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Abstract: In March 2020, the World Health Organization announced the occurrence of a pandemic caused by SARS-

CoV-2, a coronavirus that results in COVID-19. This paper presents a compartmental model called SEQIRD used to 

analyse the transmission of the disease. SEQIRD divides the population into susceptible, exposed, quarantined, 

infected, recovered, and deceased categories. 

The model possesses two equilibrium states: endemic and disease-free. We assessed stability around these equilibria 

using the Next Generation Matrix to determine the basic reproduction number, ℜ0. Local stability was verified through 

the Routh-Hurwitz criteria. Lyapunov's method supported global stability analysis. The disease-free equilibrium is 

asymptotically stable if ℜ0 is under one. Conversely, if ℜ0 exceeds one, the endemic equilibrium is asymptotically 

stable. Three controls were applied: mask usage, vaccination, and medical treatment. Optimal control theory and the 

Pontryagin Maximum Principle were employed to minimize COVID-19 spread. Numerical simulations based on 
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Central Java; Indonesia data validated the model. The reproduction number was calculated as 2.91, signifying endemic 

stability. Use of masks, vaccination, and treatment noticeably reduced exposure and infection in the simulations, 

demonstrating the effectiveness of these strategies for controlling spread. 

Keywords: COVID-19; stability analysis; reproduction number; optimal control; pontryagin maximum principle. 

2020 AMS Subject Classification: 35Q92, 35Q93, 92D25, 92D30. 

 

1. INTRODUCTION 

In December 2019, the novel coronavirus disease 2019 (COVID-19) was first discovered in 

Wuhan, China, and subsequently recognized as a global pandemic by the World Health 

Organisation (WHO) [1-4]. Research shows that coronaviruses can persist longest on plastic at 72 

hours, 48 hours on stainless steel, 24 hours on paper or cardboard, and just 4 hours on copper [5]. 

COVID-19 infection can present asymptomatically, with mild symptoms, or cause severe 

pneumonia [6]. Mathematical modelling transforms real-world problems and assumptions into 

mathematical frameworks to develop a deeper understanding [7,8]. It represents population 

changes over time through equations, making it a valuable instrument for analysing infectious 

disease transmission and mitigation [9-11]. 

Researchers in medicine, epidemiology, and science are pursuing vaccinations, treatments, and 

preventative measures powerful enough to significantly curb COVID-19 transmission. Multiple 

studies have conceived various illness situations, including the use of mathematical models to 

characterize COVID-19 propagation; A variety of frameworks are available for inspecting 

coronavirus dissemination, such as basic SEIR patterns to more sophisticated designs, SEIR 

models incorporate the vulnerable population's vaccination rate as a parameter [12-18]. 

Furthermore, research that expanded the SEIR model by incorporating deceased variables (D) or 

subpopulations of deceased individuals [19,20]. A compartmental model was developed by 

supplementing SEIR with a quarantined group to investigate spread during isolation periods; Local 

stability was assessed using Routh-Hurwitz criteria while global stability employed Lyapunov’s 

method. Finally, numerical simulations supported the model dynamics to visualize COVID-19 
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propagation trends [21-28]. 

Table 1 provides a summary of the specifications for each developed model and the suggested 

model in this paper. 

Table 1. The compartments model of the Covid-19 spread 

Source 
Compartment 

S V E A Q I H R D 

Carcione, et al [12] √  √   √  √  

Parsamanesh, et al [13] √  √   √  √  

Annas, et al [14] √  √   √  √  

Kamrujjaman, et al [15] √  √   √  √  

Loli Piccolomini & Zama [16] √  √   √  √  

Wintachai & Prathom [17] √  √   √  √  

Santoro, et al [18] √  √   √  √  

Gebremeskel, et al [19] √     √  √ √ 

Yankeelov & Veneziani [20] √  √   √  √ √ 

Oke et al [21] √  √   √ √ √ √ 

Peter, et al [22] √  √  √ √  √  

Shen, et al [23] √ √ √ √  √  √  

Mandal, et al [24] √  √  √ √  √  

Arif, et al [25] √  √  √ √  √  

Avinash, et al [26] √  √  √ √  √  

Keno, et al [27] √  √   √ √ √  

Shah & Chaudhary [28] √  √   √ √ √ √ 

This paper √  √  √ √  √ √ 

 

From this model, basic reproductive numbers will be sought to determine the rate of spread of 

COVID-19, analysis of endemic and non-endemic equilibrium points, stability analysis, and 
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numerical simulations will be carried out to support the model so as to obtain a graphic of the 

dynamics of the spread of COVID-19. Then in the model, an optimal strategy was carried out to 

minimize the spread of COVID-19 by using three control variables, namely self-prevention in the 

form of wearing masks for risked and exposed individuals, vaccination for risked individuals, and 

treatment for infected individuals. 

 

2. MODEL FORMULATION AND DESCRIPTION 

Due to the ongoing pandemic situation, we expanded upon the susceptible-exposed-infected-

recovered-deceased (SEIRD) model by incorporating an additional compartment for quarantined 

individuals. The total population was segmented into six subgroups - susceptible (S), exposed (E), 

infected/infectious (I), recovered (R), deceased (D), and quarantined (Q). This refinement formed 

a mathematical formulation depicting the dissemination of COVID-19 that integrates a variable 

representing quarantine efforts. 

 

 

 

 

 

 

 

 

Fig 1. The Proposed SEQIRD Model Diagram 

 

The complete population 𝑁(𝑡)  at time t is represented as the sum of individuals in the 

𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝐷(𝑡), 𝑎𝑛𝑑 𝑄(𝑡)  categories. The dynamics governing each segment were 

utilized to develop the mathematical model portraying the spread of COVID-19. Modifications in 

the susceptible 𝑆 group occur through recruitment at a rate 𝛬, reduction via interactions with 
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infectious individuals at a 𝛽 rate, and natural death at a 𝜇 rate. 

The exposed 𝐸 compartment increases due to contact between 𝑆 and infecteds at a 𝛽 rate. It 

decreases at rates (1 − 𝜌) , 𝜌 , and 𝜇 , representing transfer to quarantined 𝑄 , progression to 

infected I status, and natural death respectively. 

The quarantined 𝑄 group rises through (1 − 𝜌) transfers and declines from recovery at a (1 −

𝛾) rate, transmission to 𝐼 at 𝛿 rate, and natural death 𝜇. 

Infected 𝐼 rise from 𝐸 at 𝜌 rate and 𝑄 at 𝛿 rate. It falls through (1 − 𝛿) recovery to 𝑅, 𝛿 

mortality to 𝐷, COVID-related 𝜇 death, and natural 𝜇 death. 

Recovered 𝑅  increases from 𝑄  at (1 − 𝛾)  rate and 𝐼  at (1 − 𝛿)  rate, then decreases via 

natural 𝜇 death. 

Deceased 𝐷 grows from infected 𝐼 transfers at a 𝛿 rate. According to the above description, the 

differential equations of the COVID-19 spread by following set of equations: 

𝑑𝑆

𝑑𝑡
= Λ − 𝛽𝑆𝐼 − 𝜇𝑆, 

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − 𝜌𝐸 − (1 − 𝜌)𝐸 − 𝜇𝐸, 

𝑑𝑄

𝑑𝑡
= (1 − 𝜌)𝐸 − 𝛾𝑄 − (1 − 𝛾)𝑄 − 𝜇𝑄,            (1) 

𝑑𝐼

𝑑𝑡
= 𝜌𝐸 + 𝛾𝑄 − 𝛿𝐼 − (1 − 𝛿)𝐼 − 𝜇𝐼, 

𝑑𝑅

𝑑𝑡
= (1 − 𝛾)𝑄 + (1 − 𝛿)𝐼 − 𝜇𝑅, 

𝑑𝐷

𝑑𝑡
= 𝛿𝐼  

With non-negative initial values 𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0, 𝑄(0) = 𝑄0, 𝐼(0) = 𝐼0, 𝑅(0) = 𝑅0,

𝐷(0) = 𝐷0,       

 

3. BASIC REPRODUCTION NUMBERS 

Basic reproduction number (ℜ0)  is the spread rate of disease in a population measure. To 

determine the basic reproductive number ℜ0 , the analysis proceeded by developing the Next 

Generation Matrix (NGM) framework. This involved constructing the Jacobian matrix to 



6 

KARTONO, WIDOWATI, S.M. RAHMASARI, R.H. S. UTOMO, E. TRIYANA 

characterize the linearized dynamical behaviour in the vicinity of the non-endemic equilibrium. 

 

The NGM method then facilitates extracting ℜ0 as the dominant spectral radius (i.e., principal 

eigenvalue) of the Jacobian matrix. Calculating this Jacobian allows scrutiny of how perturbations 

away from the infection-free steady-state will propagate, embodied via the next-generation 

operators. [29-31]. 

Let  
𝑑𝑥

𝑑𝑡
= ℱ(𝑥) − 𝒱(𝑥), 𝑥 = [𝐸, 𝑄, 𝐼]𝑇 

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − 𝜌𝐸 − (1 − 𝜌)𝐸 − 𝜇𝐸 = 𝛽𝑆𝐼 − (1 + 𝜇)𝐸 

𝑑𝑄

𝑑𝑡
= (1 − 𝜌)𝐸 − 𝛾𝑄 − (1 − 𝛾)𝑄 − 𝜇𝑄 

𝑑𝐼

𝑑𝑡
= 𝜌𝐸 + 𝛾𝑄 − 𝛿𝐼 − (1 − 𝛿)𝐼 − 𝜇𝐼 = 𝜌𝐸 + 𝛾𝑄 − (1 + 𝜇)𝐼 

ℱ(𝑥) = [
ℱ1
ℱ2
ℱ3

] = [
𝛽𝑆𝐼
0
0
] ,     𝒱(𝑥) = [

𝒱1
𝒱2
𝒱3

] = [

(1 + 𝜇)𝐸

−(1 − 𝜌)𝐸 + (𝜇 + 1)𝑄

−𝜌𝐸 − 𝛾𝑄 + (1 + 𝜇)𝐼
] 

Suppose F and V are each Jacobian matrix of ℱ(𝑥) and 𝒱(𝑥) calculated at the point of non 

endemic equilibrium ℇ0 = (𝑆, 𝐸, 𝑄, 𝐼) = (
Λ

𝜇
, 0, 0, 0) . Looking for basic reproductive numbers 

(ℜ0) NGM determines the largest eigenvalue value of the matrix 𝐹(ℇ0)𝑉
−1 

𝑁𝐺𝑀 = 𝐹(ℇ0)𝑉
−1  

𝑁𝐺𝑀 = 𝐹(ℰ0)𝑉
−1 = [

−
𝛽Λ(𝛾𝜌−𝜇𝜌−𝛾−𝜌)

𝜇(1+𝜇)3
𝛽Λ𝛾

𝜇(1+𝜇)2
𝛽Λ

𝜇(1+𝜇)

0 0 0
0 0 0

]  

ℜ0 =
𝛽Λ(𝜇𝜌+𝛾+𝜌−𝛾𝜌)

𝜇(1+𝜇)3
  

 

4. STABILITY ANALYSIS OF THE DEVELOPED MODEL 

In this instance, we investigate the model analysis (1). In order to do the analysis of the COVID-

19 system described in (1), we must first examine a few fundamental model properties. Analysis 

was conducted to ascertain the Attitude around the equilibrium points. Non-endemic equilibrium 

occurs when no individuals in a population are infected with Covid-19, as denoted by: 
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𝑑𝑆

𝑑𝑡
=
𝑑𝐸

𝑑𝑡
=
𝑑𝑄

𝑑𝑡
=
𝑑𝐼

𝑑𝑡
=
𝑑𝑅

𝑑𝑡
= 0 

The solution of the equation has two equilibrium points, namely the disease-free or non-endemic 

equilibrium point ℰ0 = (𝑆0, 𝐸0, 𝑄0, 𝐼0, 𝑅0) = (
Λ

𝜇
, 0, 0, 0, 0) and the endemic equilibrium point 

ℰ∗ = (𝑆∗, 𝐸∗, 𝑄∗, 𝐼∗, 𝑅∗)with 

𝑆∗ =
(1 + 𝜇)3

𝛽(𝜇𝜌 + 𝜌 + 𝛾 − 𝜌𝛾)
 

𝐸∗ =
𝛽Λ(𝜇𝜌 + 𝜌 + 𝛾 − 𝜌𝛾) − 𝜇(1 + 𝜇)3

𝛽(𝜇𝜌 + 𝜌 + 𝛾 − 𝜌𝛾)(1 + 𝜇)
 

𝑄∗ =
(𝛽Λ(𝜇𝜌 + 𝜌 + 𝛾 − 𝜌𝛾) − 𝜇(1 + 𝜇)3)(1 − 𝜌)

𝛽(𝜇𝜌 + 𝜌 + 𝛾 − 𝜌𝛾)(1 + 𝜇)2
 

𝐼∗ =
𝛽Λ(𝜇𝜌 + 𝜌 + 𝛾 − 𝜌𝛾) − 𝜇(1 + 𝜇)3

𝛽(1 + 𝜇)3
 

𝑅∗ =
(𝛽Λ(𝜇𝜌+𝜌+𝛾−𝜌𝛾)−𝜇(1+𝜇)3)(𝛿𝜌𝛾+𝜇𝜌𝛾+𝜇+1−(𝛿𝜌𝜇+𝛿𝜌+𝛿𝛾+𝜇𝛾))

𝛽(𝜇𝜌+𝜌+𝛾−𝜌𝛾)𝜇(1+𝜇)3
  

Next, the dynamics of the system near the equilibrium points were subsequently investigated. The 

local stability around the disease-free and endemic steady state of the model was theoretically 

established in Theorem 1 and Theorem 2, respectively. 

Theorem 1 Let  ℜ0 =
𝛽Λ(𝜇𝜌+𝛾+𝜌−𝛾𝜌)

𝜇(𝜇3+3𝜇2+3𝜇+1)
 .  The disease-free equilibrium will be locally 

asymptotically stable if  ℜ0 < 1 and unstable if  ℜ0 > 1. 

Proof . Please see appendix A for proof 

Theorem 2. The endemic equilibrium will be locally asymptotically stable if  ℜ0 > 1. 

Proof . Please refer to Appendix B for the mathematical proof. 

Theorems 3 and 4 of the study formally presented the global stability analysis of the non-endemic 

and endemic equilibrium points, respectively, through application of the Lyapunov stability 

method. 

Theorem 3 in case ℜ0 < 1, the non-endemic equilibrium point will be globally asymptotically 

stable at ℒ. 

Proof. Please see appendix B for proof 

Theorem 4 in case ℜ0 > 1, the endemic equilibrium point will be globally asymptotically stable. 

Proof. 
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By using a Lyapunov function which is often used epidemic models, it takes the following  

∑𝑎𝑖

𝑛

𝑖=1

(𝑥𝑖 − 𝑥𝑖
∗ − 𝑥1

∗ ln
𝑥𝑖
𝑥𝑖
∗) 

Define the function 𝑉: ℒ ∈ ℝ+
6 →  ℝ  and 𝑥𝑒 ∈ ℒ  the equilibrium point system of nonlinear 

differential equation with ℒ = {(𝑆, 𝐸, 𝑄, 𝐼, 𝑅, 𝐷) | 𝑆, 𝐸, 𝑄, 𝐼, 𝑅, 𝐷 ∈ ℝ}, cause 𝑅,𝐷 are not involved 

in other equation, so the equation can be reduced to four variables. Therefore, it is obtained  

𝑉(𝑡) = 𝑆 − 𝑆∗ − 𝑆∗ ln
𝑆

𝑆∗
+ 𝑏0 (𝐸 − 𝐸

∗ − 𝐸∗ ln
𝐸

𝐸∗
) + 𝑏1 (𝑄 − 𝑄

∗ − 𝑄∗ ln
𝑄

𝑄∗
)

+ 𝑏2 (𝐼 − 𝐼
∗ − 𝐼∗ ln

𝐼

𝐼∗
) 

where 𝑏0, 𝑏1, 𝑏2 are positive. 

Then the time derivative of 𝑉(𝑡) is given by 

𝑑𝑉

𝑑𝑡
=
𝜕𝑉

𝜕𝑆

𝑑𝑆

𝑑𝑡
+
𝜕𝑉

𝜕𝐸

𝑑𝐸

𝑑𝑡
+
𝜕𝑉

𝜕𝑄

𝑑𝑄

𝑑𝑡
+
𝜕𝑉

𝜕𝐼

𝑑𝐼

𝑑𝑡
 

       = (1 −
𝑆∗

𝑆
)
𝑑𝑆

𝑑𝑡
+ 𝑏0 (1 −

𝐸∗

𝐸
)
𝑑𝐸

𝑑𝑡
+ 𝑏1 (1 −

𝑄∗

𝑄
)
𝑑𝑄

𝑑𝑡
+ 𝑏2 (1 −

𝐼∗

𝐼
)
𝑑𝐼

𝑑𝑡
   

       = (1 −
𝑆∗

𝑆
) (Λ − 𝛽𝑆𝐼 − 𝜇𝑆) + 𝑏0 (1 −

𝐸∗

𝐸
) (𝛽𝑆𝐼 − 𝜌𝐸 − (1 − 𝜌)𝐸 − 𝜇𝐸) 

   +𝑏1 (1 −
𝑄∗

𝑄
) ((1 − 𝜌)𝐸 − 𝛾𝑄 − (1 − 𝛾)𝑄 − 𝜇𝑄) 

+𝑏2 (1 −
𝐼∗

𝐼
) (𝜌𝐸 + 𝛾𝑄 − 𝛿𝐼 − (1 − 𝛿)𝐼 − 𝜇𝐼) 

= (1 −
𝑆∗

𝑆
) (𝛽𝑆∗𝐼∗ + 𝜇𝑆∗ − 𝛽𝑆𝐼 − 𝜇𝑆) + 𝑏0 (1 −

𝐸∗

𝐸
) (𝛽𝑆𝐼 − (1 + 𝜇)𝐸) 

+𝑏1 (1 −
𝑄∗

𝑄
) ((1 − 𝜌)𝐸 − (1 + 𝜇)𝑄) 

+𝑏2 (1 −
𝐼∗

𝐼
) (𝜌𝐸 + 𝛾𝑄 − (1 + 𝜇)𝐼) 

= (1 −
𝑆∗

𝑆
) (𝛽𝑆∗𝐼∗ + 𝜇𝑆∗ − 𝛽𝑆𝐼 − 𝜇𝑆) + 𝑏0 (1 −

𝐸∗

𝐸
) (𝛽𝑆𝐼 − (1 + 𝜇)𝐸) 

+𝑏1 (1 −
𝑄∗

𝑄
) ((1 − 𝜌)𝐸 − (1 + 𝜇)𝑄) 

+𝑏2 (1 −
𝐼∗

𝐼
) (𝜌𝐸 + 𝛾𝑄 − (1 + 𝜇)𝐼) 

= −
(𝑆 − 𝑆∗)2

𝑆
(𝜇) + (1 −

𝑆∗

𝑆
) (𝛽𝑆∗𝐼∗) − 𝛽𝑆𝐼 + 𝛽𝑆∗𝐼 
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+𝑏0(𝛽𝑆𝐼) − 𝑏0
𝐸∗

𝐸
(𝛽𝑆𝐼) − 𝑏0𝐴1𝐸 + 𝑏0(𝛽𝑆

∗𝐼∗) 

+𝑏1(1 − 𝜌)𝐸 − 𝑏1
𝑄∗

𝑄
(1 − 𝜌)𝐸 − 𝑏1𝐴1𝑄 + 𝑏1(1 − 𝜌)𝐸

∗ 

+𝑏2𝜌𝐸 − 𝑏2
𝐼∗

𝐼
 𝜌𝐸 + 𝑏2𝛾𝑄 − 𝑏2

𝐼∗

𝐼
𝛾𝑄 − 𝑏2𝐴1𝐼 + 𝑏2(𝜌𝐸

∗ + 𝛾𝑄∗) 

Suppose (
𝑆∗

𝑆
,
𝐸∗

𝐸
,
𝑄∗

𝑄
,
𝐼∗

𝐼
) = (𝑥, 𝑦, 𝑧, 𝑤) and let 

= −
(𝑆 − 𝑆∗)2

𝑆
(𝜇) + (1 − 𝑥)(𝛽𝑆∗𝐼∗) + (−𝛽 + 𝑏0𝛽) 𝑆𝐼 + (𝛽𝑆

∗ − 𝑏2𝐴1)𝐼 

+(−𝑏0𝐴1 + 𝑏1(1 − 𝜌) + 𝑏2𝜌) 𝐸 + (−𝑏1𝐴1 + 𝑏2𝛾) 𝑄 

+𝑏0(𝛽𝑆
∗𝐼∗) (1 −

1

𝑥

1

𝑤
 𝑦) + 𝑏1(1 − 𝜌)𝐸

∗ (1 −
1

𝑦
𝑧) 

+𝑏2(𝜌𝐸
∗) (1 −

1

𝑦
𝑤) + 𝑏2(𝛾𝑄

∗) (1 −
1

𝑧
𝑤) 

Next, to determine the value 𝑏0, 𝑏1, 𝑏2 as follows 

{

−𝛽 + 𝑏0𝛽 = 0

−𝑏0𝐴1 + 𝑏1(1 − 𝜌) + 𝑏2𝜌 = 0
−𝑏1𝐴1 + 𝑏2𝛾 = 0
𝛽𝑆∗ − 𝑏2𝐴1 = 0

  

By using some basic algebraic manipulation, we find 

𝑏0 = 1, 𝑏1 =
𝛽𝑆∗𝛾

(1 + 𝜇)2
, 𝑏2 =

𝛽𝑆∗

1 + 𝜇
 

Then, we get 

�̇�(𝑡) = −
(𝑆 − 𝑆∗)2

𝑆
(𝜇) + 𝑏0(𝛽𝑆

∗𝐼∗) (2 − 𝑥 −
𝑦

𝑥𝑤
+ 1 −

𝑧

𝑦
+ 1 −

𝑤

𝑧
)

+ 𝑏1(1 − 𝜌)𝐸
∗ (1 −

𝑧

𝑦
− 1 +

𝑧

𝑦
)  

   +𝑏2(𝜌𝐸
∗) (1 −

𝑤

𝑦
− 1 +

𝑧

𝑦
− 1 +

𝑤

𝑧
) + 𝑏2(𝛾𝑄

∗) (1 −
𝑤

𝑧
− 1 +

𝑤

𝑧
) 

�̇�(𝑡) = −
(𝑆 − 𝑆∗)2

𝑆
(𝜇) + 𝑏0(𝛽𝑆

∗𝐼∗) (4 − 𝑥 −
𝑦

𝑥𝑤
−
𝑧

𝑦
−
𝑤

𝑧
) + 𝑏2(𝜌𝐸

∗) (−1 −
𝑤

𝑦
+
𝑧

𝑦
+
𝑤

𝑧
) 

Then we use the arithmetic and geometric means inequalities where 

𝑥 +
𝑦

𝑥𝑤
+
𝑧

𝑦
+
𝑤

𝑧
≥ 4√𝑥 

𝑦

𝑥𝑤
 
𝑧

𝑦
 
𝑤

𝑧
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𝑥 +
𝑦

𝑥𝑤
+
𝑧

𝑦
+
𝑤

𝑧
≥ 4 

4 − 𝑥 −
𝑦

𝑥𝑤
−

𝑧

𝑦
−
𝑤

𝑧
≤ 0 and 

𝑤

𝑦
−
𝑧

𝑦
−
𝑤

𝑧
≥ (−1)√

𝑤

𝑦
 
𝑧

𝑦
 
𝑤

𝑧
 

𝑤

𝑦
−
𝑧

𝑦
−
𝑤

𝑧
≥ (−1) 

−1 −
𝑤

𝑦
+
𝑧

𝑦
+
𝑤

𝑧
≤ 0 

So that, 
𝑑𝐿

𝑑𝑡
≤ 0 where 

𝑑𝐿

𝑑𝑡
= 0 when 𝑥 = 1 dan 𝑧 =  𝑤 = 𝑦. 

As a Lyapunov function can be formulated, it is apparent that the endemic equilibrium point 

demonstrates global asymptotic stability when the basic reproduction number exceeds its threshold 

value ℜ0 > 1. ∎ 

 

5. FORMULATION OF OPTIMAL CONTROL STRATEGIES 

The developed SEQIRD model was given optimal control with three controls, namely control of 

using masks (𝑢1)  to minimize exposed individuals, control of vaccination (𝑢2)  to minimize 

infected individuals, and control of medical treatment (𝑢3) to minimize infected individuals and 

speed recovery.  

The optimal control problem seeks to minimize the exposed and infected individuals in the 

population, while also maintaining control costs at a minimum level. The objective function for 

the optimal control problem can be mathematically defined as 

𝐽(𝑢1, 𝑢2, 𝑢3) = ∫ [𝑁1𝐸(𝑡) + 𝑁2𝐼(𝑡) +
1

2
(𝑤1𝑢1

2(𝑡) + 𝑤2𝑢2
2(𝑡) + 𝑤3𝑢3

2(𝑡))] 𝑑𝑡
𝑇𝑓

0

         

with 

𝑁1 : relative weight of the exposed individuals 

𝑁2 : relative weight of infected individuals 

𝑤1 : relative weights related to the cost of using the mask 

𝑤2 : relative weights relating to the cost of vaccination 
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𝑤3 : relative weights relating to medical expenses 

𝑁1𝐸(𝑡) : function costs associated with the exposed individuals 

𝑁2𝐼(𝑡) : function costs associated with infected individuals 

𝑤1𝑢1
2(𝑡) : mask usage fee function 

𝑤2𝑢2
2(𝑡) : vaccination fee function 

𝑤3𝑢3
2(𝑡) : medical expenses function 

First component of 𝐽, namely ∫ [𝑁1𝐸(𝑡) + 𝑁2𝐼(𝑡)]𝑑𝑡
𝑇𝑓
0

 is the cost associated with the number of 

individuals in the field. These costs are not related to control variables, this term is related to 

economic costs. The second component is ∫ [
1

2
(𝑤1𝑢1

2(𝑡) + 𝑤2𝑢2
2(𝑡) + 𝑤3𝑢3

2(𝑡))] 𝑑𝑡
𝑇𝑓
0

 

represents the costs associated with implementing control to reduce the spread of COVID-19. 

Further, define constraint functions 

𝑑𝑆

𝑑𝑡
= Λ − 𝛽(1 − 𝑢1(𝑡))𝑆𝐼 − (𝜇 + 𝑢2(𝑡))𝑆 

𝑑𝐸

𝑑𝑡
= 𝛽(1 − 𝑢1(𝑡))𝑆𝐼 − 𝜌𝐸 − (1 − 𝜌)𝐸 − 𝜇𝐸 

𝑑𝑄

𝑑𝑡
= (1 − 𝜌)𝐸 − 𝛾𝑄 − (1 − 𝛾)𝑄 − 𝜇𝑄                   (2) 

𝑑𝐼

𝑑𝑡
= 𝜌𝐸 + 𝛾𝑄 − 𝛿𝐼 − ((1 − 𝛿) + 𝑢3(𝑡))𝐼 − 𝜇𝐼 

𝑑𝑅

𝑑𝑡
= (1 − 𝛾)𝑄 + ((1 − 𝛿) + 𝑢3)𝐼 − 𝜇𝑅 + 𝑢2(𝑡)𝑆 

𝑑𝐷

𝑑𝑡
= 𝛿𝐼 

With initial conditions 

𝑆(0) > 0, 𝐸(0) > 0, 𝑄(0) > 0, 𝐼(0) > 0, 𝑅(0) > 0, 𝐷(0) > 0 

To define the control function 𝑢1
∗, 𝑢2

∗ , 𝑢3
∗  apply 

𝐽(𝑢1
∗, 𝑢2

∗ , 𝑢3
∗) = min{𝐽(𝑢1, 𝑢2, 𝑢3)| 𝑢1, 𝑢2, 𝑢3 ∈ 𝑈} 

with 𝑈 ≔ {(𝑢1, 𝑢2, 𝑢3)|0 ≤ 𝑢𝑖(𝑡) ≤ 1, 𝑖 = 1, 2, 3, 𝑡 ∈ (0, 𝑇)} 

The optimal control objective functional can be expressed in the form of mathematical equations 

as follows:  

Constraint Function 
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(𝑃𝑐)

{
 
 
 
 

 
 
 
 Min  𝐽(𝑥, 𝑢) = ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡

𝑇𝑓

0
 

constrain

�̇�(𝑡) = 𝑓(𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢(𝑡), ∀𝑡 ∈ [0, 𝑇]

𝑢(𝑡) ∈ 𝑈(𝑡), ∀𝑡 ∈ [0, 𝑇]

𝑥(0) = 𝑥0

                                  

where 

𝑥(𝑡) =

[
 
 
 
 
 
𝑆(𝑡)

𝐸(𝑡)

𝑄(𝑡)

𝐼(𝑡)

𝑅(𝑡)
𝐷(𝑡)]

 
 
 
 
 

, 𝑓(𝑥(𝑡)) =

[
 
 
 
 
 
 

Λ − 𝛽𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆(𝑡)

𝛽𝑆(𝑡)𝐼(𝑡) − 𝜌𝐸(𝑡) − (1 − 𝜌)𝐸(𝑡) − 𝜇𝐸(𝑡)
(1 − 𝜌)𝐸(𝑡) − 𝛾𝑄(𝑡) − (1 − 𝛾)𝑄(𝑡) − 𝜇𝑄(𝑡)

𝜌𝐸(𝑡) + 𝛾𝑄(𝑡) − 𝛿𝐼(𝑡) − (1 − 𝛿)𝐼(𝑡) − 𝜇𝐼(𝑡)
(1 − 𝛾)𝑄(𝑡) + (1 − 𝛿)𝐼(𝑡) − 𝜇𝑅(𝑡)

𝛿𝐼(𝑡) ]
 
 
 
 
 
 

, 

 𝑔(𝑥(𝑡)) =

[
 
 
 
 
 
𝛽𝑆(𝑡)𝐼(𝑡) −𝑆(𝑡) 0
−𝛽𝑆(𝑡)𝐼(𝑡) 0 0

0
0
0

0
0
𝑆(𝑡)

0
−𝐼(𝑡)
𝐼(𝑡)

    0             0          0 ]
 
 
 
 
 

, 𝑢(𝑡) = [

𝑢1(𝑡)

𝑢2(𝑡)

𝑢3(𝑡)
]  

and the integrant of the Objective Functional is written as follows 

𝐿(𝑥, 𝑢) = 𝑁1𝐸(𝑡) + 𝑁2𝐼(𝑡) +
1

2
(𝑤1𝑢1

2(𝑡) + 𝑤2𝑢2
2(𝑡) + 𝑤3𝑢3

2(𝑡)) 

The first step to determining optimal control is to form a Hamiltonian function by applying 

Pontryagin Maximum Principle. Use of the Pontryagin Maximum Principle to determine the level 

of self-prevention in the form of using mask, vaccination, and treatment. 

The Hamiltonian function system can be determined by 

𝐻 = 𝑁1𝐸(𝑡) + 𝑁2𝐼(𝑡) +
1

2
(𝑤1𝑢1

2 + 𝑤2𝑢2
2 + 𝑤3𝑢3

2) + 𝜆1(Λ − 𝛽(1 − (𝑢1))𝑆𝐼 − 𝜇𝑆 − 𝑢2𝑆)

+ 𝜆2(𝛽(1 − (𝑢1))𝑆𝐼 − 𝜌𝐸 − (1 − 𝜌)𝐸 − 𝜇𝐸)

+ 𝜆3((1 − 𝜌)𝐸 − 𝛾𝑄 − (1 − 𝛾)𝑄 − 𝜇𝑄)

+ 𝜆4(𝜌𝐸 + 𝛾𝑄 − 𝛿𝐼 − (1 − 𝛿)𝐼 − 𝑢3𝐼 − 𝜇𝐼)

+ 𝜆5((1 − 𝛾)𝑄 + (1 − 𝛿)𝐼 + 𝑢3𝐼 + 𝑢2𝑆 − 𝜇𝑅) + 𝜆6(𝛿𝐼) 
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Theorem 5 Let *

1u  dan *

2u   be the optimal control system and 𝑆∗, 𝐸∗, 𝑄∗, 𝐼∗, 𝑅∗, 𝐷∗  are the 

corresponding state variables of the optimal control system (1) and (2) which minimizes 

𝐽(𝑢1, 𝑢2, 𝑢3). Then exists adjoint variable 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6 which satisfies the following system 

of equation: 

𝑑𝜆𝑖

𝑑𝑡
= −

𝜕𝐻

𝜕𝑗
 where 𝑖 = 1,2,3,4,5,6,    𝑗 = 𝑆, 𝐸, 𝑄, 𝐼, 𝑅, 𝐷  

with the transversal condition 𝜆1(𝑇𝑓) = 𝜆2(𝑇𝑓) = 𝜆3(𝑇𝑓) = 𝜆4(𝑇𝑓) = 𝜆5(𝑇𝑓) = 𝜆6(𝑇𝑓) = 0 

and the optimality condition 𝑢1
∗ , 𝑢2

∗ , 𝑢3
∗  are given by 

𝑢1
∗ = max {0,min (1,

1

𝑤1
(𝛽𝑆𝐼(𝜆2 − 𝜆1)))}  

𝑢2
∗ = max {0,min (1,

1

𝑤2
(𝑆(𝜆1 − 𝜆5)))}  

𝑢3
∗ = max {0,min (1,

1

𝑤3
(𝐼(𝜆4 − 𝜆5)))}    

Proof. 

Hamiltonian function is used to determine the adjoin (costate) variable so that the adjoining 

equation can be written as follows 

𝑑𝜆1
𝑑𝑡

= −
𝜕𝐻

𝜕𝑆
 

𝑑𝜆1
𝑑𝑡

= (𝜆1(𝛽(1 − 𝑢1)𝐼 + 𝜇 + 𝑢2) − 𝜆2(𝛽(1 − 𝑢1)𝐼) − 𝜆5(𝑢2)) 

𝑑𝜆2
𝑑𝑡

= −
𝜕𝐻

𝜕𝐸
 

𝑑𝜆2
𝑑𝑡

= −𝑁1 + 𝜆2(1 + 𝜇) − 𝜆3(1 − 𝜌) − 𝜆4(𝜌) 

𝑑𝜆3
𝑑𝑡

= −
𝜕𝐻

𝜕𝑄
 

𝑑𝜆3
𝑑𝑡

= 𝜆3(1 + 𝜇) − 𝜆4(𝛾) − 𝜆5(1 − 𝛾) 

𝑑𝜆4
𝑑𝑡

= −
𝜕𝐻

𝜕𝐼
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𝑑𝜆4
𝑑𝑡

= −𝑁2 + 𝛽𝑆(1 − 𝑢1)(𝜆1 − 𝜆2) + 𝜆4(1 + 𝜇 + 𝑢3) − 𝜆5((1 − 𝛿) + 𝑢3) − 𝜆6(𝛿) 

𝑑𝜆5
𝑑𝑡

= −
𝜕𝐻

𝜕𝑅
 

𝑑𝜆5
𝑑𝑡

= 𝜆5(𝜇) 

𝑑𝜆6
𝑑𝑡

= −
𝜕𝐻

𝜕𝐷
 

𝑑𝜆6
𝑑𝑡

= 0 

with transversality condition 𝜆𝑖(𝑇𝑓) = 0, 𝑖 = 1, 2, 3, 4, 5, 6 

The optimality conditions are given by  

𝜕𝐻

𝜕𝑢1
=
𝜕𝐻

𝜕𝑢2
=
𝜕𝐻

𝜕𝑢3
= 0 

The solution for 𝑢1
∗ , 𝑢2

∗ , 𝑢3
∗  depends on the constraint 

𝜕𝐻

𝜕𝑢1
= 0 

𝑤1𝑢1 + 𝛽𝑆𝐼(𝜆1 − 𝜆2) = 0 

𝑢1 =
1

𝑤1
(𝛽𝑆𝐼(𝜆2 − 𝜆1))  

𝜕𝐻

𝜕𝑢2
= 0 

𝑤2𝑢2 − 𝑆(𝜆1 − 𝜆5) = 0 

𝑢2 =
1

𝑤2
(𝑆(𝜆1 − 𝜆5))  

𝜕𝐻

𝜕𝑢3
= 0 

𝑤3𝑢3 − 𝐼(𝜆4 − 𝜆5) = 0 

𝑢3 =
1

𝑤3
(𝐼(𝜆4 − 𝜆5))  

So that, we obtained the optimal control 𝑢1
∗ , 𝑢2

∗ , 𝑢3
∗  yield 

𝑢1
∗(𝑡) = {   

0, if  𝑢1 ≤ 0
𝑢1, if  0 < 𝑢1 < 1
1, if  𝑢1 ≥ 1

 

           = max {0,min (1,
1

𝑤1
(𝛽𝑆𝐼(𝜆2 − 𝜆1)))}   
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𝑢2
∗(𝑡) = {

0, if u2 ≤ 0
   𝑢2, if 0 < u2 < 1

1, if u2 ≥ 1
 

            = max {0,min (1,
1

𝑤2
(𝑆(𝜆1 − 𝜆5)))}  

𝑢3
∗(𝑡) = {

0, if u3 ≤ 0
    𝑢3, if 0 < u3 < 1

1, if u3 ≥ 1
 

           = max {0,min (1,
1

𝑤3
(𝐼(𝜆4 − 𝜆5)))}   ∎ 

 

6. NUMERICAL RESULTS 

Computer simulations were conducted to gain insight into the spread of COVID-19 amongst a 

population by comparing pre and post control dynamics. The model of COVID-19 transmission 

was implemented using MATLAB software. Based on case data from Central Java, Indonesia 

accessible via the website https://corona.jatengprov.go.id/ from October 1st to December 31st, 

2021 along with a total susceptible population of 21,887,966 as per the Statistics of Central Java 

Province (https://jateng.bps.go.id/), the following inputs were utilized. By leveraging reported 

outbreak cases to derive parameter estimates for an epidemic model, it is possible to accurately 

characterize the illness progression and current state within a community. To obtain parameter 

values involved in the proposed model, a nonlinear least squares curve fitting approach was 

employed. The corresponding parameter estimates are displayed in Table 3. 
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Table 3. Parameter values of the SEQIRD model. 

Parameter Description Unit Value Reference 

Λ Recruitment rate Individual 

per day 

22825792

70 x 365
 = 893.377 

Estimated 

𝛽 The rate at which individuals are 

susceptible to becoming infected 

Per 

individual 

per day 

2.06 x 10-6 Estimated 

𝜌 The rate of exposed individuals who 

become infected 

 Per day 0.0358 Estimated 

1 − 𝜌 The rate at which individuals are exposed 

to being quarantined individuals 

Per day 0.9642 Estimated 

𝛾 The rate of individuals in quarantine 

becoming positive for infection 

Per day 0,0271 Estimated 

1 − 𝛾 Recovery rate of quarantined individuals Per day 0.9729 Estimated 

𝛿 Individuals infected with COVID-19 

Death rate 

Per day 0.076 Estimated 

1 − 𝛿 The recovery rate of the infected 

individual 

Per day 0.924 Estimated 

𝜇 Natural mortality rate Per day 1

70 x 365
 = 3.9 x 10-5 

Estimated 

The systems of equations under investigation were shown to possess an endemic equilibrium solution 

representing the long-term behaviour of the COVID-19 SEQIRD model when the infection is 

established in the population as represented below: 

(𝑆∗, 𝐸∗, 𝑄∗, 𝐼∗, 𝑅∗) = (
7839243,035;  586,5347346;  565,5146572; 

36,32196909;  14914830,75
) 

The eigenvalues obtained using Table 2. parameter values for the COVID-19 spread SEQIRD 

model of the characteristic equation are as follows 

(𝑥 + 0,000039) (𝑥4 + 𝑎1𝑥
3 + 𝑎2𝑥

2 + 𝑎3𝑥 + 𝑎4) = 0 

obtained eigenvalues 𝑥1 = −0,000039 , 𝑎1, 𝑎2, 𝑎3, 𝑎4 > 0, so the endemic equilibrium point of  

ℜ0 > 1 is locally stable, causing infected individuals to transmit the virus to another individual 

so that the disease remains in a population for a long time, with a ℜ0 = 2,912  this means that 

each infected individual can transmit to more than two other susceptible individuals. To 
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demonstrate this endemic simulation model, we will implement the initial values in the following 

manner: 𝑆(0) = 21.887.966;  𝐸(0) = 5.624;  𝑄(0) = 3.919; 𝐼(0) = 482.116; 𝑅(0) = 446.167; 𝐷(0) = 32.032 .  

A simulated graph of the spread of COVID-19 without control and with controls given to see as a 

whole. The first simulation graph shows the changes in susceptible populations given in Fig 1 as 

follows 

 

 

 

 

 

 

 

 

Fig 1. Simulation graph on susceptible 

populations (S) without control and with control. 
Fig 2. Simulation graph on exposed 

population (E) without control and with 

control. 

The individual population dynamics who are risked to being infected with COVID-19 in Fig 1 

shows the providing controls in the form of using mask and vaccination on risked individuals’ 

effect. The population of risked individuals experienced a decline in population after the provision 

of control over the use of masks and vaccinations. At the time of 𝑡 = 0  to 𝑡 = 20  days, the 

number of susceptible individual populations before and after being given control increased, but 

after being given control resulted in a smaller value than if without being given control and a 

decrease that occurred by 24.3%. 

The population dynamics of exposed individuals in Fig 2 show the providing control in the form 

of using mask on exposed individuals’ effect. The number of individuals exposed before being 

given control initially increased then decreased to day 8, while for individuals exposed at the time 

after being given control it decreased to day 5, then each moved constantly towards the equilibrium 

point. The number of individual populations exposed to the provision of controls in the form of 
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mask use decreased faster than without the provision of controls. The decline occurred by 96.74%. 

Furthermore, a simulation graph of changes in the quarantine population is given which can be 

seen in Fig 3 below: 

 

 

 

 

 

 

 

 

Fig 3. Simulation graph on quarantine 

population (Q) without control and with 

control. 

Fig 4. Simulation graph on infected 

populations (I) without control and with 

control. 

Fig 3 shows that the number of quarantine individuals at the time before and after being given 

control of each initially increased. Then it decreased until day 10 for quarantine individuals before 

being given control, while for quarantine individuals after being given control it decreased to day 

7, and moved constantly towards the equilibrium point. The population of quarantined individuals 

experienced a decrease in population after the granting of control. The number of quarantined 

individual populations after the granting of control decreased faster and resulted in smaller values. 

The decline occurred by 96%. 

The infected individual population dynamics in Fig 4 show the effect of providing control in the 

form of treatment on infected individuals. The infected individual’s population number at the time 

before and after being given treatment control each decreased from the beginning of 𝑡 = 0 to 

𝑡 = 20 days. Infected individuals before being given control decreased to day 5, while infected 

individuals after being given control decreased more rapidly until day 3. Then each of them 

constantly moves towards the equilibrium point. The number of individual populations infected 

with the provision of control in the form of treatment decreased faster than without the provision 



19 

REDUCE THE SPREAD OF COVID 19 

of control. The decline occurred by 95.89%.  

Furthermore, a simulation graph of changes in the recovered or recovered population can be shown 

below: 

 

 

 

 

 

 

 

Fig 5. Simulation graph on recovered 

populations (R) without control and with 

controls 

Fig 6. Simulation graph on the deceased 

population (D) without control and with 

control. 

 

Fig 5 shows that the individuals recovering number at the moment before and after being given 

control each initially increases and moves constantly towards the equilibrium point. The 

population of recovered individuals experienced an increase in population after the granting of 

control. The number of recovered individuals after the granting of control increases faster and 

results in greater value by 1049.38%. 

Furthermore, a simulation graph of changes in the deceased population can be seen in Fig 6 above 

The population dynamics of the deceased individuals in Fig 6 show that the number of deceased 

individuals at the time before and after being given control each increased and moved constantly 

towards the equilibrium point. The population of deceased individuals experienced a decrease in 

population after the granting of control. The number of deceased individual populations after the 

granting of control decreased more rapidly and resulted in smaller values. The decline occurred by 

26.78%. 

The next graph is an optimal form of self-prevention control in the form of the use of masks (𝑢1)  

when given to susceptible and exposed populations can be seen in the following Fig 7 below: 
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(a) 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

(c) 

Fig 7. Profile of optimal control variables 𝑢1, 𝑢2, 𝑢3 

 

The control value for the use of masks (𝑢1) in Fig 7 (a) is 0 ≤ 𝑢1 ≤ 1. The use of masks in 

susceptible and exposed individuals is carried out to the maximum and maintained on first day, 

then decreases from to 𝑡 = 5  and moves constantly towards zero. This means that the appeal for 

self-prevention in the form of the use of medical masks is getting less. The provision of controls 

that are not 100% maximum still has an impact on reducing the number of exposed and infected 

populations, increasing the number of recovered populations, and reducing the impact of exposure 

to the virus. The vaccination control value (𝑢2) in Fig 7 (b) is 0 ≤ 𝑢2 ≤ 1. 

The percentage of vaccination administration to susceptible individuals increases on second day 

which is from 22,77% to 24,3%, then the administration of the vaccine was reduced to 𝑡 = 6 

which is 0.11% and reached zero. This confirms the decrease in the number of vaccines. The 
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provision of controls that are not 100% maximum still has an impact on reducing the portion of 

exposed and infected populations, increasing the number of recovered populations, and reducing 

the impact of exposure to the virus.  

The treatment control value (𝑢3) in Fig 7 (c) is 0 ≤ 𝑢1 ≤ 1. The treatment given to infected 

individuals is carried out to a maximum and is maintained until third day, then decreases from 𝑡 =

3 𝑡𝑜 𝑡 = 8, which is 0.6% to zero. This means that the treatment given to infected individuals is 

decreasing. The provision of controls that are not 100% maximum still contribute to the reduction 

the exposed and infected populations portions, increasing the number of recovered populations, 

and reducing the impact of exposure to the virus. 

The simulation was demonstrated to determine the control effect of medical mask, vaccination, 

and medical treatment. To investigate the effects of masks (𝑢1), vaccination (𝑢2), and medical 

treatment (𝑢3) controls and their combination, all parameters remain constant, while 𝑢1, 𝑢2, 𝑢3 

vary depending on time.  

Several scenarios were tested with three controls; scenario one only uses a mask, without 

vaccination and medical treatment. Scenario two is only given the vaccine without using a mask 

and medical treatment; scenario three is only given medical treatment without masks and vaccines; 

The fourth scenario implemented all three controls. The simulation results are given in Figure 8. 

 

 

 

 

 

 

 

 

 

(a) (b) 
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In Fig. 8 (a) and 8 (b) the effectiveness of control on the number of exposed and infected 

individuals are given. It can be seen that the combination of the three controls (scenario-4) reduces 

the number of exposed and infected individuals more than scenarios-1,2,3. The initial number of 

exposed individuals was 5,624 people, until the 14th day, the number of individuals exposed for 

scenario-4 became 25 people; for scenario-2 it was 29 people, while for scenarios 1 and 3 there 

were more than 29 people. While the initial number of infected individuals was 482,116 people, 

until the 14th day, the number of individuals infected for scenario-4 became 54 people; for scenario-

2 it was 66 people, for scenarios-3 it was 848 people and scenarios-1 it was 7,203 people. In Fig. 

8 (c), it shown the effectiveness of control on the number of recovered individuals. It indicated 

that the scenario-4 can increase more individuals recovering compared to scenarios-1,2,3. For the 

initial number of recovered individuals was 446,167 people, until the 14th day, the number of 

individuals recovered for scenario-4 as many as 22,800,000 people; for scenario-2 it was 

22,730,000 people. As scenario-3 and 1 for the recovered individuals as many as 18,830,000 and 

12,740,000 people, respectively. The provision of masks, vaccinations and treatment are effective 

in the sense of providing maximum impact on reducing the amount of exposed and infected 

individual populations, and increasing the recovered individuals. 

 

 

  

 

 

 

 

 

(c) 

Fig 8. Comparison of Effectiveness Control. 
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7. CONCLUSION 

This research formulated a mathematical framework depicting the dissemination of the 

coronavirus grounded in optimal management principles. The proposed framework comprised a 

system of nonlinear differential equations involving six factors - susceptible individuals, exposed 

persons, infected cases, quarantined individuals, recovered patients, and coronavirus-caused 

deaths. Initially, the Routh-Hurwitz approach was used to explore the local stability of the disease-

free condition, determining the system to be locally asymptotically stable when ℜ0 < 1 . 

Additionally, the Lyapunov technique explored global stability, ascertaining the endemic 

equilibrium to be globally asymptotically stable when ℜ0 surpassed one. 

The numerical results showed the basic reproduction number to be 2.91, indicating the endemic 

equilibrium's asymptotic stability. This signifies each case transmitting to an average of 2.9 

susceptible, perpetuating spread. Three controls were thus proposed: masks, vaccination, and 

treatment. Scenarios evaluated their individual and combined impacts: using just masks; solely 

vaccination; strictly treatment; all three combined. A relationship emerged between control usage 

and reduced exposure/infection, demonstrating the tripartite approach most decreases cases and 

boosts recoveries. Hence, consistently applying masks, immunization and exposed/sick care 

provides the optimum strategy for curbing this disease. 
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APPENDIX 

Appendix A. Proof of Theorem 1 

Let ℇ0 = (𝑆0, 𝐸0, 𝑄0, 𝐼0, 𝑅0) = (
Λ

𝜇
, 0, 0, 0,0) by counting the determinant of   

|𝐽(ℇ0) − 𝑥𝐼| = 0  

𝐽(ℇ0): the Jacobian matrix 𝑥  

We obtain, the characteristic of Polynomial equations as follows: 

(𝑥 + 𝜇)2(𝑎0𝑥
3 + 𝑎1𝑥

2 + 𝑎2𝑥 + 𝑎3) = 0 

where, 

𝑎1 = (3𝜇 + 3) 

𝑎2 =
3𝜇(𝜇+1)2−𝛽Λ𝜌

𝜇
  

𝑎3 =
𝛽𝛾Λ𝜌 − 𝛽Λ𝜇𝜌 + 𝜇4 − 𝛽𝛾Λ − 𝛽Λ𝜌 + 3𝜇3 + 3𝜇2 + 𝜇

𝜇
 

Based on Routh Hurwitz criteria, the characteristic equation has a negative root or a negative real 

part if 𝑎1, 𝑎2, 𝑎3 > 0  and 𝑎1𝑎2 − 𝑎3 > 0  . A little algebraic manipulation of Routh Hurwitz 

criteria gives us 𝑎1 > 0 and 𝑎3 > 0 criteria is sufficed to establish locally asymptotically stable 

equilibrium if ℜ0 < 1.  

𝑎3 =
𝛽𝛾Λ𝜌 − 𝛽Λ𝜇𝜌 + 𝜇4 − 𝛽𝛾Λ − 𝛽Λ𝜌 + 3𝜇3 + 3𝜇2 + 𝜇

𝜇
> 0 

Because 𝜇 > 0, so that, 

     𝛽𝛾Λ𝜌 − 𝛽Λ𝜇𝜌 + 𝜇4 − 𝛽𝛾Λ − 𝛽Λ𝜌 + 3𝜇3 + 3𝜇2 + 𝜇 > 0 

      ⟺ 𝛽Λ(𝛾𝜌 − 𝜇𝜌 − 𝛾 − 𝜌) + 𝜇(𝜇3 + 3𝜇2 + 3𝜇 + 1) > 0 

      ⟺ −𝛽Λ(𝛾𝜌 − 𝜇𝜌 − 𝛾 − 𝜌) < 𝜇(𝜇3 + 3𝜇2 + 3𝜇 + 1) 

      ⟺
−𝛽Λ(𝛾𝜌 − 𝜇𝜌 − 𝛾 − 𝜌)

𝜇(𝜇3 + 3𝜇2 + 3𝜇 + 1)
< 1 

      ⟺  
𝛽Λ(−𝛾𝜌 + 𝜇𝜌 + 𝛾 + 𝜌)

𝜇(𝜇3 + 3𝜇2 + 3𝜇 + 1)
< 1 

                           ℜ0 < 1 

So that, non-endemic equilibrium point will be asymptotically stable if ℜ0 < 1. 

For 𝑎2 > 0 and 𝑎1𝑎2 − 𝑎3 > 0 criteria, the complete algebraic representation can be written as 

𝑎2 =
3𝜇(𝜇 + 1)2 − 𝛽Λ𝜌

𝜇
> 0 
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      = 3𝜇(𝜇 + 1)2 − 𝛽Λ𝜌 > 0 

So that, the condition for 𝑎2 > 0 is fulfilled if 𝛽Λ𝜌 < 3𝜇(𝜇 + 1)2 

𝑎1𝑎2 − 𝑎3 =
(8 + ℜ0)𝜇(𝜇 + 1)

3 − 3𝛽Λ𝜌(𝜇 + 1)

𝜇
> 0 

                    = (8 + ℜ0)𝜇(𝜇 + 1)
3 − 3𝛽Λ𝜌(𝜇 + 1) > 0 

So that, the condition for 𝑎1𝑎2 − 𝑎3 > 0 is fulfilled if 3𝛽Λ𝜌(𝜇 + 1) < (8 + ℜ0)𝜇(𝜇 + 1)
3. ∎ 

Appendix B. Proof of Theorem 2 

Let ℇ∗ = (𝑆∗, 𝐸∗, 𝑄∗, 𝐼∗, 𝑅∗) by counting 

|𝐽(ℇ∗) − 𝑋𝐼| = 0 

The characteristic equations of the Polynomial-shaped Jacobian matrix are as follows: 

(𝑥 + 𝜇)(𝑎0𝑥
4 + 𝑎1𝑥

3 + 𝑎2𝑥
2 + 𝑎3𝑥 + 𝑎4) = 0 

where 

𝑎1 = 𝛽𝐼∗ + 4𝜇 + 3 

𝑎2 = 3𝜇𝛽𝐼
∗ − 𝜌𝛽𝑆∗ + 3𝛽𝐼∗ + 6𝜇2 + 9𝜇 + 3 

𝑎3 = 3𝜇
2𝛽𝐼∗ + 𝛾𝜌𝛽𝑆∗ − 2𝜇𝜌𝛽𝑆∗ + 6𝜇𝛽𝐼∗ − 𝛾𝛽𝑆∗ − 𝜌𝛽𝑆∗ +4𝜇3 + 3𝛽𝐼∗ + 9𝜇2 + 6𝜇 + 1 

𝑎4 = 𝜇
3𝛽𝐼∗ + 𝜇𝛾𝜌𝛽𝑆∗ − 𝜇2𝜌𝛽𝑆∗ + 3𝜇2𝛽𝐼∗ − 𝜇𝛾𝛽𝑆∗ − 𝜇𝜌𝛽𝑆∗ + 𝜇4 + 3𝜇𝛽𝐼∗ + 3𝜇3 + 𝛽𝐼∗

+ 3𝜇2 + 𝜇 

Based on the criteria established by the Routh-Hurwitz stability analysis technique, the endemic 

equilibrium point demonstrates local asymptotic stability if all roots of the characteristic 

polynomial are negative. Specifically, local stability is assured when: 

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = −
𝑏

𝑎
< 0 , where 𝑏 = 𝑎1 = 𝛽𝐼∗ + 4𝜇 + 3 dan 𝑎 = 𝑎0 = 1 

−(𝛽𝐼∗ + 4𝜇 + 3) < 0 

−𝛽(
(ℜ0 − 1)𝜇

𝛽
) − 4𝜇 − 3 < 0 

−(ℜ0 − 1)𝜇 − 4𝜇 − 3 < 0 

Fulfilled if ℜ0 > 1 

Next, consider 

𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4 + 𝑥3𝑥4 =
𝑐

𝑎
> 0  , where 𝑐 = 𝑎2 = 3𝜇𝛽𝐼

∗ − 𝜌𝛽𝑆∗ +

3𝛽𝐼∗ + 6𝜇2 + 9𝜇 + 3  
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3𝜇𝛽𝐼∗ − 𝜌𝛽𝑆∗ + 3𝛽𝐼∗ + 6𝜇2 + 9𝜇 + 3 > 0 

3𝛽𝐼∗(𝜇 + 1) + 6𝜇2 + 9𝜇 + 3 − 𝜌𝛽𝑆∗ > 0 

3(𝜇 + 1)(𝛽𝐼∗ + 2𝜇 + 1) − 𝜌𝛽𝑆∗ > 0 

3(𝜇 + 1) (𝛽 (
(ℜ0 − 1)𝜇

𝛽
) + 2𝜇 + 1) − 𝜌𝛽

(1 + 𝜇)3

𝛽(𝜇𝜌 + 𝜌 + 𝛾 − 𝜌𝛾)
> 0 

3(𝜇 + 1)((ℜ0 − 1)𝜇 + 2𝜇 + 1) >
𝜌(1 + 𝜇)3

(𝜇𝜌 + 𝜌 + 𝛾(1 − 𝜌))
 

Fulfilled if ℜ0 > 1 

Further, we will proof −
𝑑

𝑎
< 0, as follow 

𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥2𝑥3𝑥4 = −
𝑑

𝑎
< 0, where 

𝑑 = 𝑎3 = 𝛽𝐼∗(3𝜇2 + 6𝜇 + 3) + 𝛽𝑆∗(𝛾𝜌 − 2𝜇𝜌 − 𝛾 − 𝜌) + 4𝜇3 + 9𝜇2 + 6𝜇 + 1 

⟺−(𝛽𝐼∗(3𝜇2 + 6𝜇 + 3) + 𝛽𝑆∗(𝛾𝜌 − 2𝜇𝜌 − 𝛾 − 𝜌) + 4𝜇3 + 9𝜇2 + 6𝜇 + 1) < 0 

⟺−3𝛽𝐼∗(𝜇2 + 2𝜇 + 1) − 𝛽𝑆∗(𝛾𝜌 − 2𝜇𝜌 − 𝛾 − 𝜌) − 4𝜇3 − 9𝜇2 − 6𝜇 − 1 < 0 

⟺−3𝛽𝐼∗(𝜇 + 1)2 − 3𝜇(𝜇 + 1)2 − (𝜇 + 1)3 + 𝛽𝑆∗(2𝜇𝜌 + 𝛾 + 𝜌 − 𝛾𝜌) < 0 

⟺−3𝛽𝐼∗(𝜇 + 1)2 − 3𝜇(𝜇 + 1)2 − (𝜇 + 1)3 < −𝛽𝑆∗(2𝜇𝜌 + 𝛾 + 𝜌 − 𝛾𝜌) 

⟺−(𝜇 + 1)2(3𝛽𝐼∗ + 3𝜇 + 𝜇 + 1) < −𝛽𝑆∗(2𝜇𝜌 + 𝛾 + 𝜌 − 𝛾𝜌) 

⟺ (𝜇 + 1)2(3𝛽𝐼∗ + 4𝜇 + 1) > 𝛽𝑆∗(2𝜇𝜌 + 𝛾 + 𝜌 − 𝛾𝜌) 

⟺ (𝜇 + 1)2(3(ℜ0 − 1)𝜇 + 4𝜇 + 1) >
(1 + 𝜇)3 (2𝜇𝜌 + 𝜌 + 𝛾(1 − 𝜌))

(𝜇𝜌 + 𝜌 + 𝛾(1 − 𝜌))
 

Fulfilled if ℜ0 > 1 

Furthermore, by algebraic manipulation, it can be found 

𝑥1𝑥2𝑥3𝑥4 =
𝑒

𝑎
> 0, where 

𝑒 = 𝑎4 = 𝛽𝐼
∗(𝜇3 + 3𝜇2 + 3𝜇 + 1) + 𝛽𝑆∗(𝜇𝛾𝜌 − 𝜇2𝜌 − 𝜇𝛾 − 𝜇𝜌) + 𝜇4 + 3𝜇3 + 3𝜇2 + 𝜇 

𝛽𝐼∗(𝜇3 + 3𝜇2 + 3𝜇 + 1) + 𝛽𝑆∗(𝜇𝛾𝜌 − 𝜇2𝜌 − 𝜇𝛾 − 𝜇𝜌) + 𝜇4 + 3𝜇3 + 3𝜇2 + 𝜇 > 0 

(𝜇 + 1)3(𝛽𝐼∗ + 𝜇) − 𝜇𝛽𝑆∗(𝜇𝜌 + 𝛾 + 𝜌 − 𝛾𝜌) > 0 

(𝜇 + 1)3 (𝛽 (
(ℜ0 − 1)𝜇

𝛽
) + 𝜇) − 𝜇𝛽

(1 + 𝜇)3

𝛽(𝜇𝜌 + 𝜌 + 𝛾 − 𝜌𝛾)
(𝜇𝜌 + 𝛾 + 𝜌 − 𝛾𝜌) > 0 
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(𝜇 + 1)3((ℜ0 − 1)𝜇 + 𝜇) >
𝜇(1 + 𝜇)3

(𝜇𝜌 + 𝜌 + 𝛾 − 𝜌𝛾)
(𝜇𝜌 + 𝛾 + 𝜌 − 𝛾𝜌) 

(𝜇 + 1)3(𝜇(ℜ0)) >
𝜇(1 + 𝜇)3

(𝜇𝜌 + 𝜌 + 𝛾 − 𝜌𝛾)
(𝜇𝜌 + 𝛾 + 𝜌 − 𝛾𝜌) 

(𝜇 + 1)3 (𝜇
𝛽Λ(𝜇𝜌 + 𝛾 + 𝜌 − 𝛾𝜌)

𝜇(1 + 𝜇)3
) >

𝜇(1 + 𝜇)3

(𝜇𝜌 + 𝜌 + 𝛾 − 𝜌𝛾)
(𝜇𝜌 + 𝛾 + 𝜌 − 𝛾𝜌) 

𝛽Λ(𝜇𝜌 + 𝛾 + 𝜌 − 𝛾𝜌) >
𝜇(1 + 𝜇)3

(𝜇𝜌 + 𝜌 + 𝛾 − 𝜌𝛾)
(𝜇𝜌 + 𝛾 + 𝜌 − 𝛾𝜌) 

𝛽Λ(𝜇𝜌 + 𝛾 + 𝜌 − 𝛾𝜌) > 𝜇(1 + 𝜇)3 

𝛽Λ(𝜇𝜌+𝛾+𝜌−𝛾𝜌)

𝜇(1+𝜇)3
> 1, with 

𝛽Λ(𝜇𝜌+𝛾+𝜌−𝛾𝜌)

𝜇(1+𝜇)3
= ℜ0 

To summarize - the endemic equilibrium point demonstrates asymptotic stability when the basic 

reproduction number ℜ0  exceeds one. Meanwhile, the non-endemic equilibrium point is 

asymptotically stable for ℜ0 less than one. 

 

This indicates that disease reduction at the population level is achievable when each case on 

average transmits to less than one new person, bringing ℜ0  to below the threshold of one. 

Furthermore, the next theorem offers local stability analysis of endemic equilibrium points. ∎ 

Appendix C. Proof of Theorem 3 

Define the Lyapunov-LaSalle function: 

𝑉: ℒ ∈ ℝ6 → ℝ, where ℒ = {(𝑆, 𝐸, 𝑄, 𝐼, 𝑅, 𝐷) | 𝑆, 𝐸, 𝑄, 𝐼, 𝑅, 𝐷 ∈ ℝ}  

𝑉(𝑡) = 𝐴𝐸 + 𝐵𝑄 + 𝐶𝐼 and 𝐴, 𝐵, 𝐶 are constant non negative numbers. Because for 𝐴𝐸 + 𝐵𝑄 +

𝐶𝐼 positive around the domain, so we get the Lyapunov function from the model defined by 𝑉 as 

follows: 

𝑉(𝑡) = 𝐴𝐸 + 𝐵𝑄 + 𝐶𝐼 

The proposed Lyapunov function 𝑉 satisfies the necessary conditions: 

1. 𝑉 is continuous on the domain ℒ, as it comprises a linear combination of ℒ-continuous 

constituent functions. Its first partial derivative also exists and is continuous on ℒ. 

2. For any ℇ = (𝑆, 𝐸, 𝑄, 𝐼, 𝑅) ∈ ℒ with ℇ ≠ ℇ0 then 𝑉(𝑡) > 0, when ℇ = ℇ0  it inclines 

that 𝑉(𝑡) = 0. 

3. The derivative of 𝑉(𝑡) with respect to time 𝑡: 
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�̇�(𝑡) = 𝐴�̇� + 𝐵�̇� + 𝐶𝐼 ̇

 = 𝐴(𝛽𝑆𝐼 − 𝜌𝐸 − (1 − 𝜌)𝐸 − 𝜇𝐸) + 𝐵((1 − 𝜌)𝐸 − 𝛾𝑄 − (1 − 𝛾)𝑄 − 𝜇𝑄 

+𝐶(𝜌𝐸 + 𝛾𝑄 − 𝛿𝐼 − (1 − 𝛿)𝐼 − 𝜇𝐼 

 = (𝐴𝛽𝑆𝐼 − 𝐴𝜌𝐸 − 𝐴(1 − 𝜌)𝐸 − 𝐴𝜇𝐸) + (𝐵(1 − 𝜌)𝐸 − 𝐵𝛾𝑄 − 𝐵(1 − 𝛾)𝑄 − 𝐵𝜇𝑄) 

+(𝐶𝜌𝐸 + 𝐶𝛾𝑄 − 𝐶𝛿𝐼 − 𝐶(1 − 𝛿)𝐼 − 𝐶𝜇𝐼) 

 = (−𝐴𝜌 − 𝐴(1 − 𝜌) − 𝐴𝜇 + 𝐵(1 − 𝜌) + 𝐶𝜌)𝐸 + (𝐶𝛾 − 𝐵𝛾 − 𝐵(1 − 𝛾) − 𝐵𝜇)𝑄 

+(𝐴𝛽𝑆 − 𝐶𝛿 − 𝐶(1 − 𝛿) − 𝐶𝜇𝐼 

Constants 𝐴, 𝐵, 𝐶 are chosen so that the coefficients 𝐸 and 𝑄 are equal to zero so that we 

get 

𝐴 =
𝛾(1 − 𝜌) + 𝜌(1 + 𝜇)

1 + 𝜇
, 𝐵 = 𝛾, 𝐶 = 1 + 𝜇 

Cause 𝑆 ≤ 𝑆∗ then substitute equation 𝐴, 𝐵, 𝐶 into equation 𝑉(𝑡) so that we get 

�̇�(𝑡) ≤ (𝐴𝛽𝑆 − 𝐶𝛿 − 𝐶 + 𝐶𝛿 − 𝐶𝜇)𝐼 

  = ((
𝛾(1 − 𝜌) + 𝜌(1 + 𝜇)

1 + 𝜇
)
𝛽Λ

𝜇
 − (1 + 𝜇) − (1 + 𝜇)𝜇) 𝐼 

= ((
𝛾 − 𝛾𝜌 + 𝜌 + 𝜌𝜇

1 + 𝜇
)
𝛽Λ

𝜇
 − (1 + 𝜇) − (1 + 𝜇)𝜇) 𝐼 

= ((
𝛽Λ(𝛾 − 𝛾𝜌 + 𝜌 + 𝜌𝜇)

𝜇(1 + 𝜇)
) − (1 + 𝜇)(1 + 𝜇)𝜇) 𝐼 

= (
𝛽Λ(𝛾 − 𝛾𝜌 + 𝜌 + 𝜌𝜇) − 𝜇(1 + 𝜇)3

𝜇(1 + 𝜇)
 ) 𝐼 

=
1

𝜇(1 + 𝜇)
(𝛽Λ(𝛾 − 𝛾𝜌 + 𝜌 + 𝜌𝜇) − 𝜇(1 + 𝜇)3)𝐼 

=
𝜇(1 + 𝜇)3

𝜇(1 + 𝜇)
(
𝛽Λ(𝛾 − 𝛾𝜌 + 𝜌 + 𝜌𝜇) − 𝜇(1 + 𝜇)3

𝜇(1 + 𝜇)3
)  𝐼 

= 𝜇(1 + 𝜇)2 (ℜ0 − 1)𝐼 

Thus, �̇�(𝑡) ≤ 0  if ℜ0 < 1  This demonstrates the global asymptotically stability of the 

Lyapunov function at the non-endemic equilibrium point.∎ 
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