in developing and examining a mathematical model 

including three species that integrate amensalism and parasitism because amensalism can involve a range of organisms 

and occur in a variety of settings. The qualitative properties of their solution are analyzed. Every possible point of 

equilibrium has been located. We look at both global and local stability. The requirements needed for the system to 

continue operating have been identified. The possibility of local bifurcations is investigated. Lastly, a numerical 

simulation is used to describe how parameter perturbations impact the system's behavior. 
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1. INTRODUCTION 

Ecology is the study of how living things interact with their environment. It is typical for two 
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or more species to interact differently when they share a territory. Over the past 9 decades, 

mathematical modeling has been crucial in describing several natural phenomena involving people 

and populations. Lotka [1] and Volterra [2], who ushered in new eras in studying life and biological 

sciences, made significant advances in theoretical ecology. Amensalism, competition, 

commensalism, neutralism, mutualism, predation, and parasitism are some general categories 

under which ecological interactions might be categorized. The interactions between these 

categories define the ecosystem's structure. Interactions across species will produce diverse, 

dynamic, and interesting biological species that are complicated and varied [3-4]. Meyer [5], 

Cushing [6], and Kapur's [7] treatises introduce the general idea of modeling. 

Most researchers have focused on the study of the main interactions that affect both sides of the 

interaction such as competition, mutualism, and predation. Ecological interactions between 

organisms, such as competition, mutualism, and predation, are important in forming ecosystems 

and affecting species populations. Competition arises from conflicts among individuals or groups 

of the same species or other species that share limited resources. It can also limit the expansion 

and survival of some populations by causing a fight for survival and reproduction. On the other 

hand, mutualism is a beneficial ecological relationship in which two distinct species gain from one 

another's existence. Both of the species in this symbiotic connection offer services, resources or 

help to one another, which produces a win-win situation. Conversely, predation refers to the 

interaction between two species in which the predator pursues, catches, and consumes the victim. 

An ecosystem's ability to regulate species numbers and preserve population balance is largely 

dependent on predatory behavior. Because they have an impact on species distribution, population 

levels, and evolutionary processes, these ecological interactions are essential to the dynamics and 

operation of ecosystems. Predation, mutualism, and competition are all related to one another and 

support the diversity and general balance of life in a particular ecosystem. Many scientific 

researchers have dealt with the study of the three above interactions, including [8-12] for 

competition, [13-18] for mutualism, and, [19-29] for predation between two species and three 

species.   
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However, studies of interactions like amensalism and commensalism that impact only one side of 

the involved species have received minimal attention. In biology, amensalism is a kind of 

ecological interaction in which one organism suffers harm while another is left untouched. The 

organism that suffers harm in this relationship is called the amensal, while the unaffected organism 

is called the enemy. The other organism's habitat may be physically harmed, certain chemicals or 

substances may be released, or there may be competition for resources leading to this contact. A 

big tree that shades smaller plants and prevents their growth without directly benefiting them is an 

example of amensalism. Nonetheless, a particular kind of ecological interaction involving two 

animals of different species is known as commensalism. It happens when one organism gains from 

the relationship without the other suffering any negative effects. The beneficial creature in this 

interaction is called the commensal, and the other organism is called the host. The coexisting 

relationship between cattle egrets and cattle is an illustration of commensalism. As the cattle roam 

around, they mix up a variety of insects and parasites that the cow egret feeds on. The cattle are 

neither adversely affected nor greatly helped by the egret's presence, but the egret gains by having 

a meal.  

Numerous species of amensalism and commensalism have been studied [30–33]. Hari [34] studied 

a typical three-species syn-eco system with a commensal mortality rate analytically and 

numerically. The stability of three common species syn-ecosystems, which consist of one 

commensal and two hosts, has been investigated by Srinivas et al. [35].  Mougi [36] used a 

theoretical technique to show how unilateral interactions, such as amensalistic and commensalistic 

relationships, significantly improve community stability. According to the acquired data, 

symmetrical interactions like mutualism and competition were less stabilizing than asymmetric 

oppositional interactions, although amensalism and commensalism were more stabilizing than 

those types of interactions. A three-species dynamical system is investigated, whereby the third 

species serves as both a host and a predator, and the system is made up of two logistically 

competing species that are growing at the same time [37]. They noted the Hopf bifurcation's 

existence. In contrast, a three-species ecosystem with three pairings of species is thought to be 
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modeled to assess stability [38]. One of the three species is thought to fulfill two roles that of a 

host and an opponent with a monod reaction. On the first species, Zhao and Du [39] suggested and 

investigated a novel amensalism system with the Allee effect. On the other hand, the Beddington-

DeAngelis amensalism model with a substantial Allee effect on the second species was the subject 

of global dynamics research by Luo and Wang [40]. 

Keeping the above in mind, in this paper, a mathematical model that describes the interaction 

among three species involving amensalism and parasitism relationships is formulated 

mathematically and their dynamics are investigated. Gaining further insight into the interactions 

between various species and their effects on biodiversity and ecosystem stability is the aim of 

research on the dynamics of ecological systems incorporating amensalism and parasitism. An 

investigation into the effects of amensalistic and parasitic interactions on population dynamics and 

community structure, as well as an evaluation of the effects of these interactions on ecosystem 

resilience and functioning, are the objectives of this type of study. Through the investigation of 

amensalism and parasitism dynamics in ecological systems, scientists can expand on our 

comprehension of the complex web of interactions that form ecosystems and aid in their better 

management and conservation. 

 

2. MATHEMATICAL MODEL 

The mathematical model that describes the interaction among three species involves amensalism 

and parasitism relationships can be described using the following set of first-order differential 

equations 

𝑑𝑋

𝑑𝑇
= 𝑟1𝑋 − 𝑎11𝑋

2 − 𝑎12𝑋𝑌,

𝑑𝑌

𝑑𝑇
= 𝑟2𝑌 − 𝑎22𝑌

2 − 𝑎23𝑌𝑍,

𝑑𝑍

𝑑𝑇
= 𝑟3𝑍 − 𝑎33𝑍

2 + 𝑒𝑎23𝑌𝑍,

                                                (1) 

where 𝑋(𝑇) , 𝑌(𝑇) , and 𝑍(𝑇)  represent the density at time 𝑇  for the first, second, and third 

species, where the relationship between the first and second species represents amensal-enemy, 

while that is between the second and third species describes host-parasite respectively, with 
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𝑋(0) ≥ 0, 𝑌(0) ≥ 0, and 𝑍(0) ≥ 0. All the parameters are positive constants and are described 

in Table (1). 

It is assumed in the system (1) that the three species are expanding logistically. The presence of 

the enemy at the second level harms the amensal at the first level. On the other hand, the third-

level parasite species uses the second-level species as a host. The law of mass action is followed 

by the amensalism and parasitism processes. 

Table (1): Description of parameters  

Parameters Description 

𝑟𝑖; 𝑖 = 1,2,3 The intrinsic growth rate of 𝑋, 𝑌, and 𝑍 respectively. 

𝑎𝑖𝑖; 𝑖 = 1,2,3 The intraspecific competition rate of 𝑋, 𝑌, and 𝑍 respectively. 

𝑎12 The amensalism rate 

𝑎23 The parasite rate 

𝑒 ∈ (0,1) The conversion rate 

By using the following dimensionless variables and parameters, the dimensionless form of system 

(1) can be written the form of system (3). 

  
𝑟1𝑇 = 𝑡,

𝑎11

𝑟1
𝑋 = 𝑥,

𝑎12

𝑟1
𝑌 = 𝑦,

𝑎23

𝑟1
𝑍 = 𝑧

𝑤1 =
𝑟2

𝑟1
, 𝑤2 =

𝑎22

𝑎12
, 𝑤3 =

𝑟3

𝑟1
, 𝑤4 =

𝑎33

𝑎23
, 𝑤5 = 𝑒

𝑎23

𝑎12

                    (2) 

  

𝑑𝑥

𝑑𝑡
= 𝑥 − 𝑥2 − 𝑥𝑦 = 𝑥(1 − 𝑥 − 𝑦) = 𝑥𝑓1(𝑥, 𝑦, 𝑧),            

𝑑𝑦

𝑑𝑡
= 𝑤1𝑦 − 𝑤2𝑦

2 − 𝑦𝑧 = 𝑦(𝑤1 − 𝑤2𝑦 − 𝑧) = 𝑦𝑓2(𝑥, 𝑦, 𝑧),    

𝑑𝑧

𝑑𝑡
= 𝑤3𝑧 − 𝑤4𝑧

2 + 𝑤5𝑦𝑧 = 𝑧(𝑤3 − 𝑤4𝑧 + 𝑤5𝑦) = 𝑧𝑓3(𝑥, 𝑦, 𝑧),

            (3) 

where 𝑥(0) ≥ 0, 𝑦(0) ≥ 0, 𝑧(0) ≥ 0.  

The interaction functions 𝑓𝑖(𝑥, 𝑦, 𝑧)  for 𝑖 = 1,2,3  are continuous and have continuous partial 

derivatives, so system (3) has a unique solution following the existence and uniqueness theorem 

for the solution of the system of ordinary differential equations. Furthermore, the subsequent 

theorems established the fundamental characteristics of the system's (3) solution. 

Theorem 1. System (3) with any positive initial values is positively invariant for all 𝑡 ≥ 0. 

Proof. System (3)'s form suggests that it is a Kolmogorov system, with growth rates 𝑓𝑖(𝑥, 𝑦, 𝑧) 
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for 𝑖 = 1,2,3, being functions that are continuously differentiable. As a result, we may use the 

positive conditions (𝑥(0), 𝑦(0), 𝑧(0)) to solve (3) and get: 

𝑥(𝑡) = 𝑥(0) exp [∫ 𝑓1(𝑥(𝑠), 𝑦(𝑠), 𝑧(𝑠)) 𝑑𝑠
1

0
] = 𝑥(0) exp [∫ (1 − 𝑥(𝑠) − 𝑦(𝑠)) 𝑑𝑠

1

0
] > 0. 

𝑦(𝑡) = 𝑦(0) exp [∫ 𝑓2(𝑥(𝑠), 𝑦(𝑠), 𝑧(𝑠)) 𝑑𝑠
1

0
]                     

= 𝑦(0) exp [∫ (𝑤1 − 𝑤2𝑦(𝑠) − 𝑧(𝑠))𝑑𝑠
1

0
] > 0

. 

𝑧(𝑡) = 𝑧(0) exp [∫ 𝑓3(𝑥(𝑠), 𝑦(𝑠), 𝑧(𝑠)) 𝑑𝑠
1

0
]                           

= 𝑧(0) exp [∫ (𝑤3 − 𝑤4𝑧(𝑠) + 𝑤5𝑦(𝑠))𝑑𝑠
1

0
] > 0

. 

Because of the aforementioned equations and the definition of the exponential function, any 

solution that starts with positive initial circumstances (𝑥(0), 𝑦(0), 𝑧(0)) stays there indefinitely. 

Hence the proof is finished. 

Theorem 2. All solutions of system (3) are uniformly bounded 

Proof. From the first equation of system (3), it is observed that  

𝑑𝑥

𝑑𝑡
< 𝑥(1 − 𝑥).  

Then according to the lemma (2.2) by Chen [41], it is obtained that  

𝑥(𝑡) < [1 + (
1

𝑥(0)
− 1) 𝑒−𝑡]

−1

. 

Therefore for 𝑡 → ∞, it is obtained 𝑥(𝑡) < 1, also the following inequality is obtained from the 

second equation of system (3). 

𝑑𝑦

𝑑𝑡
< 𝑤1𝑦 − 𝑤2𝑦

2  

Similarly, it is obtained 𝑦(𝑡) <
𝑤1

𝑤2
 𝑎𝑠 𝑡 → ∞ . Then by using the resulting upper bound of the 

variable 𝑦 in the third equation gives: 

𝑑𝑧

𝑑𝑡
< 𝑧 (𝑤3 +

𝑤5𝑤1

𝑤2
) − 𝑤4𝑧

2. 

Again, as 𝑡 → ∞, the following result is obtained: 

𝑧(𝑡) < (
𝑤2𝑤3+𝑤1𝑤5

𝑤2𝑤4
). 

Accordingly, all solutions of system (3) with positive initial values are uniformly bounded in the 
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region: 

Ω = {𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡): 0 ≤ 𝑥(𝑡) < 1,0 ≤ 𝑦(𝑡) <
𝑤1

𝑤2
, 0 ≤ 𝑧(𝑡) <

𝑤2𝑤3+𝑤1𝑤5

𝑤2𝑤4
}. 

 

3. STABILITY ANALYSIS 

The equilibria and stability analysis of system (3) are examined in the following. The system (3) 

is shown to have the following equilibrium points: 

The vanishing equilibrium point 𝑞1 = (0,0,0)  along with the first, second, and third axial 

equilibrium points, which are denoted by 𝑞2 = (1,0,0) , 𝑞3 = (0,
𝑤1

𝑤2
, 0) , and 𝑞4 = (0,0,

𝑤3

𝑤4
) 

respectively, always exist. 

The parasite-free equilibrium point 𝑞5 = (�̅�, �̅�, 0), where �̅� =
𝑤2−𝑤1

𝑤2
, �̅� =

𝑤1

𝑤2
 exists if and only 

if  

𝑤1 < 𝑤2.                               (4) 

While the enemy-host-free equilibrium point 𝑞6 = (�̂�, 0, �̂�), where �̂� = 1, �̂� =
𝑤3

𝑤4
 always exists. 

Moreover, the amensal-free equilibrium point 𝑞7 = (0, �̆�, �̆�) , where �̆� =
𝑤1𝑤4−𝑤3

𝑤2𝑤4+𝑤5
, �̆� =

𝑤2𝑤3+𝑤1𝑤5

𝑤2𝑤4+𝑤5
 exists if and only if 

𝑤3 < 𝑤1𝑤4.                               (5) 

Finally, the co-existing equilibrium point 𝑞8 = (𝑥
∗, 𝑦∗, 𝑧∗), where 𝑥∗ =

𝑤3−𝑤1𝑤4+𝑤2𝑤4+𝑤5

𝑤2𝑤4+𝑤5
, 𝑦∗ =

𝑤1𝑤4−𝑤3

𝑤2𝑤4+𝑤5
 , and 𝑧∗ =

𝑤2𝑤3+𝑤1𝑤5

𝑤2𝑤4+𝑤5
  exists uniquely in the int. ℝ+

3 = {(𝑥, 𝑦, 𝑧): 𝑥 > 0, 𝑦 > 0, 𝑧 > 0} 

if and only if  

  𝑤3 < 𝑤1𝑤4 < 𝑤3 + 𝑤2𝑤4 + 𝑤5.                          (6) 

Now, to study the local stability analysis of system (3), the variational matrix at the point (𝑥, 𝑦, 𝑧) 

can be determined as: 

𝒱(𝑥, 𝑦, 𝑧) = (
1 − 2𝑥 − 𝑦 −𝑥 0

0 −𝑧 + 𝑤1 − 2𝑦𝑤2 −𝑦
0 𝑧𝑤5 𝑤3 − 2𝑧𝑤4 + 𝑦𝑤5

)             (7) 

Hence, the variational matrix at the vanishing point becomes 
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𝒱(𝑞1) = (
1 0 0
0 𝑤1 0
0 0 𝑤3

).   

The eigenvalues of 𝒱(𝑞1)  can be written as ℓ11 = 1 , ℓ21 = 𝑤1 , and ℓ31 = 𝑤3 , which are 

positive eigenvalues. Hence 𝑞1 is an unstable point. 

The variational matrix at the first axial equilibrium point becomes 

𝒱(𝑞2) = (
−1 −1 0
0 𝑤1 0
0 0 𝑤3

). 

The eigenvalues of 𝒱(𝑞2)  can be written by ℓ12 = −1 , ℓ22 = 𝑤1 , and ℓ32 = 𝑤3 , which are 

complain both positive and negative values. Hence, 𝑞2 is a saddle point with an unstable manifold 

in the 𝑦𝑧 −plane. 

 The variational matrix at the second axial equilibrium point becomes 

𝒱(𝑞3) =

(

 
 

1 −
𝑤1

𝑤2
0 0

0 −𝑤1 −
𝑤1

𝑤2

0 0 𝑤3 +
𝑤1𝑤5

𝑤2 )

 
 

. 

The eigenvalues of 𝒱(𝑞3)  are given by ℓ13 = 1 −
𝑤1

𝑤2
 , ℓ23 = −𝑤1 , and ℓ33 = 𝑤3 +

𝑤1𝑤5

𝑤2
 . 

Therefore, the point 𝑞3  is a saddle with a stable manifold 𝑥𝑦 − plane when 𝑤2 < 𝑤1  and a 

saddle point with a stable manifold in the 𝑦 −direction when 𝑤1 < 𝑤2. 

The variational matrix at the third axial equilibrium point becomes 

𝒱(𝑞4) = (

1 0 0

0 𝑤1 −
𝑤3

𝑤4
0

0
𝑤3𝑤5

𝑤4
−𝑤3

). 

Clearly, 𝒱(𝑞4)  have the following eigenvalues ℓ14 = 1 , ℓ24 = 𝑤1 −
𝑤3

𝑤4
 , and ℓ34 = −𝑤3 . 

Therefore, the point 𝑞4 is a saddle with a stable manifold 𝑦𝑧 −plane when 𝑤1𝑤4 < 𝑤3 and a 

saddle point with a stable manifold in the 𝑧 −direction when 𝑤3 < 𝑤1𝑤4. 

The variational matrix at the parasite-free equilibrium point becomes 
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𝒱(𝑞5) =

(

 
 

𝑤1−𝑤2

𝑤2

𝑤1−𝑤2

𝑤2
0

0 −𝑤1 −
𝑤1

𝑤2

0 0 𝑤3 +
𝑤1𝑤5

𝑤2 )

 
 

. 

Hence, the eigenvalues of 𝒱(𝑞5) are given by ℓ15 =
𝑤1−𝑤2

𝑤2
< 0 under the existence condition 

of 𝑞5, with ℓ25 = −𝑤1, and ℓ35 = 𝑤3 +
𝑤1𝑤5

𝑤2
. Therefore, the point 𝑞5 is a saddle point with a 

stable manifold 𝑥𝑦 −plane. 

The variational matrix at the enemy-host-free equilibrium point becomes 

𝒱(𝑞6) = (

−1 −1 0

0 𝑤1 −
𝑤3

𝑤4
0

0
𝑤3𝑤5

𝑤4
−𝑤3

).                          (8) 

So, the eigenvalues of 𝒱(𝑞6) can be written by:  

  ℓ16 = −1, ℓ26 = 𝑤1 −
𝑤3

𝑤4
, ℓ36 = −𝑤3.                       (9) 

Accordingly, the point 𝑞6 is a stable node, a saddle point with a stable manifold 𝑥𝑧 −plane, and 

a non-hyperbolic point if and only if the following conditions are met respectively. 

𝑤1𝑤4 < 𝑤3.                            (10) 

  𝑤3 < 𝑤1𝑤4.                           (11) 

  𝑤1𝑤4 = 𝑤3.                           (12) 

The variational matrix at the amensal-free equilibrium point becomes 

𝒱(𝑞7) =

(

 
 

1 +
𝑤3−𝑤1𝑤4

𝑤2𝑤4+𝑤5
0 0

0
𝑤2(𝑤3−𝑤1𝑤4)

𝑤2𝑤4+𝑤5

𝑤3−𝑤1𝑤4

𝑤2𝑤4+𝑤5

0
𝑤5(𝑤2𝑤3+𝑤1𝑤5)

𝑤2𝑤4+𝑤5
−
𝑤4(𝑤2𝑤3+𝑤1𝑤5)

𝑤2𝑤4+𝑤5 )

 
 

.                  (13) 

Therefore, the characteristic equation of 𝒱(𝑞7) can be written in the form 

  [(1 +
𝑤3−𝑤1𝑤4

𝑤2𝑤4+𝑤5
) − ℓ] [ℓ2 − 𝑇1ℓ + 𝐷1] = 0,                     (14) 

where  

𝑇1 =
𝑤2(𝑤3−𝑤1𝑤4)

𝑤2𝑤4+𝑤5
−
𝑤4(𝑤2𝑤3+𝑤1𝑤5)

𝑤2𝑤4+𝑤5
. 
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𝐷1 = (
𝑤2(𝑤3−𝑤1𝑤4)

𝑤2𝑤4+𝑤5
) (−

𝑤4(𝑤2𝑤3+𝑤1𝑤5)

𝑤2𝑤4+𝑤5
) − (

𝑤3−𝑤1𝑤4

𝑤2𝑤4+𝑤5
) (

𝑤5(𝑤2𝑤3+𝑤1𝑤5)

𝑤2𝑤4+𝑤5
). 

Clearly, under the existence condition of the point 𝑞7, it is obtained that 𝑇1 < 0 and 𝐷1 > 0. 

Hence the quadratic term in equation (14) has two eigenvalues with negative real parts due to the 

Routh-Hurwitz criterion. However, the first eigenvalue is given by ℓ17 = 1 +
𝑤3−𝑤1𝑤4

𝑤2𝑤4+𝑤5
. Therefore, 

the amensal-free equilibrium point is a sink, a saddle with a stable manifold given by 𝑦𝑧 −plane, 

and a non-hyperbolic if and only if the following conditions are met respectively. 

  𝑤2𝑤4 + 𝑤5 + 𝑤3 < 𝑤1𝑤4.                              (15) 

  𝑤1𝑤4 < 𝑤2𝑤4 + 𝑤5 + 𝑤3.                            (16) 

  𝑤2𝑤4 + 𝑤5 + 𝑤3 = 𝑤1𝑤4.                         (17) 

Note that, by comparing the existence condition (6) of the co-existing equilibrium point with 

condition (16), it is concluded that the co-existing equilibrium point exists only when the first-

species free equilibrium point is unstable. 

The variational matrix at the co-existing equilibrium point becomes 

𝒱(𝑞8) =

(

 
 

−𝑤3+𝑤1𝑤4−𝑤2𝑤4−𝑤5

𝑤2𝑤4+𝑤5

−𝑤3+𝑤1𝑤4−𝑤2𝑤4−𝑤5

𝑤2𝑤4+𝑤5
0

0
𝑤2(𝑤3−𝑤1𝑤4)

𝑤2𝑤4+𝑤5

𝑤3−𝑤1𝑤4

𝑤2𝑤4+𝑤5

0
𝑤5(𝑤2𝑤3+𝑤1𝑤5)

𝑤2𝑤4+𝑤5
−
𝑤4(𝑤2𝑤3+𝑤1𝑤5)

𝑤2𝑤4+𝑤5 )

 
 

.         (18) 

Similarly, the characteristic equation of 𝒱(𝑞8) can be written in the form 

  [(
−𝑤3+𝑤1𝑤4−𝑤2𝑤4−𝑤5

𝑤2𝑤4+𝑤5
) − ℓ] [ℓ2 − 𝑇2ℓ + 𝐷2] = 0,                    (19) 

where  

𝑇2 =
𝑤2(𝑤3−𝑤1𝑤4)

𝑤2𝑤4+𝑤5
−
𝑤4(𝑤2𝑤3+𝑤1𝑤5)

𝑤2𝑤4+𝑤5
≡ (𝑇1). 

𝐷2 = (
𝑤2(𝑤3−𝑤1𝑤4)

𝑤2𝑤4+𝑤5
) (−

𝑤4(𝑤2𝑤3+𝑤1𝑤5)

𝑤2𝑤4+𝑤5
) − (

𝑤3−𝑤1𝑤4

𝑤2𝑤4+𝑤5
) (

𝑤5(𝑤2𝑤3+𝑤1𝑤5)

𝑤2𝑤4+𝑤5
) ≡ (𝐷1). 

Clearly, under the left side of the existence condition of the point 𝑞8, it is obtained that 𝑇2 < 0 

and 𝐷2 > 0. Hence the quadratic term in equation (19) has two eigenvalues with negative real 

parts due to the Routh-Hurwitz criterion. However, the first eigenvalue is given by ℓ18 =

−𝑤3+𝑤1𝑤4−𝑤2𝑤4−𝑤5

𝑤2𝑤4+𝑤5
, which is negative due to the right side of the existence condition of the point 
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𝑞8. Hence, the co-existing equilibrium point is a sink whenever it exists. 

 

4. PERSISTENCE 

    It is an essential subject in dynamic systems due to its importance in proving that the species 

in the system (3) are permanent. It has a biological meaning and the other is mathematical. 

Biologically it means the continued existence of all species of system over a long time, as it 

guarantees their non-extinction. Mathematically it means that the paths of the system (3) are 

eventually moved away from the border planes. This becomes clear when lim
𝑡→∞

inf 𝑥𝑖  (𝑡) > 0  for 

each species of 𝑥𝑖(𝑡). Therefore, the first step is to verify the existence of periodic dynamics in 

the boundary planes. 

Observed that the system (3) has three subsystems, the first is located in the positive quadrant 

of 𝑥𝑦 − plane, while the second sub-system is located in the positive quadrant of 𝑥𝑧 −plane, and 

the third sub-system is located in the positive quadrant of 𝑦𝑧 −plane. 

These sub-systems can be written as follows: 

  

𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝑥 − 𝑦) = 𝑀1(𝑥, 𝑦)

𝑑𝑦

𝑑𝑡
= 𝑦(𝑤1 − 𝑤2𝑦) = 𝑀2(𝑥, 𝑦)

                         (20) 

and 

  

𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝑥) = 𝑀3(𝑥, 𝑧)   

𝑑𝑧

𝑑𝑡
= 𝑧(𝑤3 − 𝑤4𝑧) = 𝑀4(𝑥, 𝑧)

                       (21) 

Finally 

  

𝑑𝑦

𝑑𝑡
= 𝑦(𝑤1 − 𝑤2𝑦 − 𝑧) = 𝑀5(𝑦, 𝑧)  

𝑑𝑧

𝑑𝑡
= 𝑧(𝑤3 − 𝑤4𝑧 + 𝑤5𝑦) = 𝑀6(𝑦, 𝑧)

                       (22) 

Define the Dulac functions 𝐿1(𝑥, 𝑦) =  
1

𝑥𝑦
, 𝐿2(𝑥, 𝑧) =  

1

𝑥𝑧
, and 𝐿3(𝑦, 𝑧) =  

1

𝑦𝑧
, which satisfy that 

𝐿𝑖 > 0 ,  for 𝑖 = 1,2,3  and 𝐶1  functions in the int.ℝ+
2   of the 𝑥𝑦 − , 𝑥𝑧 − , and 𝑦𝑧 −  planes  

respectively. Then direct computation gives that  

𝐷1(𝑥, 𝑦) =
𝜕(𝐿1𝑀1)

𝜕𝑥
+
𝜕(𝐿1𝑀2)

𝜕𝑦
= −

1

𝑦
−
𝑤2

𝑥
 < 0.  
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𝐷2(𝑥, 𝑧) =
𝜕(𝐿2𝑀3)

𝜕𝑥
+
𝜕(𝐿2𝑀4)

𝜕𝑧
= −

1

𝑦
−
𝑤4

𝑥
 < 0. 

𝐷3(𝑦, 𝑧) =
𝜕(𝐿3𝑀5)

𝜕𝑦
+
𝜕(𝐿3𝑀6)

𝜕𝑧
= −

𝑤2
𝑧
−
𝑤4
𝑦
 < 0 

The expressions 𝐷1(𝑥, 𝑦), 𝐷2(𝑥, 𝑧), and 𝐷3(𝑦, 𝑧) are not equal to zero and their sign does not 

change in the interior of the respective positive quadrant. Hence, there are no periodic dynamics 

of these subsystems, and their unique positive equilibrium points that are given by 𝑞𝑥𝑦 = (�̅�, �̅�),  

𝑞𝑥𝑧 = (�̂�, �̂�), and 𝑞𝑦𝑧 = (�̆�, �̆�) are globally stable.    

Now the persistence requirements of the system (3) are established in the following theorem. 

Theorem 3. System (3) is uniformly persist if and only if the following conditions are met: 

 𝑤1𝑤4 > 𝑤3                                 (23) 

   1 − 
𝑤1 𝑤4−𝑤3

𝑤2 𝑤4+ 𝑤5
 > 0                                                    (24) 

Proof. Define the function 𝜑(𝑥, 𝑦, 𝑧) = 𝑥𝑝1𝑦𝑝2𝑧𝑝3 , where 𝑝𝑖  represent the positive constants 

∀𝑖 = 1,2,3. Hence, 𝜑(𝑥, 𝑦, 𝑧) > 0 for all (𝑥, 𝑦, 𝑧) ∈ int. ℝ+
3  and 𝜑(𝑥, 𝑦, 𝑧) → 0 if any one of 

their variables approaches zero.  

Consequently, it is obtained that 

    𝜌(𝑥, 𝑦, 𝑧) =  
𝜑′(𝑥,𝑦,𝑧)

𝜑(𝑥,𝑦,𝑧)
= 𝑝1 𝑓1 + 𝑝2 𝑓2 + 𝑝3𝑓3 

Thus      

 𝜌(𝑥, 𝑦, 𝑧) = 𝑝1 (1 − 𝑥 − 𝑦) + 𝑝2(𝑤1 − 𝑤2𝑦 − 𝑧) + 𝑝3(𝑤3 − 𝑤4𝑧 − 𝑤5𝑦) 

Now, if 𝜌(𝑞) > 0 for every attractor point 𝑞 on the border planes and axes with a suitable choice 

of constants  𝑝𝑖 >  0 , ∀𝑖 = 1,2,3  holds, then due to the average Lyapunov function [42] the 

system is a uniform persist. Therefore, 

  𝜌 (𝑞1) = 𝑝1 + 𝑤1𝑝2 + 𝑝3𝑤3  > 0, for a suitable choice of 𝑝𝑖  > 0, 𝑖 = 1,2,3. 

  𝜌 (𝑞2) =  𝑝2𝑤1 + 𝑝3𝑤3  > 0, for all 𝑝𝑖  > 0, 𝑖 = 1,2,3.    

  𝜌 (𝑞3) = 𝑝1 (1 −
𝑤1

𝑤2
) + 𝑝3 (𝑤3 + 𝑤5

𝑤1

𝑤2
) > 0, for a suitable choice of 𝑝𝑖  > 0, 𝑖 = 1,3. 

  𝜌(𝑞4) = 𝑝1 + 𝑝2 (𝑤1 −
𝑤3

𝑤4
) > 0, for all 𝑝𝑖  > 0, 𝑖 = 1,2.   .  

  𝜌(𝑞5) =  𝑝3𝑤3 + 𝑝3𝑤5�̅� > 0, for all 𝑝3  > 0. 
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  𝜌(𝑞6) = 𝑝2𝑤1 − 𝑝2
𝑤3

𝑤4
> 0, for all 𝑝2  > 0 under the condition (23).  

𝜌(𝑞7) = 𝑝1 − 𝑝1
𝑤1𝑤4−𝑤3

𝑤2𝑤4+𝑤5
> 0, for all 𝑝1  > 0 under the condition (24). 

Then the system (3) is uniformly persistent. 

 

5. GLOBAL STABILITY 

In this part, the set of points corresponding to point 𝑞, which is known as the basin of attraction 

of point 𝑞 and denoted 𝐵(𝑞), is investigated. This set of points is where the solution of system 

(3) starts and eventually approaches the equilibrium points. When 𝐵(𝑞) covers the whole domain 

of the system, it is referred to as being globally stable. Lyapunov functions can be used to conduct 

such an investigation. The following theorems demonstrate that the primary objective of 

investigating global stability is to demonstrate that all pathways eventually gravitate toward the 

system's attractor. 

Theorem 4. Assume that condition (10) holds, then the enemy-host-free equilibrium point is 

globally asymptotically stable if the following condition is met. 

𝑤1 + �̂� < 𝑤5 �̂�                                                        (25) 

Proof. Consider the function 𝑅1 = (𝑥 − �̂� − �̂� ln
𝑥

�̂�
) + 𝑦 + (𝑧 − �̂� − �̂� ln

𝑧

�̂�
), which is a positive 

definite function on the set Γ1 = {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 > 0, 𝑦 ≥ 0, 𝑧 > 0} . The derivative of this 

function can be computed as 

𝑑𝑅1

𝑑𝑡
= (

𝑥−�̂�

𝑥
)
𝑑𝑥

𝑑𝑡
+
𝑑𝑦

𝑑𝑡
+ (

𝑧−�̂�

𝑧
)
𝑑𝑧

𝑑𝑡
. 

That gives after some algebraic steps 

𝑑𝑅1

𝑑𝑡
≤ −(𝑥 − �̂�)2 −𝑤4(𝑧 − �̂�)

2 − (𝑤5�̂� − 𝑤1 − �̂�)𝑦  

Therefore the function 
𝑑𝑅1

𝑑𝑡
  is negative definite under the condition (25) and then the enemy-

host-free equilibrium point is globally asymptotically stable. 

Theorem 5. Assume that condition (15) holds. Then the amensal-free equilibrium point is globally 

asymptotically stable. 
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Proof. Consider the function 𝑅2 = (𝑦 − �̌� − �̌� ln
𝑦

�̌�
) +

1

𝑤5
(𝑧 − �̌� − �̌� ln

𝑧

�̌�
) , which is a positive 

semi-definite function on the set Γ2 = {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 ≥ 0, 𝑦 > 0, 𝑧 > 0} . The derivative of 

this function can be computed as 

  
𝑑𝑅2

𝑑𝑡
= (

𝑦−�̌�

𝑦
)
𝑑𝑦

𝑑𝑡
+

1

𝑤5
(
𝑧−�̌�

𝑧
)
𝑑𝑧

𝑑𝑡
 

That gives after some algebraic steps 

  
𝑑𝑅2

𝑑𝑡
= −𝑤2(𝑦 − �̌�)

2 −
𝑤4

𝑤5
(𝑧 − �̌�)2 

It is clear that 
𝑑𝑅2

𝑑𝑡
  is negative semi-definite then 𝑞7  is a stable point since 

𝑑𝑅2

𝑑𝑡
=  0 at many 

points from which {𝑞7} is the only invariant set then by using LaSalle Invariance Principle 𝑞7 is 

attracting point. Hence, the amensal-free equilibrium point (𝑞7) is asymptotically stable. Now, 

because 𝑅2 is a radially unbounded function, the point 𝑞7 is globally asymptotically stable. 

Theorem 6. Assume that condition (6) holds. Then the co-existing equilibrium point is globally 

asymptotically stable if the following condition is met 

Proof. Consider the function  

𝑅3 = (𝑥 − 𝑥
∗ − 𝑥∗ ln

𝑥

𝑥∗
) + (𝑦 − 𝑦∗ − 𝑦∗ ln

𝑦

𝑦∗
) +

1

𝑤5
 (𝑧 − 𝑧∗ − 𝑧∗ ln

𝑧

𝑧∗
),  

which is a positive definite function on the set Γ3 = {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 > 0, 𝑦 > 0, 𝑧 > 0}. The 

derivative of this function can be computed as 

𝑑𝑅3

𝑑𝑡
= (

𝑥−𝑥∗

𝑥
)
𝑑𝑥

𝑑𝑡
+ (

𝑦−𝑦∗

𝑦
)
𝑑𝑦

𝑑𝑡
+

1

𝑤5
 (
𝑧−𝑧∗

𝑧
)
𝑑𝑧

𝑑𝑡
. 

That gives after some algebraic steps 

  
𝑑𝑅3

𝑑𝑡
= −(𝑥 − 𝑥∗)2 − (𝑥 − 𝑥∗)(𝑦 − 𝑦∗) − 𝑤2(𝑦 − 𝑦

∗)2 −
𝑤4

𝑤5
 (𝑧 − 𝑧∗)2. 

Since for any real numbers 𝑎 and 𝑏, the following is satisfy  𝑎𝑏 <
𝑎2

2
+
𝑏2

2
. Then it is obtained 

that 

  
𝑑𝑅3

𝑑𝑡
< −

3

2
(𝑥 − 𝑥∗)2 − (

1

2
+ 𝑤2) (𝑦 − 𝑦

∗)2 −
𝑤4

𝑤5
 (𝑧 − 𝑧∗)2 

The function 
𝑑𝑅3

𝑑𝑡
   is negative definite, and then the co-existing equilibrium point is globally 

asymptotically stable. 
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6. BIFURCATION ANALYSIS 

By performing a thorough analysis of the function of the system's parameters that achieves the 

non-hyperbolic property of equilibrium points, which is regarded as a necessary but not sufficient 

condition to prove bifurcation, bifurcation is a significant technique that describes the qualitative 

change in the behavior of dynamic systems. By applying the Sotomayor theorem [43], it is possible 

to observe when a little variation in these parameters results in a notable change in the behavior of 

the system's solution. 

Rewrite system (3) in the vector form as follows:  

𝑑𝐗

𝑑𝑡
= 𝐅(𝐗), 𝐗 = (𝑥, 𝑦, 𝑧)Τ and 𝐅 = (𝑥𝑓1, 𝑦𝑓2, 𝑧𝑓3)

Τ, 

where 𝑓𝑖; 𝑖 = 1,2,3 are given in system (3). Then the second derivative of 𝐅 concerning 𝐗 can 

be written as: 

𝐷2𝐅(𝐗, 𝜃)(𝐕, 𝐕)(

−2𝑣1
2 − 2𝑣1𝑣2

−2𝑤2𝑣2
2 − 2𝑣2𝑣3

2𝑤5𝑣2𝑣3 − 2𝑤4𝑣3
2

)                      (26) 

here 𝐕 = (

𝑣1
𝑣2
𝑣3
)  is anon zero general vector and 𝜃 is a parameter.. 

Theorem 7. Assume that condition (12) holds, then the system (3) undergoes a transcritical 

bifurcation near the enemy-host-free equilibrium point. 

Proof of Theorem 7. For the value 𝑤1 = 𝑤1
∗ =

𝑤3

𝑤4
 , the variational matrix (8) becomes 

𝐽1 = 𝒱(𝑞6, 𝑤1
∗) = (

−1 −1 0
0 0 0

0
𝑤3𝑤5
𝑤4

−𝑤3
) 

So, 𝐽1  has the following eigenvalues ℓ16
∗ = −1 , ℓ26

∗ = 0 , ℓ36
∗ = −𝑤3 . Then the necessary 

condition but not sufficient for bifurcation is met. Let 𝐕𝟏 = (

𝑣11
𝑣12
𝑣13
)  and 𝚿𝟏 = (

𝜓11
𝜓12
𝜓13

)  be the 

eigenvectors related with ℓ26
∗ = 0 of 𝐽1 and 𝐽1

𝑇 respectively. Direct computation gives that: 
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   𝐕𝟏 = (

−1
1
𝑤5

𝑤4

)  and 𝚿𝟏 = (
0
1
0
) 

Now it is acquired that 

𝜕𝐅

𝜕𝑤1
= 𝐅𝑤1 = (

0
𝑦
0
)  then   𝚿𝟏

Τ 𝐅𝑤1(𝑞6, 𝑤1
∗) = 0  

𝐷𝐅𝑤1(𝑞6 , 𝑤1
∗)𝐕𝟏 = (

0
1
0
)  then  𝚿𝟏

Τ[𝐷𝐅𝑤1(𝑞6, 𝑤1
∗)V1] = 1 ≠ 0,  

where D𝐅𝑤1 represents the derivative of 𝐅𝑤1 concerning 𝐗. Moreover, using equation (27) gives 

𝚿𝟏
Τ[𝐷2𝐅(𝑞6, 𝑤1

∗)(𝐕𝟏, 𝐕𝟏)] = −2(𝑤2 +
𝑤5

𝑤4
) ≠ 0                         

According to the Sotomayor theorem, system (3) near the point 𝑞6 when  𝑤1 = 𝑤1
∗ undergoes 

a transcritical bifurcation. 

Theorem 8. Assume that condition (17) holds, and then although the amensal-free equilibrium 

point is non-hyperbolic, the system (3) does not undergo any type of local bifurcation near the first 

species-free equilibrium point. 

Proof. For the value 𝑤3 = 𝑤3
∗ = 𝑤1𝑤4 − 𝑤2𝑤4 − 𝑤5, the variational matrix (13) becomes 

𝐽2 = 𝒱(𝑞7, 𝑤3
∗) = (

0 0 0
0 −𝑤2 −1
0 𝑤5(𝑤1 − 𝑤2) −𝑤4(𝑤1 − 𝑤2)

) 

So, 𝐽2  has the following eigenvalues ℓ17
∗ = 0 , ℓ27

∗ =
𝑇

2
+
√𝑇2−4𝐷

2
 , ℓ37

∗ =
𝑇

2
−
√𝑇2−4𝐷

2
 , where 

𝑇 = −𝑤2 − 𝑤4(𝑤1 − 𝑤2) < 0 , and 𝐷 = (𝑤2𝑤4 + 𝑤5)(𝑤1 −𝑤2) > 0  due to condition (17). 

Then there is zero eigenvalue with two negative real parts eigenvalues. 

 Let 𝐕𝟐 = (

𝑣21
𝑣22
𝑣23
)  and 𝚿𝟐 = (

𝜓21
𝜓22
𝜓23

)  be the eigenvectors related with ℓ17
∗ = 0  of 𝐽2  and 𝐽2

𝑇 

respectively. Direct computation gives that: 

  𝐕𝟐 = (
1
0
0
)  and 𝚿𝟐 = (

1
0
0
) 

Now it is acquired that 
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𝜕𝐅

𝜕𝑤3
= 𝐅𝑤3 = (

0
0
𝑧
), then   𝚿𝟐

Τ 𝐅𝑤3(𝑞7, 𝑤3
∗) = 0  

𝐷𝐅𝑤3(𝑞7 , 𝑤3
∗)𝐕𝟐 = (

0
0
0
), then  𝚿𝟐

Τ[𝐷𝐅𝑤3(𝑞7 , 𝑤3
∗)𝐕𝟐] = 0.  

Therefore, the second condition of local bifurcation fails to satisfy, and hence the system (1) does 

not undergo any type of local bifurcation near 𝑞7. Hence the proof is complete. 

Finally, since the co-existing equilibrium point 𝑞8 = (𝑥
∗, 𝑦∗, 𝑧∗), is a sink whenever it exists It 

turns into a structural stable, meaning that little perturbations do not affect the trajectories' 

qualitative behavior. Thus, there isn't a bifurcation close to it. 

 

7. NUMERICAL SIMULATION 

This section uses the fictitious set of parameters listed below to solve system (3) numerically. 

Our goals are to verify our theoretical findings and comprehend the impact of every parameter 

value. 

 𝑤1 = 2,𝑤2 = 1,𝑤3 = 0.3, 𝑤4 = 0.4, 𝑤5 = 0.2                (27) 

It is observed that under set (2) the solution of system (3) approaches asymptotically to 𝑞8 =

(0.16,0.83,1.16) starting from different sets of initial points as shown in Figure 1. 

 

Figure 1. The trajectories of system (3) start from different initial points using the set (27). (a) 

Global asymptotic stable co-existing equilibrium point. (b) Trajectories of all populations as a 

function of time.  

As Figure 2 explains, system (3) is global asymptotic stable at 𝑞6, 𝑞8, and 𝑞7, respectively, 
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for the parameter 𝑤1  in the ranges (0,0.75] , (0.75,2.25) , and 𝑤1 ≥ 2.25  with the rest of 

parameters as given by the set (27). However, it approaches 𝑞7 and 𝑞8 respectively, when the 

parameter 𝑤2 falls in the ranges (0,0.75], and 𝑤1 > 0.75, see Figure 3 at the selected values 

with the other parameters as (27).  

 

 

Figure 2. The trajectories of system (3) start from different initial points using the set (27). (a) 

Global asymptotic stable at the enemy-host-free equilibrium point 𝑞6 = (1,0,0.75) when 𝑤1 =

0.7. (b) Time series when 𝑤1 = 0.7. (c) Global asymptotic stable at the co-existing equilibrium 
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point 𝑞8 = (0.33,0.66,1.08)  when 𝑤1 = 1.75 . (d) Time series when 𝑤1 = 1.75 . (e) Global 

asymptotic stable at the amensal-free equilibrium point 𝑞7 = (0,1.03,1.26) when 𝑤1 = 2.3. (f) 

Time series when 𝑤1 = 2.3. 

 

 

Figure 3. The trajectories of system (3) start from different initial points using the set (27). (a) 

Global asymptotic stable at the amensal-free equilibrium point 𝑞7 = (0,1.04,1.27) when 𝑤2 =

0.7. (b) Time series when 𝑤2 = 0.7. (c) Global asymptotic stable at the co-existing equilibrium 

point 𝑞8 = (0.37,0.62,1.06) when 𝑤2 = 1.5. (d) Time series when 𝑤2 = 1.5.  

 

For the parameter 𝑤3  in the ranges (0,0.2] , (0.2,0.8) , and 𝑤3 ≥ 0.8 , system (3) is globally 

asymptotically stable at 𝑞7, 𝑞8, and 𝑞6, respectively, as Figure 4 illustrates. The other parameters 

are provided by the set (27). For the parameter 𝑤4, however, system (3) approaches 𝑞6, 𝑞8, and 

𝑞7, respectively, in the ranges (0,0.15], (0.15,0.5), and 𝑤4 ≥ 0.5; for some suggested values, 

refer to Figure 5, and the remaining parameters are provided by the set (27). 
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Figure 4. The trajectories of system (3) start from different initial points using the set (27). (a) 

Global asymptotic stable at the amensal-free equilibrium point 𝑞7 = (0,1.01,0.98) when 𝑤3 =

0.19 .  (b) Time series when 𝑤3 = 0.19 . (c) Global asymptotic stable at the co-existing 

equilibrium point 𝑞8 = (0.49,0.49,1.5)  when 𝑤3 = 0.5 . (d) Time series when 𝑤3 = 0.5 . (e) 

Global asymptotic stable at the enemy-host-free equilibrium point 𝑞6 = (1,0,2.25) when 𝑤3 =

0.9. (f) Time series when 𝑤3 = 0.9. 
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Figure 5. The trajectories of system (3) start from different initial points using the set (27). (a) 

Global asymptotic stable at the enemy-host-free equilibrium point 𝑞6 = (1,0,3) when 𝑤4 = 0.1. 

(b) Time series when 𝑤4 = 0.1. (c) Global asymptotic stable at the co-existing equilibrium point 

𝑞8 = (0.4,0.59,1.4)  when 𝑤4 = 0.3 . (d) Time series when 𝑤4 = 0.3 . (e) Global asymptotic 

stable at the amensal-free equilibrium point 𝑞7 = (0,1.06,0.93)  when 𝑤4 = 0.55 . (f) Time 

series when 𝑤4 = 0.55. 

Finally, it is obtained that, when the parameter 𝑤5 falls in the ranges (0,0.1], and 𝑤5 > 0.1 
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keeping the rest of parameters in the set (27) the system (3) approaches to 𝑞7, and 𝑞8 respectively, 

see Figure 6 for the selected values. 

 

 

 

Figure 6. The trajectories of system (3) start from different initial points using the set (27). (a) 

Global asymptotic stable at the amensal-free equilibrium point 𝑞7 = (0,1.02,0.97) when 𝑤5 =

0.09. (b) Time series when 𝑤5 = 0.09. (c) Global asymptotic stable at the co-existing equilibrium 

point 𝑞8 = (0.28,0.71,1.28) when 𝑤5 = 0.3. (d) Time series when 𝑤5 = 0.3.  

 

8. CONCLUSION 

This work formulates and studies a mathematical model that describes the amensalism and 

parasitism dynamics of three species. Every qualitative attribute is examined, such as existence, 

uniqueness, positively invariant, and boundedness. Three axial equilibrium points, or saddle points, 

and the unstable vanishing equilibrium point make up the system (3). There may also be three 

additional planar equilibrium points, with or without conditions: parasite-free, amensal-free, and 
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enemy-host-free. It is noticed that the enemy-host-free point is either stable when the amensal-free 

point does not exist or is a saddle point when the amensal-free point does. Similarly, the parasite-

free point is a saddle point. Lastly, anytime the co-existing equilibrium point occurs, it is stable. 

The prerequisites for persistence are established. An appropriate Lyapunov function is used to 

analyze global stability. It is evidence of a transcritical bifurcation of the system near the enemy-

host-free point. Lastly, the numerical analysis of the system (3) with the set of parameters (27) 

demonstrates that the system is stabilized at the co-existing point by the enemy-host species' 

intraspecific competition rate and the host biomass's rate of conversion to parasite biomass. Up to 

a critical number, both the intraspecific competition rate of parasites and the intrinsic growth rate 

of the enemy-host species contribute to survival. The system then reaches an amensal-free 

equilibrium point, meaning that system (3) no longer exhibits persistence. The intrinsic growth 

rate of the parasite species has a survival role up to a vital value. After that, the system settles at 

an enemy-host-free equilibrium point, which means the system (3) loses its persistence too. 
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