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Abstract. Cryptosporidiosis, caused by a protozoan parasite known as cryptosporidium, is a zoonotic disease that

affects animals and humans. In this paper we have developed a mathematical model with a non linear incidence

called Beddington-DeAngelis function to describe the spread of Cryptosporidiosis from the animals to human and

from the animals to animal. We also consider the incubation periods of cryptosporidium in this model with different

time delay in the infective animal and human populations. by analyzing behavior of the model, we calculate the

basic reproduction number (Rha) and investigate the local and global stability of the disease-free equilibrium of

the system. We also establish the sufficient conditions for the stability of the endemic equilibrium in presence

of delays and we investigate the occurrence of Hopf bifurcation when certain conditions are satisfied. Finally,

numerical simulations are performed and displayed graphically to support the analytical results.
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1. INTRODUCTION

Cryptosporidiosis is an infection caused by an apicomplexan protozoan known as Cryp-

tosporidium. Cryptosporidium common parasites of vertebrates have recently attracted increas-

ing interest due to several serious waterborne outbreaks, and the life-threatening nature of in-

fection in immunocompromised patients, children, the elderly, and patients on chemotherapy,

pregnant women; and also the realization of economic losses caused by these pathogens in live-

stock. It is a common enteric pathogen in humans and domestic animals worldwide with a very

low infective dose of one to ten ooysts (Pereira[1]). The sporulated ooysts are immediately in-

fectious when excreted in faeces as there is no intermediate host. Cattle are reared throughout in

Cameroon but the major production areas are in the West and North West Regions and from the

Adamawa Province [2]. The cattle are transported on foot to the cattle market and the dung they

pass along the road is likely to contaminate the environment and the oocysts possibly end up

in streams after torrential rains. In time past, following the description of Cryptosporidium in

mice by Ernest Edward Tyzzer [3], the genus Cryptosporidium has been studied, and now dis-

covered to contain numerous species and genotypes adapted to parasitic life in almost all classes

of vertebrates. Over the years, our knowledge has expanded from microscopic observations of

infection and environmental contamination to the knowledge obtained from large application

spread of molecular techniques to taxonomy and epidemiology. Although, the medical and

veterinary significance of this protozoan was not fully appreciated for an- other 70 years. The

interest in Cryptosporidium escalated tremendously over the last two and half decades [4, 5]. It

was later recognized as a cause of disease in 1976. As several methods were developed to ana-

lyze stool samples, the protozoa was increasingly reported as the cause of human disease [6]. At

first, Crypto was categorized as a veterinary problem because, majority of the early cases were

diagnosed due to individuals rearing farm animals such as cows. Furthermore, 155 species of

animals specifically mammals have been reported to be infected with Cryptosporidium parvum

which is also known as C. parvum [7]. Among the 15 named species of Cryptosporidium in-

fectious to non-human vertebrate hosts C. Baileyi, C. canis, C. felis, C. hominis, C meleagridis,

C. muris, and C. parvum have been reported to also infect humans. The primary hosts for C.

hominis are Humans, except for C. parvum, which is widespread in non-human hosts and is
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the most frequently reported zoonotic species, the remaining species left have been reported

primarily in immunocompromised or immunosuppressed humans [7]. The first Cryptosporidio-

sis outbreak that was widely known occurred in 1987[8] in Carrollton, Georgia. About 13,000

persons became sick as a result of the outbreak the disease. The main cause was traced to a

large contaminated water system. In 1993, in Milwaukee area, Wisconsin, a massive outbreak

of the disease occurred, causing approximately 400,000 people to fell sick as a result of con-

taminated drinking water in one of the two treatment plants serving the Milwaukee area [6].

Many biological processes such as gestation and infection take time to complete and in the case

of persistently transmitted diseases, it takes time for a virus to invade a cell and spread through-

out the host and the process is called time delays [9]. To the best of our knowledge, no model

has been considered to systematically analyze the dynamics of Cryptosporidiosis disease with

Beddington-DeAngelis incidence and time delays in terms of incubations periods. Therefore,

motivated by the above discussion into account, in this paper, Motivated by references [10,

11] and the above discussion, in this paper, we extend the model in [12] by introducing two

time delays accounting for incubation periods to explore their effect on the dynamics of the

disease. So we propose and analyze a mathematical delayed model of Cryptosporidiosis dis-

ease dynamics in humans and animals population with the Beddington-DeAngelis incidence.

The rest of the paper is organized as follows. In section 2, the mathematical model with two

delays is described and formulated. In section 3, the positivity and boundedness of solutions

are investigated. Section 4 deals with the computation of the threshold parameter (Rha) and the

mathematical analysis of the model including the local stability of the disease-free and endemic

equilibrium points together with the existence of Hopf-bifurcation. In section 5, numerical sim-

ulations are performed to support theoretical results. The last section presents a brief discussion

and conclusions of the paper.

2. ASSUMPTION AND FORMULATION OF THE MODEL

It is assumed that Cryptosporidium does not spread from person to person. The human pop-

ulation is classified into three subclasses: susceptible, infective and recovered represented by

HS(t), HI(t) and HR(t), respectively, and the animal population is classified into three sub-

classes: susceptible, infective and recovered, represented by AS(t), AI(t) and AR(t) respectively.
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In order to construct the model with time delays the following assumptions have been made:

(i) All new recruitment and new borns of the human population (the animal population) are

susceptible with rate ΛH (ΛA respectively).

(ii) The cryptosporidium protozoan is only contagious from an infected animal to a suscepti-

ble human, and from an infected animal to a susceptible animal. But it is not contagious

from an infected human to a susceptible human.

(iii) The incidence rate between the susceptible human an infective animal depends not only

on their numbers at the previous moment (t − τ1) but also on the probability which

the infective human survived natural death (having the death rate µH); Similarly the

incidence rate between the susceptible animal and the infective animal depends not

only on their numbers at previous moment (t − τ2) but also on the probability which

the infective animal population survived natural death (having the death rate µA). Here

τ1 ≥ 0 (τ2 ≥ 0) is a time delay describing the incubation period of cryptosporidium

protozoan on human population (animal population respectively).

(iv) The incidence rate between the susceptible human and infective animal, and between

the susceptible animal and infective animal is assumed to be the Beddington-DeAngelis

reponse.

(v) Infected human(infected animal) can be recovered and the recovered human(recovered

animal) has permanent immunity.

On the basis of these assumptions, the following mathematical model of Cryptosporidiosis with

incubation periods has been formulated:

(1)



dHS(t)
dt = ΛH−µHHS(t)− δ1HS(t)AI(t)

1+m1HS(t)+m2AI(t)

dHI(t)
dt = δ1e−µH τ1HS(t−τ1)AI(t−τ1)

1+m1HS(t−τ1)+m2AI(t−τ1)
− (αH +µH +βH)HI(t)

dHR(t)
dt = βHHI(t)−µHHR(t)

dAS(t)
dt = ΛA−µAAS(t)− δ2AS(t)AI(t)

1+m3AS(t)+m4AI(t)

dAI(t)
dt = δ2e−µAτ2AS(t−τ2)AI(t−τ2)

1+m3AS(t−τ2)+m4AI(t−τ2)
− (αA +µA +βA)AI(t)

dAR(t)
dt = βAAI(t)−µAAR(t)
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Here δ1(δ2) is the contact rate between the susceptible human and the infective animal (be-

tween the susceptible animal and the infective animal respectively); µH(µA) is the natural death

rate of the human population( the animal population respectively); βH(βA) is the human recov-

ery rate(the animal recovery rate respectively); The time τ1(τ2) is the incubation period of cryp-

tosporidium protozoan on human population(animal population respectively); mi(i = 1,2,3,4)

are the parameters that measure the inhibitory effect;HS(t−τ1) and AI(t−τ1) denotes the num-

bers of susceptible human population and infected animal population respectively at time t−τ1;

AS(t− τ2) and AI(t− τ2) stands for the numbers of the susceptible(infectious respectively) ani-

mal at the time t− τ2; e−µHτ1(e−µAτ2) is the probability which the infected human(animal) sur-

vives to time t(with the death rate −µH ,−µA respectively). All other parameters are assumed

to be positive. The initial conditions for system (1) take the form:

(2) HS(θ) = φ1,HI(θ) = φ2,HR(θ) = φ3,AS(θ) = φ4,AI(θ) = φ5,AR(θ) = φ6,

θ ∈ [−τ,0] where τ= max{τ1,τ2}, φi(θ)≥ 0, i = 1,2,3,4,5,6. Here

(3) φ = (φ1(θ),φ2(θ),φ3(θ),φ4(θ),φ5(θ),φ6(θ)) ∈ C
(
[−τ,0],R6

+

)
,

the banach space of continuous functions mapping from the interval [−τ,0] to R6
+,

(4) R6
+ = {(HS,HI,HR,AS,AI,AR) : HS ≥ 0,HI ≥ 0,HR ≥ 0,AS ≥ 0,AI ≥ 0,AR ≥ 0} .

For a biological meaning, we futher assume that φi(0)> 0, i = 1,2,3,4,5,6.

3. MODEL PROPERTIES

3.1. Nonnegativity of solutions. In this subsection, we must prove that at t ≥ 0 all solutions

of the model system (1) are positive.

Theorem 3.1 Each component of the solution of the delay system (1) with initial conditions (2)

is positive for all t ≥ 0.

Proof. From the first equation of the delay system (1), we get:

(5)
HS(t) = HS(0)exp

[∫ t

0
−
{

µH +
δ1AI(u)

1+m1HS(u)+m2AI(u)
du
}]

+ΛH

∫ t

0
exp
[∫ t

θ

−
{

µH +
δ1AI(u)

1+m1HS(u)+m2AI(u)
du
}]

dθ
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then HS(t)> 0. From the second equation of delay system (1) we get:

(6) HI(t) = e−(αH+µH+βH)t
[

HI(0)+
∫ t

0

δ1e−µHτ1HS(u− τ1)AI(u− τ1)

1+m1HS(u− τ1)+m2AI(u− τ1)
du
]

then HI(t)> 0. From the third equation of delay system (1) we get:

(7) HR(t) = e−µH t
[

HR(0)+βH

∫ t

0
HI(u)eµHudu

]
then HR(t)> 0. From the fourth equation of delay system (1) we get:

(8)
AS(t) = AS(0)exp

[∫ t

0
−
{

µA +
δ2AI(u)

1+m3AS(u)+m4AI(u)
du
}]

+ΛA

∫ t

0
exp
[∫ t

θ

−
{

µA +
δ2AI(u)

1+m3AS(u)+m4AI(u)
du
}]

dθ

then AS(t)> 0. From the fifth equation of delay system (1) wet get:

(9) AI(t) = e−(αA+µA+βA)t
[

AI(0)+
∫ t

0

δ2e−µAτ2AS(u− τ2)AI(u− τ2)

1+m3HS(u− τ2)+m4AI(u− τ2)
du
]

then AI(t)> 0. From the last equation of delay system (1) we get:

(10) AR(t) = e−µAt
[

AR(0)+βA

∫ t

0
AI(u)eµAudu

]
then AR(t)> 0. Therefore HS > 0, HI > 0, HI > 0, AS > 0, AI > 0, AR > 0, for all t ≥ 0. �

3.2. Boundedness of solutions. In this subsection, we must prove that at t ≥ 0 all solutions

of the model system (1) are bounded.

Theorem 3.2 Each component of the solution of the delay system (1) with initial condition (2)

are bounded for all t ≥ 0.

Proof. From the delay system (1), we define

(11) H(t) = HS(t− τ1)+HI(t)+HR(t)

and

(12) A(t) = AS(t− τ2)+AI(t)+AR(t).
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Therefore,

(13)

dH(t)
dt

= ΛH−µHHS(t− τ1)−
δ1HS(t− τ1)AI(t− τ1)

1+m1HS(t− τ1)+m2AI(t− τ1)

+
δ1e−µHτ1HS(t− τ1)AI(t− τ1)

1+m1HS(t− τ1)+m2AI(t− τ1)
− (αH +µH +βH)HI(t)

+βHHI(t)−µHHR(t)

so,

(14)

dH(t)
dt
≤ ΛH−µHHS(t− τ1)−

δ1HS(t− τ1)AI(t− τ1)

1+m1HS(t− τ1)+m2AI(t− τ1)

+
δ1HS(t− τ1)AI(t− τ1)

1+m1HS(t− τ1)+m2AI(t− τ1)
− (αH +µH)HI(t)−µHHR(t)

≤ ΛH−µHHS(t− τ1)−µHHI(t)−µHHR(t)

= ΛH−µHH(t)

By standard comparison theorem, we get:

(15) lim
t→∞

SupH(t)≤ ΛH

µH
.

Again

(16)

dA(t)
dt

= ΛA−µAAS(t− τ2)−
δ2AS(t− τ2)AI(t− τ2)

1+m3AS(t− τ2)+m4AI(t− τ2)

+
δ2e−µAτ2AS(t− τ2)AI(t− τ2)

1+m3AS(t− τ2)+m4AI(t− τ2)
− (αA +µA +βA)AI(t)

+βAAI(t)−µAAR(t)

so,

(17)

dA(t)
dt
≤ ΛA−µAAS(t− τ2)−

δ2AS(t− τ2)AI(t− τ2)

1+m3AS(t− τ2)+m4AI(t− τ2)

+
δ2AS(t− τ2)AI(t− τ2)

1+m3AS(t− τ2)+m4AI(t− τ2)
− (αA +µA)AI(t)−µAAR(t)

≤ ΛA−µAAS(t− τ2)−µAAI(t)−µAAR(t)

= ΛA−µAA(t)

By standard comparison theorem, we get:

(18) lim
t→∞

SupA(t)≤ ΛA

µA
.
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This completes the proof of the theorem 3.2 and then each component of the solution of the

delay system (1) with initial condition (2) is bounded for all t ≥ 0. �

Therefore the feasible solution set of the delayed system (1) is

(19)

Ω = Ω1×Ω2 =

{
(HS(t),HI(t),HR(t),AS(t),AI(t),AR(t)) ∈ R6

+ : 0≤ H(t)≤ ΛH

µH
;0≤ A(t)≤ ΛA

µA

}
where

(20) Ω1 =

{
(HS(t),HI(t),HR(t)) ∈ R3

+ : 0≤ HS(t)+HI(t)+HR(t)≤
ΛH

µH

}
and

(21) Ω2 =

{
(AS(t),AI(t),AR(t)) ∈ R3

+ : 0≤ AS(t)+AI(t)+AR(t)≤
ΛA

µA

}
4. MODEL ANALYSIS

4.1. Disease-free equilibrium point (DFE). Assume that lim
t→+∞

HS(t − τ1) = lim
t→+∞

HS(t),

lim
t→+∞

HI(t−τ1) = lim
t→+∞

HI(t), lim
t→+∞

AS(t−τ2) = lim
t→+∞

AS(t), lim
t→+∞

AI(t−τ1) = lim
t→+∞

AI(t). The

DFE E0 is obtained by setting the right hand side of equations in the delayed system (1) to zero

and letting

(22) HI(t) = HR(t) = AI(t) = AR(t) = 0

that is

(23)
dHS(t)

dt
=

dHI(t)
dt

=
dHR(t)

dt
=

dAS(t)
dt

=
dAI(t)

dt
=

dAR(t)
dt

we obtain:

(24) E0 =

(
ΛH

µH
,0,0,

ΛA

µA
,0,0

)

4.2. Basic reproduction number(Rha). As we know, the basic reproduction number,(Rha) is

the expected number of secondary infections arising from one newly infected individual intro-

duced into a healthy population that determines the dynamic behaviour of the model. There are

several methods for calculating (Rha), but for this work, we follow the idea of [13]. Firstly, we
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rewrite the delayed model system (1) considering only the equations for diseased population.

That is

(25)


dHI(t)

dt = δ1e−µHτ1HS(t−τ1)AI(t−τ1)
1+m1HS(t−τ1)+m2AI(t−τ1)

− (αH +µH +βH)HI(t)

dAI(t)
dt = δ2e−µAτ2AS(t−τ2)AI(t−τ2)

1+m3AS(t−τ2)+m4AI(t−τ2)
− (αA+µA+βA)AI(t)

Next, the linearization of the system (25) at the disease-free equilibrium

E0 =
(

ΛH
µH

,0,0, ΛA
µA
,0,0

)
is

(26) dHI(t)
dt

dAI(t)
dt

=

−(αH +µH +βH) 0

0 −(αA +µA +βA)

HI(t)

AI(t)

+

0 δ1e−µH τ1 ΛH
µH+m1ΛH

0 0

HI(t− τ1)

AI(t− τ1)


+

0 0

0 δ2e−µAτ2 ΛA
µA+m3ΛA

HI(t− τ2)

AI(t− τ2)


that is

(27)

 dHI(t)
dt

dAI(t)
dt

=

−(αH +µH +βH)HI(t)

−(αA +µA +βA)AI(t)

+

 δ1e−µH τ1 ΛH
µH+m1ΛH

AI(t− τ1)

0

+

 0
δ2e−µAτ2 ΛA
µA+m3ΛA

AI(t− τ2)


that is

(28)


dHI(t)

dt =−(αH +µH +βH)HI(t)+ δ1e−µH τ1ΛH
µH+m1ΛH

AI(t− τ1)

dAI(t)
dt =−(αA +µA +βA)AI(t)+ δ2e−µAτ2ΛA

µA+m3ΛA
AI(t− τ2)

Let HI(0) and AI(0) be the numbers of each diseased at t = 0, HI(t) and AI(t) be the remaining

population of each class at time t, respectively. equation one and two of system (28) give

respectively

(29) HI(t) = HI(0)e−(αH+µH+βH)t

and

(30) AI(t) = AI(0)e−(αA+µA+βA)t .
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Then, from the system (28), the total number of newly infected in diseased populations HI and

AI is obtained as follows:

(31)

H̄I =
∫

∞

τ1

δ1e−µHτ1ΛH

µH +m1ΛH
AI(t− τ1)dt

=
∫

∞

τ1

δ1e−µHτ1ΛH

µH +m1ΛH
AI(0)e−(αA+µA+βA)tdt

= lim
q→∞

∫ q

τ1

δ1e−µHτ1ΛH

µH +m1ΛH
AI(0)e−(αA+µA+βA)tdt

=
δ1e−µHτ1ΛH

(µH +m1ΛH)(αA +µA +βA)
AI(0)

(32)

ĀI =
∫

∞

τ2

δ2e−µAτ2ΛA

µA +m3ΛA
AI(t− τ2)dt

=
∫

∞

τ2

δ2e−µAτ2ΛA

µA +m3ΛA
AI(0)e−(αA+µA+βA)tdt

= lim
q→∞

∫ q

τ2

δ2e−µAτ2ΛA

µA +m3ΛA
AI(0)e−(αA+µA+βA)tdt

=
δ2e−µAτ2ΛA

(µA +m3ΛA)(αA +µA +βA)
AI(0)

then, it follows that

(33)

H̄I

ĀI

=

0 δ1e−µH τ1ΛH
(µH+m1ΛH)(αA+µA+βA)

0 δ2e−µAτ2 ΛA
(µA+m3ΛA)(αA+µA+βA)

HI(0)

AI(0)


the following 2×2 matrix denoted by

(34) M =

0 δ1e−µH τ1ΛH
(µH+m1ΛH)(αA+µA+βA)

0 δ2e−µAτ2ΛA
(µA+m3ΛA)(αA+µA+βA)


is the next infection operator and the basic reproduction number Rha is the spectral radius of

the matrix M. Letting λ be the eigenvalue of the matrix M leads to

(35)

∣∣∣∣∣∣−λ
δ1e−µH τ1ΛH

(µH+m1ΛH)(αA+µA+βA)

0 −λ + δ2e−µAτ2ΛA
(µA+m3ΛA)(αA+µA+βA)

∣∣∣∣∣∣= 0

that is

(36) −λ

(
−λ +

δ2e−µAτ2ΛA

(µA +m3ΛA)(αA +µA +βA)

)
= 0
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Hence, the basic reproduction number Rha of the delayed model system (1) is

(37) Rha =
δ2e−µAτ2ΛA

(µA +m3ΛA)(αA +µA +βA)

4.3. Local stability of disease-free equilibrium point. The local stability of the disease-free

equilibrium point E0 is investigated by adopting the same technique as in [12].

Theorem 4.1 The disease-free equilibrium point is locally asymptotically stable if Rha < 1 and

unstable if Rha > 1.

Proof. The linearization of the Jacobian matrix of delayed model system (1) at disease-free

equilibrium point is given by:

(38)

J(E0) =



−µH 0 0 0 −δ1ΛH
µH+m1ΛH

0

0 −(αH +µH +βH) 0 0 δ1e−µH τ1ΛH
µH+m1ΛH

0

0 βH −µH 0 0 0

0 0 0 −µA
−δ2ΛA

µA+m3ΛA
0

0 0 0 0 δ2e−µAτ2ΛA
µA+m3ΛA

− (αA +µA +βA) 0

0 0 0 0 βA −µA


The characteristic equation of the Jacobian matrix (38) is given by:

(39) (a−λ )(b−λ )(c−λ )(d−λ )(e−λ )(h−λ ) = 0

where a =−µH , b =−(αH +µH +βH), c =−µH , d =−µA, e = δ2e−µAτ2ΛA
µA+m3ΛA

− (αA +µA +βA),

h =−µA.

From the characteristic equation (39), the eigenvalues of the Jacobian matrix of system (38)

evaluated at E0 are a, b, c, d,e and h. Clearly a, b, c,d and h are negative.

If e < 0, we get δ2e−µAτ2ΛA
µA+m3ΛA

− (αA + µA + βA) < 0, that is δ2e−µAτ2ΛA
µA+m3ΛA

< αA + µA + βA, that is

Rha < 1. If e> 0 we have Rha > 1. Therefore E0 is locally asymptotically stable if δ2e−µAτ2ΛA
µA+m3ΛA

<

αA +µA +βA whenever Rha < 1, and unstable otherwise. �

Because the removed populations have no effect on the dynamics of HS, HI , AS and AI , the

delayed system (1) can be decoupled to the following delayed system
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(40)



dHS(t)
dt = ΛH−µHHS(t)− δ1HS(t)AI(t)

1+m1HS(t)+m2AI(t)

dHI(t)
dt = δ1e−µH τ1HS(t−τ1)AI(t−τ1)

1+m1HS(t−τ1)+m2AI(t−τ1)
− (αH +µH +βH)HI(t)

dAS(t)
dt = ΛA−µAAS(t)− δ2AS(t)AI(t)

1+m3AS(t)+m4AI(t)

dAI(t)
dt = δ2e−µAτ2AS(t−τ2)AI(t−τ2)

1+m3AS(t−τ2)+m4AI(t−τ2)
− (αA +µA +βA)AI(t)

The initial condition of model (40) take the following form

(41)


HS(θ) = φ1(θ),HI(θ) = φ2(θ),AS(θ) = φ3(θ),AI(θ) = φ4(θ)

φi(θ) ∈ C([−τ,0],R+) , i = 1,2,3,4

In what follows we are going to use the delayed system (40) with initial condition (41).

4.4. Global stability of the disease-free equilibrium point.

Theorem 4.2 The disease-free equilibrium E0 of delayed system (1) is globally asymptotically

stable when Rha < 1.

Proof. To show that the disease-free equilibrium point E0 is globally asymptotically stable,

it suffices to show that the disease-free equilibrium point E∗0 =
(

ΛH
µH

,0, ΛA
µA
,0
)

of the delayed

system (40) is globally asymptotically stable. To prove it, we firstly study the following animal-

only system:

(42)


dAS(t)

dt = ΛA−µAAS(t)− δ2AS(t)AI(t)
1+m3AS(t)+m4AI(t)

dAI(t)
dt = δ2e−µAτ2 AS(t−τ2)AI(t−τ2)

1+m3AS(t−τ2)+m4AI(t−τ2)
− (αA +µA +βA)AI(t)

In fact, the animal-only subsystem (42) are independent of the full system (40). system (42)

always has a unique disease-free equilibrium A0 =
(

ΛA
µA
,0
)

is locally asymptotically stable if

Rha < 1. Let now consider the global stability of A0. To show that A0 is globally asymptotically

stable, we define a Lyapunov function as follows:

(43) L =

(
AS−A0

S−A0
Sln

AS

A0
S

)
e−µAτ2 +AI +

∫ t

t−τ2

δ2e−µAτ2ASAI

1+m3AS +m4AI
du

The derivative of L is

(44)
dL
dt

=
−e−µAτ2 µA(AS−A0

S)
2

AS
− (αA +µA +βA)(1−Rha)AI



CRYPTOSPORIDIOSIS TRANSMISSION DYNAMICS WITH TIME DELAYS 13

since

(45)
{
(AS,AI) ∈ R2

+ :
dL
dt

= 0
}
=

{
(AS,AI) ∈ R2

+ : AS = A0
S =

ΛA

µA
,AI = A0

I = 0
}
,

and by LaSalle’S Invariance Principle, we easily obtain that the disease-free equilibrium A0 =(
ΛA
µA
,0
)

of subsystem (42) is globally asymptotically stable when Rha < 1. To prove the global

stability of E∗0 , we therefore only need to discuss model (40) at the disease-free steady state,

that is the following system

(46)


dHS(t)

dt = ΛH−µHHS(t)

dHI(t)
dt =−(αH +µH +βH)HI(t)

The solution of (46) is as follows

(47)


HS(t) = ΛH

µH
+C1e−µH t

HI(t) =C2e−(αH+µH+βH)t

where C1 and C2 are constants. Obviously, we can see that HS→ ΛH
µH

and HI → 0 when t→ ∞.

Hence, the disease-free equilibrium E∗0 of system (40) is globally asymptotically stable. �

4.5. Existence of Endemic equilibrium point. Let E1 = (H∗S ,H
∗
I ,A

∗
S,A
∗
I ) be the endemic

equilibrium point of the model system (40). As in [14], the delay-dependency must vanish so

that lim
t→+∞

HS(t−τ1) = lim
t→+∞

HS(t) =H∗S , lim
t→+∞

HI(t−τ1) = lim
t→+∞

HI(t) =H∗I , lim
t→+∞

AS(t−τ2) =

lim
t→+∞

AS(t) = A∗S, lim
t→+∞

AI(t− τ2) = lim
t→+∞

AI(t) = A∗I , such that at equilibrium, we obtain

(48)



ΛH−µHHS− δ1HSAI
1+m1HS+m2AI

= 0

δ1e−µH τ1HSAI
1+m1HS+m2AI

− (αH +µH +βH)HI = 0

ΛA−µAAS− δ2ASAI
1+m3AS+m4AI

= 0

δ2e−µAτ2ASAI
1+m3AS+m4AI

− (αA +µA +βA)AI = 0

If Rha > 1, the system (40) has a unique endemic equilibrium point given by

E1 = (H∗S ,H
∗
I ,A

∗
S,A
∗
I ), where

(49) A∗S =
ΛA(δ2 +m4µARha +m4ΛARha)

Rha(m4µA +δ2)(µA +m3ΛA)−δ2m3ΛA
> 0
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since Rha > 1 this implies Rha(m4µA + δ2)(µA + m3ΛA)− δ2m3ΛA > (m4µA + δ2)(µA +

m3ΛA)−δ2m3ΛA = µA(m4µA +δ2)+m3m4ΛAµA > 0,

(50) A∗I =
Rha(µA +m3ΛA)(ΛA−µAA∗S)

δ2ΛA
> 0

since dAS
dt < ΛA−µAAS,

(51)

H∗S =
−(µH(1+m2A∗I )+δ1A∗I −m1ΛH)+

√
(µH(1+m2A∗I )+δ1A∗I −m1ΛH)2 +4m1µHΛH(1+m2A∗I )

2m1µH
> 0

(52) H∗I =
δ2e−µHτ1H∗S A∗I

(1+m1H∗S +m2A∗I )(αH +µH +βH)
> 0

4.6. Stability of the Endemic equilibrium point and Hopf-bifurcation. In this section, we

investigate the local stability of the endemic equilibrium E1 and existence of the local Hopt-

bifurcation occurring at E1 by choosing τ1,τ2 and τ = max {τ1,τ2} as bifurcation parameters.

To this end, we follow the Hopf-bifurcation theory in [15] by first computing transcendental

equation. The expression for the transcendental equation is obtained by linearizing the model

system (40) around the endemic equilibrium point E1. We get the following system

(53)
dY (t)

dt
= FY (t)+GY (t− τ1)+QY (t− τ2)

where F , G and Q are 4×4 matrix given by

F = [ fi j]

=



µH − δ1A∗I (t)[1+m2A∗I (t)]
(1+m1H∗S (t)+m2A∗I (t))2 0 0 − δ1H∗S (t)[1+m1H∗S (t)]

(1+m1H∗S (t)+m2A∗I (t))2

0 −(αH +µH +βH) 0 0

0 0 µA− δ2A∗I (t)[1+m4A∗I (t)]
(1+m3A∗S(t)+m4A∗I (t))2 − δ2A∗S(t)[1+m3A∗S(t)]

(1+m3A∗S(t)+m4A∗I (t))2

0 0 0 −(αA +µA +βA)



(54)

(55) G = [gi j] =


0 0 0 0

δ1e−µH τ1A∗I (t−τ1)[1+m2A∗I (t−τ1)]

(1+m1H∗S (t−τ1)+m2A∗I (t−τ1))2 0 0 δ1e−µH τ1H∗S (t−τ1)[1+m2H∗S (t−τ1)]

(1+m1H∗S (t−τ1)+m2A∗I (t−τ1))2

0 0 0 0

0 0 0 0





CRYPTOSPORIDIOSIS TRANSMISSION DYNAMICS WITH TIME DELAYS 15

(56) Q = [qi j] =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 δ2e−µAτ2A∗I (t−τ2)[1+m4A∗I (t−τ2)]

(1+m3A∗S(t−τ2)+m4A∗I (t−τ2))2
δ2e−µAτ2A∗S(t−τ2)[1+m3A∗S(t−τ2)]

(1+m3A∗S(t−τ2)+m4A∗I (t−τ2))2


Clearly,F is the matrix of partial derivatives of the model system (40) with respect to the state

variables without delays, G is the matrix of the partial derivatives of the model system (40)

with respect to the state variables with incubation period τ1 of cryptosporidium protozoan on

human population and Q is the matrix of the partial derivatives of the model system (40) with

respect to the state variables with incubation period τ2 of cryptosporidium protozoan on animal

population both evaluate at E1. Then the resulting Jacobian matrix is found to be

(57)

J = F +Ge−λτ1 +Qe−λτ2

=


d1 0 0 d2

d3e(−µH+λ )τ1 d4 0 d5e(−µH+λ )τ1

0 0 d6 d7

0 0 d8e(−µA+λ )τ2 d9 +d10e(−µA+λ )τ2


with

(58) d1 =−µH−
δ1A∗I (t)[1+m2A∗I (t)]

(1+m1H∗S (t)+m2A∗I (t))2 , d2 =−
δ1H∗S (t)[1+m1H∗S (t)]

(1+m1H∗S (t)+m2A∗I (t))2

(59) d3 =
δ1A∗I (t− τ1)[1+m2A∗I (t− τ1)]

(1+m1H∗S (t− τ1)+m2A∗I (t− τ1))2 , d4 =−(αH +µH +βH)

(60) d5 =
δ1H∗S (t− τ1)[1+m1H∗S (t− τ1)]

(1+m1H∗S (t− τ1)+m2A∗I (t− τ1))2 , d6 =−µA−
δ2A∗I (t)[1+m4A∗I (t)]

(1+m3A∗S(t)+m4A∗I (t))2

(61) d7 =−
δ2A∗S(t)[1+m3A∗S(t)]

(1+m3A∗S(t)+m4A∗I (t))2 , d8 =
δ2A∗I (t− τ2)[1+m4A∗I (t− τ2)]

(1+m3A∗S(t− τ2)+m4A∗I (t− τ2))2

(62) d9 =−(αA +µA +βA), d10 =
δ2A∗S(t− τ2)[1+m3A∗S(t− τ2)]

(1+m3A∗S(t− τ2)+m4A∗I (t− τ2))2
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Hence, after some calculation and after making some simplification and arrangement, the

transcendental equation of the system (25) is explicitly written as

(63)

ψ(λ ,e−λτ1,e−λτ2) = λ
4 +a3λ

3 +a2λ
2 +a1λ +a0 +(b3λ

3 +b2λ
2 +b1λ +b0)e−(µA+λ )τ2 = 0

where

(64) a3 =−d1−d4−d6−d9

(65) a2 = d1d4 +d1d6 +d4d6 +d1d9 +d4d9 +d6d10

(66) a1 =−d1d4d6−d1d4d9−d1d6d9−d4d6d9

(67) a0 =−d1d4d6d9

(68) b3 =−d10

(69) b2 = d1d10 +d4d10 +d6d10−d7d8

(70) b1 =−d1d4d10−d1d6d10−d4d6d10 +d1d7d8 +d4d7d8

(71) b0 =−d1d4d7d8−d1d4d6d10

Now the stability of the endemic equilibrium E1 is investigated by considering two different

cases which are: no delays and delay only for τ2.

Case 1: Delay-free system (τ2 = 0)

The characteristic equation corresponding to E1 is of the form

(72) −( j−λ )(l−λ )[−λ
2 +(m+n)λ −mn+ pq] = 0

where

(73) j = d1, l = d4, m = d6, n = d9 +d10e(−µA+λ )τ2, p = d7, q = d8e(−µA+λ )τ2
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It is easily to know that two eigenvalues

(74) λ1 =−µH−
δ1A∗I (t)[1+m2A∗I (t)]

(1+m1H∗S (t)+m2A∗I (t))2 , and λ2 =−(αH +µH +βH)

of (72) are negative. So we only need to examine the last two eigenvalues of (72), which are

determined by

(75) λ
2 +N1λ +N2λe−λτ2 +N3 +N4e−λτ2 = 0

where

(76) N1 = d6 +d9, N2 = d10, N3 = d6d9, N4 = d6d10 +d7d8.

If τ2 = 0, then (75) becomes

(77) λ
2 +(N1 +N2)λ +(N3 +N4) = 0

All the eigenvalues obviously have negative real parts if

(78) m4 > m3 and A∗S >
m4[m3(µA +αA)− (m4µA +δ2)]

(µA +αA)(m3ΛA +m4 +µA +αA)−ΛA(m4µA +δ2)

Theorem 4.3 In the absence of delays that is τ2 = 0, the endemic equilibrium point E1 is locally

asymptotically stable for Rha > 1 if and only if

(79) m4 > m3 and A∗S >
m4[m3(µA +αA)− (m4µA +δ2)]

(µA +αA)(m3ΛA +m4 +µA +αA)−ΛA(m4µA +δ2)
.

Case 2: Delay for (τ2 > 0)

In this case, the transcendental equation (63) is

(80) ψ(λ ,e−λτ2) = λ
4 +a3λ

3 +a2λ
2 +a1λ +a0 +(b3λ

3 +b2λ
2 +b1λ +b0)e−(µA+λ )τ2 = 0

Multiplying both sides of equation (80) by e(µA+λ )τ2 we obtain

(81) ψ(λ ,e−λτ2) = b3λ
3 +b2λ

2 +b1λ +b0 +(λ 4 +a3λ
3 +a2λ

2 +a1λ +a0)eµAτ2eλτ2 = 0

that is

(82) ψ(λ ,e−λτ2) = b3λ
3 +b2λ

2 +b1λ +b0 +(c4λ
4 + c3λ

3 + c2λ
2 + c1λ + c0)eλτ2 = 0

where

(83) σ = eµAτ2 , c4 = σ , c3 = σa3, c2 = σa2, c1 = σa1, c0 = σa0.
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Equation (82) is a transcendental equation in λ having infinitely many roots. Possible Hopf-

bifurcation occurs if purely imaginary roots of the transcendental equation (82) exist. Now

substituting λ = iw into (82) and expressing the exponential in terms of trigonometric ratios, it

follows that

(84) −b3w3i−b2w2+b1wi+b0+(c4w4−c3w3i−c2w2+c1wi+c0)(cos(τ2w)+ isin(τ2w)= 0

that is

(85)
−b2w2 +b0 +(c4w4− c2w2 + c0)cos(τ2w)+(c3w3− c1w)sin(τ2w)

+ [−b3w3 +b1w+(c1w− c3w3)cos(τ2w)+(c4w4− c2w2 + c0)sin(τ2w)]i = 0

that is

(86)


(c4w4− c2w2 + c0)cos(τ2w)+(c3w3− c1w)sin(τ2w) = b2w2−b0

(c1w− c3w3)cos(τ2w)+(c4w4− c2w2 + c0)sin(τ2w) = b3w3−b1w

solving system (86) we get

(87) sin(τ2w) =
(c1w− c3w3)(b2w2−b0)− (b3w3−b1w)(c4w4− c2w2 + c0)

(c3w3− c1w)(−c3w3 + c1w)− (c4w4− c2w2 + c0)(c4w4− c2w2 + c0)

(88) cos(τ2w) =
(c4w4− c2w2 + c0)(b2w2−b0)− (c3w3− c1w)(b3w3−b1w)

(c4w4− c2w2 + c0)(c4w4− c2w2 + c0)− (−c3w3 + c1w)(c3w3− c1w)

that is

(89)

sin(τ2w)=
b3c4w7 +(c3b2−b3c2−b1c4)w5 +(c3b0− c1b2 +b3c0 +b1c2)w3 +(c1b0−b1c0)w

c2
4w8 +(c2

3−2c4c2)w6 +(2c4c0−2c3c1 + c2
2)w

4 +(c2
1−2c2c0)w2 + c2

0

(90)

cos(τ2w)=
(c4b2− c3b3)w6 +(−c4b0− c2b2 + c3b1 + c1b3)w4 +(c2b0 + c0b2− c1b1)w2− c0b0

c2
4w8 +(c2

3−2c4c2)w6 +(2c4c0−2c3c1 + c2
2)w

4 +(c2
1−2c2c0)w2 + c2

0

that is

(91) sin(τ2w) =
e7w7 + e5w5 + e3w3 + e1w

f8w8 + f6w6 + f4w4 + f2w2 + f0

and

(92) cos(τ2w) =
e6w6 + e4w4 + e2w2 + e0

f8w8 + f6w6 + f4w4 + f2w2 + f0
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where

(93) e7 = b3c4, e6 = c4b2− c3b3, e5 = c3b2−b3c2−b1c4, e4 =−c4b0− c2b2 + c3b1 + c1b3

(94) e3 = c3b0− c1b2 +b3c0 +b1c2, e2 = c2b0 + c0b2− c1b1, e1 = c1b0−b1c0, e0 =−c0b0

(95) f8 = c2
4, f6 = c2

3−2c4c2, f4 = 2c4c0 + c2
2−2c3c1, f2 = c2

1−2c2c0, f0 = c2
0.

Using the fundamental Pythagorean trigonometric identity, we obtain

(96) M16w16 +M14w14 +M12w12 +M10w10 +M8w8 +M6w6 +M4w4 +M2w2 +M0 = 0

where

(97)

M16 = f 2
8 , M14 = 2 f8 f6− e2

7, M12 = f 2
6 +2 f8 f4− e2

6−2e7e5, M10 = 2( f8 f2 + f6 f4− e7e3− e6e4)− e2
5

(98)

M8 = 2( f8 f0+ f6 f2−e7e1−e5e3−e6e2)+ f 2
4 −e2

4, M6 = 2( f8 f0+ f4 f2−e5e1−e6e0−e4e2)−e2
3

(99) M4 = 2( f4 f0− e3e1− e4e0)+ f 2
2 − e2

2, M2 = 2( f2 f0− e2e0)− e2
1, M0 = f 2

0 − e2
0.

Let w2 = η , then equation (96) becomes

(100) P(η) = M16η
8 +M14η

7 +M12η
6 +M10η

5 +M8η
4 +M6η

3 +M4η
2 +M2η +M0 = 0

which represents the Hopf frequency. Next, the following assumption is made for the Hopf

frequency equation.

(T1): Equation (100) has at least one positive root. Now, if condition (T1) holds,equation

(100) has a positive root η0 and the equation (96) definitely has a pair of purely imaginary

roots ±iw0 = ±i
√

η0. Consequently the corresponding critical value of τ2 at which a Hopf-

bifurcation occurs is found to be

(101) τ2k =
1

wk
arccos

(
e6w6

k + e4w4
k + e2w2

k + e0

f8w8
k + f6w6

k + f4w4
k + f2w2

k + f0

)
+

2kπ

wk
, (k = 0,1,2,3, ...)

Hence, (w0,τ2k) is the solution of the equation (82) meaning that there exists a pair of purely

imaginary roots λ =±iw0 for equation (82) when τ2 = τ2k . Especially, for k = 0 one get



20 AUBIN NANA MBAJOUN, RAOUL DOMINGO AYISSI, SAMUEL MUTUA

(102) τ20 =
1

w0
arccos

(
e6w6

0 + e4w4
0 + e2w2

0 + e0

f8w8
0 + f6w6

0 + f4w4
0 + f2w2

0 + f0

)
Differentiating both sides of equation (82) with respect to τ2 it follows that

(103)
(

dλ

dτ2

)−1

=
3b3λ 2 +2b2λ +b1 +(4c4λ 3 +3c3λ 2 +2c2λ + c1)eλτ2

(c4λ 5 + c3λ 4 + c2λ 3 + c1λ 2 + c0λ )eλτ2
+

τ2

λ

Now, taking the real component of
(

dλ

dτ2

)−1
at τ2 = τ2k with λ = iw we get

(104) Re
(

dλ

dτ2

)−1

=
X1Y1 +X2Y2

Y 2
1 +Y 2

2

where

(105) X1 =−3b3w3
0 +b1 +(c1−3c3w2

0)cos(w0τ20)+(4c4w3
0−2c2w0)sin(w0τ20)

(106) X2 = 2b2w0 +(2c2w0−4c4w3
0)cos(w0τ20)+(c1−3c3w2

0)sin(w0τ20)

(107) Y1 = (−c3w4
0− c1w2

0)cos(w0τ20)+(c2w3
0− c4w5

0− c0w0)sin(w0τ20)

(108) Y2 = (c2w3
0− c4w5

0− c0w0)cos(w0τ20)+(−c3w4
0− c1w2

0)sin(w0τ20)

Obviously, if worth noting if the condition (T2) : X1Y1+X2Y2 6= 0 holds, then Re
(

dλ

dτ2

)−1

τ2≡τ20

6= 0.

Therefore, following the above analysis and the Hopf-bifurcation theory in (Hassard et al.,

1981), one have the theorem below

Theorem 4.4 Suppose that the conditions (T1)− (T2) hold, then the endemic equilibrium

E1 = (H∗S ,H
∗
I ,A

∗
S,A
∗
I ) of the delayed model system (40) is locally asymptotically stable

when τ2 ∈ [0,τ20) and the delayed model system (40) undergoes a Hopf-bifurcation at E1 =

(H∗S ,H
∗
I ,A

∗
S,A
∗
I ) when τ2 = τ20 .

In the following table of the parameters most are assumed (due to the lack of data) while few

are taken from the literature.
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Table 2. Parameter values for the model (1)

Parameter Value Source of data

ΛH 2000/36500 per day [16]

µH 5.48 × 10−5 per day [18,19]

αH 0.001 per day [18,19]

βH 0.1 per day [18,19]

δ1 2 × 10−6 per day [16]

ΛA 1000/245 per day [16,17]

µA 1/245 per day [16,17]

αA 1/400 per day [16]

βA 0.1 per day Assumed

δ2 5.1 × 10−4 per day [16]

m1 0.01 Assumed

m2 0.03 Assumed

m3 0.01 Assumed

m4 0.01 Assumed

τ1 8 Assumed

τ2 12 Assumed

5. NUMERICAL SIMULATIONS

We performed numerical simulations of our proposed model (1) to support some of the ana-

lytical results. We use the set of parameters values given in Table 2 and the initial values of the

model are set as: HS(0) = 1000,HI(0) = 10,HR(0) = 5,AS(0) = 50,AI(0) = 500,AR(0) = 10.

We set the final time as t f = 120 days. This was chosen on the basis of the assumption that a

period of four month is enough for the disease spread. All simulations are done using MATLAB

dde23.

5.1. Simulations of the effects of incubation delay τ1 on the dynamics of the disease. Fig-

ure 1 shows that,the incubation period τ1 which does not appear in the formula of the basic

reproduction number has an effect on the dynamics of the disease.The endemic equilibrium E1
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of system (1) is locally asymptotically stable when the basic reproduction numberRha is greater

than unity. In fact, from Figure 1(b) we observe that the susceptible animals decrease and con-

verges to a steady state to acquire endemic equilibrium level while in Figure 1(d), there is a

slight ascent in the number of infected animals to a certain endemic level and a steep descent

and converges to a steady state to acquire endemic equilibrium level. From Figure 1 (a) and 1

(c), we observe that the magnitude of the amplitude of oscillations for susceptible and infected

humans are weak but have an small effect on the dynamics of the disease. The biological in-

terpretation of this is that whenever the incubation period is τ1 = τ < τ10 the disease can be

contolled with ease.

(A) (B)

(C) (D)

FIGURE 1. Graph showing the effects of transmission of incubation delay τ1 on

the dynamics of the disease.

5.2. Simulations for the local asymptotic stability of the endemic equilibrium and exis-

tence of Hopf-bifurcation with delay τ2 > 0. For τ2 > 0, a computation by means of Maple
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18 software gives w0 = 0.7139 and τ20 = 15.8210. Hence, according to Theorem 4.4, the posi-

tive endemic equilibrium E1 is locally asymptotically stable when τ20 = 12 < 15.8210 and this

result is illustrated in Figure 2(a). However, when the incubation delay τ20 = 12 passes through

the critical value τ20 = 15.8210; then the positive endemic equilibrium E1 loses its stability and

model (1) undergoes a Hopf-bifurcation at E1: That is, the family of periodic solutions of the

model (1) bifurcate from the positive endemic equilibrium E1 and this property is illustrated in

Figure 2(b). In this case, the disease will be out of control.

(A) (B)

FIGURE 2. Figure 2 (a) is the graph of solutions of the model (1) where the

endemic equilibrium point E1 is locally asymptotically stable when τ20 = 12 <

15.8210. Figure 2 (b) shows the occurrence of Hopf-bifurcation at the endemic

equilibrium point E1 when τ2 = 17 > 15.8210 = τ20 .

5.3. Simulations for the local asymptotic stability of the endemic equilibrium and exis-

tence of Hopf-bifurcation with delay τ2 > 0 in incubation period. For τ2 > 0, a computa-

tion by means of Maple 18 software gives w0 = 0.8239 and τ20 = 14.8210. Hence, accord-

ing to Theorem 4.4, the positive endemic equilibrium E1 is locally asymptotically stable when

τ20 = 12 < 14.8210 and this result is illustrated in Figure 3(a). However, when the incubation

delay τ20 = 12 passes through the critical value τ20 = 14.8210; then the positive endemic equi-

librium E1 loses its stability and model (1) undergoes a Hopf-bifurcation at E1: That is, the

family of periodic solutions of the model (1) bifurcate from the positive endemic equilibrium

E1 and this property is illustrated in Figure 3(b). In this case, the disease will be out of control.
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(A) (B)

FIGURE 3. Figure 3 (a) is the graph of solutions of the model (1) where the

endemic equilibrium point E1 is locally asymptotically stable when τ20 = 12 <

14.8210. Figure 3 (b) shows the occurrence of Hopf-bifurcation at the endemic

equilibrium point E1 when τ2 = 16 > 14.8210 = τ20 .

5.4. Simulations of the effects of incubation delay τ2 on the dynamics of the disease. In

Figure 5, the spiral-shaped graphical representation of the number of humans susceptible to

and infected with animal-transmitted cryptosporidiosis suggests complex dynamics of disease

emergence and control over time. The observed variations reflect distinct phases of introduction

from the animal reservoir, with seasonal cycles potentially influencing transmission. Negative

values on the y-axis indicate a reduction in the number of infected humans, suggesting effec-

tive interventions. However, the spiral shape highlights the need for continued monitoring, as

resurgences or changes in transmission dynamics could occur.
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FIGURE 4

FIGURE 5. Graph showing the effects of incubation period τ2 on the dynamics

of the disease.

6. DISCUSSIONS AND CONCLUSIONS

In this paper, we have formulated a delayed model of Cryptosporidiosis disease in human and

animal population extending the model proposed in [mon article], by introducing two delays

times in terms of incubation periods. Compared with the Cryptosporidiosis disease model in

[mon article], we mainly explore the effect of the time delays on its dynamic nature. Compared

with other zoonotic disease models, we incorporate the incubation periods in the equations of

infected humans and infected animals which appears to be consistent with the reality. In the nu-

merical simulations, we have shown that when the value of the incubation delay τ2 are below the

corresponding critical values τ20 , the positive endemic equilibrium E1 of model (1) is locally

asymptotically stable under some certain conditions. The result in this case implies that the

spread of Cryptosporidiosis disease in human an animal population can be controlled with ease.

Conversely, once the value of the delay τ2 passes through the critical value τ20 , the positive en-

demic equilibrium E1 loses its stability and a Hopf–bifurcation occurs with a family of periodic

solutions bifurcating from E1. The result in this case means that Cryptosporidiosis disease will

persist in the human and animal population and will be out of control. The Hopf bifurcation
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phenomenon in figure 3 and figure 4 manifests that the human and animal population will re-

main in an oscillatory behavior as long as the incubation period is greater that its corresponding

critical value. We can observe from equation (37) of the basic reproduction number Rha that

only delay τ2 is present, this does not mean that τ1 has no effect on the dynamics of the disease,

we can see Figure 1, so delayed models are more realistic and mathematically, the delays affect

the dynamics and the stability of disease-free equilibrium. Thus, if the incubation periods can

be reduced to an level for which Rha<1, the Cryptosporidiosis disease can be eliminated from

the human and animal population. Some authors considered that in zoonotic diseases control,

taking into account the incubation periods is crucial to design appropriate policy towards con-

trolling and preventing the disease. Hence, in the near future we will come with a paper to

derive the optimal control problem for our proposed delayed model.
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