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Abstract. The interaction of predators and prey is seen as a natural occurrence in biological systems. This

paper investigates a predator-prey model with fractional derivatives. A term that models intraspecific competition

within the predator population is also included in our proposed model with relation to the fractional derivative of

Caputo. For large predator-to-prey density ratios, this extra term restricts the growth of the predator population.

The topological structure of the fixed points is studied in this paper. Mathematically we prove that the considered

model experiences both a Neimark-Sacker (NS) and a Period-doubling (PD) bifurcation under specific parametric

conditions. We investigate the presence of a period-doubling bifurcation and a Neimark-Sacker bifurcation using

the bifurcation theory. The dynamic behavior of this model is examined based on changes made to the control

parameters and influenced by the initial conditions. The main features of numerical simulations, such as phase

portraits, maximal Lyapunov exponents, and bifurcation diagrams, are shown to demonstrate the richer and more

complicated dynamics, complex dynamical behaviors, and the accuracy of theoretical analysis. Furthermore, two

methods of chaos management are applied in order to reduce the chaos that the system inherently contains.
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1. INTRODUCTION

Due to the fact that it occurs everywhere, the study of predator-prey interaction is a crucial

field of study. Mathematical modeling has been used in a substantial number of articles to

comprehend the intricate dynamics of the predator-prey system. Most dynamical systems are

discussed using differential and difference equations. Many scholars have recently claimed that

the population dynamics model is more relevant and realistic when difference equations are

used to model it [1, 2, 3, 4]. Discrete-time systems are better ideal for organisms with non-

overlapping generations, such as annual plants or insect colonies with a single generation each

year. In lower-dimensional systems, the dynamics of discrete models are more complex than

those of their continuous-time equivalents. Discrete systems best describe the more intricate

patterns and chaotic behavior of nonlinear dynamics. For instance, a 1-dimensional discrete-

time autonomous system can exhibit chaos, whereas a continuous-time system requires at least

a 3-dimensional autonomous system [5].

One approach to discretizing a continuous system is to use the forward Euler scheme with an

integral step size. Hadeler and Gerstmann [6], Salman et al. [2], Cheng and Cao [7], Hu and

Cao [1], Liu and Xiao [8], Ajaz et al. [4] and many others have used this discretization scheme

and varied stepsize as a bifurcation parameter. An alternate discretization technique for differ-

ential equations known as piecewise constant arguments is presented in Din [3], Ishaque et al.

[9], Khan [10], and the references therein. All the discretized systems proved the existence and

singularity of positive steady states, the non-negativity and uniform boundedness of solution

sets, as well as other properties that are difficult to prove when applying Euler’s discretiza-

tion method. Recently, some authors have switched from using traditional derivatives in dis-

crete models to the well-known Caputo fractional derivative (we refer [11, 12, 13, 14, 29, 44]).

Fractional-order models are more suitable than models with ordinary derivatives. Thus, research

on fractional-order models has gained increasing importance, particularly in the field of biol-

ogy. Moreover, the Caputo fractional derivative, involving the fractional order, is particularly

crucial in these models as it enables the observation of memory effects. The models incorporat-

ing fractional-order present a more accurate representation of complex biological systems and
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processes. This case causes significant advancements in our understanding of biological phe-

nomena. The Caputo derivative additionally provides a strong and useful method for modelling

fractional-order predator-prey interactions, ensuring the preservation of equilibrium states, and

facilitating the application of conventional initial and boundary conditions for precise and in-

sightful ecological predictions. It is a useful tool for examining intricate ecological dynamics

in a variety of real-world issues due to its adaptability and capacity to capture memory effects

[15]. Some dependence on previous states is required to elicit memory effects; however, the

lack of a specific model for how memory combines information from the past may be shown as

a limitation of the fractional derivative. On the other hand, we added to the considered model a

fractional derivative approach to model memory as an effect distributed in time.

Several simple mathematical models have been put out to understand the interactions be-

tween prey and predator. Continuous-time population models, such as the Lotka-Volterra model

[16, 17], have been employed in population dynamics , to comprehend the interactions of eco-

logical species [18, 19, 20, 21, 22]. Populations in ecology have various methods to search for

food and defend themselves, such as refuging, grouping, etc. In order to create mathematical

models that are more precise, many ecological aspects and elements are included. The func-

tional response in population dynamics must be considered in every prey-predator interaction.

The functional response of the Holling type II is preferred to the other responses [23]. In [25]

and [24], a discrete-time phytoplankton-zooplankton model with Holling type-II response was

analyzed analytically and numerically, respectively, to examine the dynamics of a discrete-time

predator-prey system with Holling-III type functional response. The authors investigate the sta-

bility, bifurcation, and chaos control of the discrete-time predator-prey model in [39] along with

the Allee effect on the predator. The fixed point, local stability, types of bifurcations, and closed

invariant curves for a fractional-order chemical reaction system have all been studied in [40].

The dynamics of a discrete-time predator-prey system using a functional response model of the

Holling-III type are examined by the authors in [24]. A.Q. Khan et al. in [38] investigated global

dynamics, Neimark-Sacker bifurcation, and hybrid control in Leslie’s prey-predator model. An

explicit bifurcation analysis criterion was provided for a three-dimensional system in [37]. The

introduction of intraspecific competition within the predator population is the most significant
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change we made to our model. When the ratio of predators to prey is noticeably high, there is in-

traspecific competition between the predator populations, which causes the predator population

to experience decreased fitness as a result of food scarcity [41]. Blue crab populations exhibit

intraspecific competition when they exhibit agonistic behavior, which injures them when there

is a shortage of available prey [42]. Carnivorous fish (predators) eat detritivorous fish (prey) in

the Sundarban mangrove habitat. Predators may readily catch prey and engage in intraspecific

competition to obtain food since there is no sanctuary for the prey [43].

Some of the contributions that this research brings are as follows:

(1) In the proposed model, there are two interdependent species, one of which provides food

for the other. In this work, we examined the effects of intraspecific competition on the predator

community within the model.

(2) The stability of the proposed model is assessed by looking for possible fixed points.

(3) It has been demonstrated that the proposed model can undergo both NS and PD bifurca-

tions.

(4) The proposed model has entered a chaotic state due to the Neimark-Sacker bifurcation;

therefore, the OGY (Ott, Grebogi, and Yorke) and hybrid control procedures have been em-

ployed to regulate it.

(5) We have included several numerical scenarios for our proposed fractional order discrete-time

predator-prey model with intraspecific competition to confirm the validity of our theoretical re-

sults.

The remaining sections are arranged as follows: A discrete fractional order prey-predator

model with intraspecific competition is present in Section 2. We examine the existence and

local stability of fixed points in Section 3. The prospect of a period-doubling bifurcation at

the coexistence fixed point of the discrete system is discussed in Section 4. The existence

of Neimark-Sacker bifurcation around the system’s coexistence fixed point is investigated in

section 5. To bolster our analytical conclusions, we provide a quantitative depiction of the

model dynamics in Section 6 together with phase portraits, bifurcation diagrams, and maxi-

mal Lyapunov exponents. In Section 7, the chaotic nature of the model is stabilized through
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the application of OGY approaches and a hybrid control strategy. Section 8 offers succinct

explanations.

2. MODEL FORMULATION

We assume that the prey and predator populations have constant densities through time, a

uniform distribution across space, and no identifiable stage structure for either the prey or the

predators. The proposed model is given by:

(1)
ẋ = δpx(1− x)−φpxy,

ẏ = βpxy+(1−ηp)y− γpy2.

Where prey and predator populations are represented by x and y, respectively, at any time

t. All of the parameters δp,φp,βp,ηp,γp are positive constants with biological meanings. In

the absence of a predator, the parameter δp is the intrinsic growth rate of prey populations with

carrying capacity one. The predator’s death rate is represented by ηp, and the predator’s growth

rate in the presence of prey is denoted by βp. Also, ηp signifies the maximum rate of predation

and γp denotes intraspecific competition within predator populations.

The Captuto fractional time derivative of a function f (t) of order τ is given in [27] as follows.

(2) Dτ f (t) =
1

Γ(1− τ)

∫ t

0

1
(t−ζp)τ

f (ζp)dζp,

where, τ ∈ (0,1]; Dτ =
dτ

dtτ
, and Γ(1− τ) is the gamma function. As a result, the fractional-

order version of the model (1) is as follows.

dτx
dtτ

= Dτx = δpx(1− x)−φpxy,(3)

dτy
dtτ

= Dτy = βpxy+(1−ηp)y− γpy2.

The discretized version of the system(3) is presented here by using the Caputo fractional

derivative.

(4)
xn+1 = xn +

hτ

Γ(τ +1)
(δpxn(1− xn)−φpxnyn) ,

yn+1 = yn +
hτ

Γ(τ +1)
(
βpxnyn +(1−ηp)yn− γpy2

n
)
.
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Note that the proposed predator-prey system with intraspecific competition looks the same

as the Euler discretization if τ → 1 in (4). The proposed model contains drawbacks as well as

advantages over the classical version. Since the proposed discrete model has only recently been

developed, there is a lack of empirical evidence to confirm its accuracy and practical useful-

ness. Difference equations analysis and solution are more challenging than with typical discrete

models. The proposed model parameters may be more unpredictable and challenging to deter-

mine than standard model parameters. Fractional order models can provide insight into intricate

systems that incorporate memory effects and non-local interactions, despite these limitations.

Fractional calculus focuses on integrals and derivatives of non-integer order. Fractional-order

differential equations can describe complex dynamics, whereas integer-order models cannot.

3. EXISTENCE AND STABILITY ANALYSIS OF FIXED POINT

3.1. Existence of Fixed Points. The fixed points are ζ̃0 = (0,0), ζ̃1 = (1,0), ζ̃2 = (0, 1−ηp
γp

)

and ζ̃3 = (x∗,y∗), where x∗ = γpδp+(−1+ηp)φp
γpδp+βpφp

and y∗ = δp(1+βp−ηp)
γpδp+βpφp

. The existence conditions of

all the fixed points are given in the following table.

Fixed Points Existence Conditions

ζ̃0 always

ζ̃1 always

ζ̃2 ηp < 1

ζ̃3 (βp−ηp)>−1

3.2. Local stability analysis for fixed points. We assess the stability of system (4) at its

identified fixed points. It is significant to note that the anticipated eigenvalues have an impact

on the local stability of the fixed points, regardless of the magnitude of the expected eigenvalues

at the fixed point ζ̃ (x,y). Then
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(5) U (x,y) =

 ˜u11 ˜u12

˜u21 ˜u22

 ,

where

˜u11 = 1+(δp−2xδp− yφp)
hτ

Γ(τ +1)
,

˜u12 =−xφp
hτ

Γ(τ +1)
,

˜u21 = yβp
hτ

Γ(τ +1)
,

˜u22 = 1+(1+ xβp−2yγp−ηp)
hτ

Γ(τ +1)
.

The following is how the characteristic equation can be stated at ζ̃ (x,y):

(6) Fdd(λ ) := λ
2− (2+ ˜∆dd ˜µdd)λ +(1+ ˜∆dd ˜µdd + Ω̃dd ˜µdd

2) = 0

Here, we have

˜µdd =
hτ

Γ(τ +1)
,

˜∆dd = 1+ x(βp−2δp)+δp−ηp− y(2γp +φp)

Ω̃dd =−(−1+2x)δp(1+ xβp−2yγp−ηp)+ y(−1+2yγp +ηp)φp

Therefore Fdd(1) = Ω̃dd ˜µdd
2 > 0 and Fdd(−1) = 4+2 ˜∆dd ˜µdd + Ω̃dd ˜µdd

2.

Using Jury’s criterion, the stability requirements of the following fixed points are specified.

We can find the jacobian matrix at ζ̃0 = (0,0) as

U
(

ζ̃0

)
=

 1+δp ˜µdd 0

0 1+(1−ηp) ˜µdd


The eigenvalues of U

(
ζ̃0

)
are λ1 = 1+δp ˜µdd and λ2 = 1+(1−ηp) ˜µdd

Lemma 1. The trivial fixed point ζ̃0 = (0,0) falls under the following topological classification.

(i) ζ̃0 is source if h >
(

2
ηp−1Γ(1+ τ)

) 1
τ

,

(ii) ζ̃0 is sink if h <
(

2
ηp−1Γ(1+ τ)

) 1
τ

,

(iii) ζ̃0 is non-hyperbolic if h =
(

2
ηp−1Γ(1+ τ)

) 1
τ

.
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The jacobian matrix at ζ̃1 = (1,0) is represented by

U
(

ζ̃1

)
=

 1−δp ˜µdd −φp ˜µdd

0 1+(1+βp−ηp) ˜µdd

 .

The eigenvalues of U
(

ζ̃1

)
are λ1 = 1−δp ˜µdd and λ2 = 1+(1+βp−ηp) ˜µdd .

Lemma 2. The predator-free fixed point ζ̃1 falls under the following topological classification:

(i) ζ̃1 is source if h >
(

2
ηp−βp−1Γ(1+ τ)

) 1
τ

,

(ii) ζ̃1 is sink if h <
(

2
ηp−βp−1Γ(1+ τ)

) 1
τ

,

(iii) ζ̃1 is non-hyperbolic if h =
(

2
ηp−βp−1Γ(1+ τ)

) 1
τ

,

The jacobian matrix changes when we reach ζ̃2 = (0, 1−ηp
γp

) which is given as follows:

U
(

ζ̃2

)
=

 γp+(γpδp+(−1+ηp)φp) ˜µdd
γp

0

−βp(−1+ηp) ˜µdd
γp

1+(1−ηp) ˜µdd


The eigenvalues of U

(
ζ̃2

)
are λ1 = 1+(−1+ηp) ˜µdd and λ2 =

γp+(γpδp+(−1+ηp)φp) ˜µdd
γp

.

Lemma 3. The prey-free fixed point ζ̃2 = (0, 1−ηp
γp

) can be classified according to the topology

in the following manner:

(i) if ηp >−1 then the fixed point ζ̃2 = (0, 1−ηp
γp

) is

(i.i) ζ̃2 is sink if 0 < h < min{
(

2
ηp−1Γ(1+ τ)

) 1
τ

,
(

−2γp
γpδp+(−1+ηp)φp

Γ(1+ τ)
) 1

τ },

(i.ii) ζ̃2 is source if h > max{
(

2
ηp−1Γ(1+ τ)

) 1
τ

,
(

−2γp
γpδp+(−1+ηp)φp

Γ(1+ τ)
) 1

τ },

(i.iii) ζ̃2 is non-hyperbolic if h =
(

2
ηp−1Γ(1+ τ)

) 1
τ

or h =
(

−2γp
γpδp+(−1+ηp)φp

Γ(1+ τ)
) 1

τ

,

(ii) if ηp <−1 then the fixed point ζ̃2 = (0, 1−ηp
γp

) is

(ii.i) ζ̃2 is source if h >
(

2
δp

Γ(1+ τ)
) 1

τ

,

(ii.ii) ζ̃2 is saddle if h <
(

2
δp

Γ(1+ τ)
) 1

τ

,

(ii.iii) ζ̃2 is non-hyperbolic if h =
(

2
δp

Γ(1+ τ)
) 1

τ

,

(iii) if ηp =−1 then the fixed point ζ̃2 = (0, 1−ηp
γp

) is non-hyperbolic.

At ζ̃3(x∗,y∗),
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˜∆dd4 = ˜∆dd|x=x∗,y=y∗,

˜Ωdd4 = Ω̃dd|x=x∗,y=y∗.

Regarding the stability requirements of ζ̃3(x∗,y∗), we provide the following lemma.

Lemma 4. The co-existence fixed point ζ̃3(x∗,y∗) can be categorized according to the following

topological rules:

(i) ζ̃3 is source if

(i.i) ˜∆dd4
2−4 ˜Ωdd4 ≥ 0 and ˜µdd >

− ˜∆dd4+

√
˜∆dd4

2−4 ˜Ωdd4
˜Ωdd4

(i.ii) ˜∆dd4
2−4 ˜Ωdd4 < 0 and ˜µdd > − ˜∆dd4

˜Ωdd4

(ii) ζ̃3 is sink if

(ii.i) ˜∆dd4
2−4 ˜Ωdd4 ≥ 0 and ˜µdd <

− ˜∆dd4−
√

˜∆dd4
2−4 ˜Ωdd4

˜Ωdd4

(ii.ii) ˜∆dd4
2−4 ˜Ωdd4 < 0 and ˜µdd < − ˜∆dd4

˜Ωdd4

(iii) ζ̃3 is non-hyperbolic if

(iii.i) ˜∆dd4
2−4 ˜Ωdd4 ≥ 0 and ˜µdd =

− ˜∆dd4±
√

˜∆dd4
2−4 ˜Ωdd4

˜Ωdd4
; ˜µdd 6= −2

˜∆dd4
, −4

˜∆dd4

(iii.ii) ˜∆dd4
2−4 ˜Ωdd4 < 0 and ˜µdd = −4

˜∆dd4
.

(iv) ζ̃3 is saddle if otherwise

Let,

P̂BF
1,2
ζ̃3

=

(δp,φp,ηp,βp,γp,τ,h) : h =

− ˜∆dd4±
√

˜∆dd4
2−4 ˜Ωdd4

˜Ωdd4
Γ(1+ τ)


1
τ

= h±

 .

with ˜∆dd4
2−4 ˜Ωdd4 ≥ 0, ˜µdd 6= −2

˜∆dd4
, −4

˜∆dd4
. When the parameters (δp,φp,ηp,βp,γp,τ,h) change

within a constrained region of P̂BF
1,2
ζ̃3

, the system (4) at ζ̃3 experiences a PD bifurcation. Also,

let

N̂BF
ζ̃3
=

(δp,φp,ηp,βp,γp,τ,h) : h =

(
Γ(1+ τ)

− ˜∆dd4
˜Ωdd4

) 1
τ

= hNS, ˜∆dd4
2−4 ˜Ωdd4 < 0

 .

An NS bifurcation will occur in system (4) if the parameters (δp,φp,ηp,βp,γp,τ,h) vary

around the set N̂BF
ζ̃3

.
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4. PERIOD-DOUBLING BIFURCATION

The emphasis of this section is on the existence of a period-doubling bifurcation at a positive

equilibrium point ζ̃3(x∗,y∗) of the system (4). This type of bifurcation is explored after demon-

strating its presence and direction using normal forms. Several experts have recently studied

the period-doubling bifurcation in discrete-time mathematical models [28, 30, 31].

The parameters (δp,φp,ηp,βp,γp,τ,h), are randomly chosen to locate in P̂BF
1,2
ζ̃3

. Take into

consideration system (4) at ζ̃3(x∗,y∗), the equilibrium point. Let

h = h− =

− ˜∆dd4−
√

˜∆dd4
2−4 ˜Ωdd4

˜Ωdd4
Γ(1+ τ)


1
τ

.

Additionally, the eigenvalues of U(ζ̃3) are provided as

λ1(h−) =−1,and λ2(h−) = λ
∗∗

For |λ2(h−) 6= 1| to be implied

(7) λ
∗∗ 6=±1.

Next, we set A(h−) = U(x∗,y∗) and apply the transformations x̂ = x− x+, ŷ = y− y+. We

move the fixed point of the system (4) to the initial position. As a result, system (4) can be

written as

(8)

 x̂

ŷ

→ A(h−)

 x̂

ŷ

+

 Fx1(x̂, ŷ,h−)

Fx2(x̂, ŷ,h−)

 ,

where X = (x̂, ŷ)T and

(9)
Fx1(x̂, ŷ,h+) =

1
2
(
−2x̂2

δp ˜µdd−2x̂ŷφp ˜µdd
)
,

Fx2(x̂, ŷ,h+) =
1
2
(
2x̂ŷβp ˜µdd−2ŷ2

γp ˜µdd
)
.

It is feasible to express system (4) as

Xn+1 = AXn +
1
2

Be (Xn,Xn)+
1
6

Ce (Xn,Xn,Xn)+O
(
‖Xn‖4

)
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As symmetric multi-linear vector functions on x,y,u ∈ R2 , Be(x,y) =

 Be1(x,y)

Be2(x,y)

 and

Ce(x,y,u) =

 Ce1(x,y,u)

Ce2(x,y,u)

 are defined as follows:

Be1(x,y) =
2

∑
j,k=1

δ 2Fx1(ξ ,h)
δξ jδξk

∣∣∣∣∣
ξ=0

x jyk =− ˜µdd (2x1y1δp + x2y1φp + x1y2φp) ,

Be2(x,y) =
2

∑
j,k=1

δ 2Fx2(ξ ,h)
δξ jδξk

∣∣∣∣∣
ξ=0

x jyk = ˜µdd(x2y1βp + x1y2βp−2x2y2γp).

and

Ce1(x,y,u) =
2

∑
j,k,l=1

δ 2Fx1(ξ ,h)
δξ jδξkδξl

∣∣∣∣∣
ξ=0

x jykul =0,

Ce2(x,y,u) =
2

∑
j,k,l=1

δ 2Fx1(ξ ,h)
δξ jδξkδξl

∣∣∣∣∣
ξ=0

x jykul =0.

The two eigenvectors associated with A and AT with eigenvalue λ1 (h−) = −1 should be

represented by q̃a, q̃b ∈ R2 such that A(h−) q̃a = −q̃a and AT (h−) q̃b = −q̃b. Therefore, by

performing simple calculations, we arrive at

q̃a =

 ˜qa11

1

 ,

q̃b =

 ˜qb11

1

 .

where

˜qa11 =
(−1+2y∗γp +δp− x∗(βp +2δp)+ηp− y∗φp)

2y∗βp

−

√
(x∗2(βp +2δp)2 +(−1+2y∗γp +δp +ηp− y∗φp)2 + ˜App1)

2y∗βp

˜qb11 =
(−1−2y∗γp−δp + x∗(βp +2δp)−ηp + y∗φp)

2x∗βp

+

√
(x∗2(βp +2δp)2 +(−1+2y∗γp +δp +ηp− y∗φp)2 + ˜App2)

2x∗βp
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˜App1 =−2x∗(2δp(−1+2y∗γp +δp +ηp− y∗φp)+βp(−1+2y∗γp +δp +ηp + y∗φp))

˜App2 =−2x∗(2δp(−1+2y∗γp +δp +ηp− y∗φp)+βp(−1+2y∗γp +δp +ηp + y∗φp)).

To get 〈q̃a, q̃b〉= 1, where 〈q̃a, q̃b〉= ˜qa11 ˜qb11+ ˜qa12 ˜qb12, we must make use of the normalized

vector q̃b = ϑ+q̃b, with ϑ+ = 1
1− ˜qa11 ˜qb11

. We must examine the sign of sa(h−), the coefficient of

the critical standard form[32], to determine the direction of the PD bifurcation.

(10) s1 (h−) =
1
6
〈q̃b,Ce(q̃a, q̃a, q̃a)〉−

1
2
〈
q̃b,Be

(
q̃b,(A− I)−1Be(q̃a, q̃a)

)〉
The direction and stability of PD bifurcation can be shown using the following theorem in

light of the justification presented above.

Theorem 1. For the fixed point ζ̃3(x∗,y∗), assume that Eq.(7) is valid. If s1 (h−) 6= 0 and

h− fluctuate its value in a constrained vicinity to P̂BF
1,2
ζ̃3

, system (4) will experience a period-

doubling bifurcation at ζ̃3(x∗,y∗). Additionally, if s1 (h−) is positive or negative, period-2 orbits

split apart from ζ̃3(x∗,y∗) and become stable (or unstable).

5. NEIMARK-SACKER BIFURCATION

This section investigates the Neimark-Sacker bifurcation around the positive equilibrium

point ζ̃3(x∗,y∗) of the system (4). We used the conventional concept of bifurcation to deter-

mine the direction and presence of this form of bifurcation. Several mathematicians have re-

cently investigated the Neimark-Sacker bifurcation, which is linked to a number of discrete-time

mathematical systems [33, 34, 36].

Assume the parameters (δp,φp,ηp,βp,γp,τ,h) ∈ N̂BF
ζ̃3

then the eigenvalues of system (4)

are λ1,2 ∈ C.

h = hNS =

(
Γ(1+ τ)

− ˜∆dd4
˜Ωdd4

) 1
τ

Also,

(11)
d|λi(h)|

dh |h=hNS =
γ2

pδp(γp(1+βp+δp−ηp)+(−1+ηp)φp)

2(γpδp+βpφp)(γpδp+(−1+ηp)φp)2 6= 0

−(trU(hNS)) 6= 0⇒ (γ2
pδp(β

2
p+δ 2

p−2βp(−1+ηp)+(−1+ηp)
2)−2γpδp(βp+β 2

p+δp−βpηp−δpηp)φp+Λp1)

((1+βp−ηp)(γpδp+βpφp)(γpδp(−1+ηp)φp))
6= 0,1.

where Λp1 = (−2β 2
p +2βp(−1+ηp)+δp(−1+ηp))(−1+ηp)φ

2
p .
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and

(12) λ
k(hNS) 6= 1;k = 1,2,3,4

Take into account the scenario in which q̃a, q̃b ∈ R2 are the two eigenvectors of A(hNS) and

AT (hNS) with respect to the eigenvalues λ (hNS) and λ̄ (hNS) in such a way

(13)
A(hNS) q̃a = λ (hNS) q̃a, A(hNS) ¯̃qa = λ̄ (hNS) ¯̃qa,

AT (hNS) q̃b = λ̄ (hNS) q̃b, AT (hNS) ¯̃qb = λ (hNS) ¯̃qb.

Therefore, by performing simple calculations, we find:

q̃a =

 ˜qa11

1

 ,

q̃b =

 ˜qb11

1

 .

To obtain 〈q̃a, q̃b〉 = 1, where 〈q̃a, q̃b〉 = ˜qa11 ˜qb11 + ˜qa12 ˜qb12, we set the normalized vector

q̃b = ϑNSq̃b, with ϑNS =
1

1+ ˜qb11 ¯̃qa11
.

By taking into account how h can fluctuate close to hNS and for z ∈ C, we can decompose

X ∈ R2 as X = zq̃a + z̄ ¯̃qa. z = 〈q̃b,X〉 is the exact formulation of z. Thus, for |h| close to hNS,

system (4) switched to the following system:

(14) z 7−→ µ(h)z+ ĥ(z, z̄,h),

where µ(h) = (1+ ϕ̂(h))eiθ(h) with ϕ̂ (hNS) = 0 and ĥ(z, z̄,h) is an easily computed complex-

valued function. When Taylor expansion is used on the function ĥ, we have

ĥ(z, z̄,h) = ∑
k+l≥2

1
k!l!

ĥkl(h)zk−l with ĥkl ∈ C,k, l = 0,1, . . . .

The Taylor coefficients are defined as follows.

(15)

ĥ20 (hNS) = 〈q̃b,Be(q̃a, q̃a)〉,

ĥ11 (hNS) = 〈q̃b,Be(q̃a, ¯̃qa)〉,

ĥ02 (hNS) = 〈q̃b,Be( ¯̃qa, ¯̃qa)〉,

ĥ21 (hNS) = 〈q̃b,Ce(q̃a, q̃a, ¯̃qa)〉



14 MD. JASIM UDDIN, M. B. ALMATRAFI, SHERAJUM MONIRA

The sign of the first Lyapunov coefficient s2(hNS) indicates the direction of the NS bifurca-

tion, which is given by the expression

(16) s2 (hNS) = Re
(

λ2ĥ21
2

)
−Re

(
(1−2λ1)λ2

2

2(1−λ1)
ĥ20ĥ11

)
− 1

2

∣∣∣ĥ11

∣∣∣2− 1
4

∣∣∣ĥ02

∣∣∣2
In the light of the preceding explanation, the following theorem can be utilized to show the

direction and stability of NS bifurcation.

Theorem 2. Assume that Eq.(11) is true and that s2 (hNS) 6= 0 is true. If the value of h fluctuates

in a specific area around N̂BF
ζ̃3

, then system (4) experiences a Neimark-Sacker bifurcation at

ζ̃3(x∗,y∗). Additionally, if s2 (hNS) is negative (resp. positive) and the NS bifurcation is super-

critical (resp. sub-critical), a unique invariant closed curve that is attracting (resp. repelling)

bifurcates from ζ̃3(x∗,y∗) as well.

6. NUMERICAL STUDY

In order to validate our theoretical conclusions and highlight some unexpected, intriguing

complex dynamical behaviors present in system (4), some numerical simulations are presented

to display bifurcation diagrams, phase portraits, and maximal Lyapunov exponents of the system

(4). To investigate the PD and NS bifurcations for the unique positive fixed point ζ̃3(x∗,y∗),

one can examine the initial condition (x0,y0) situated around the fixed point. We consider the

bifurcation parameters in the following scenarios:

Scenario (i): The following parameter values were chosen: ηp = 1.7, βp = 1.26, δp =

3.06, φp = 1.05, γp = 0.9, τ = 0.5896 and h varies between 0.55 ≤ h ≤ 0.8. We arrive at a

fixed point ζ̃3(x∗,y∗) = (0.855776,0.420309) and a point h− = 0.6179 for PD bifurcation. The

estimated eigenvalues are λ1,2 =−1,0.482685. The symmetric multilinear functions is defined

as follows

Be1(x,y) = (−5.14054x1y1−0.881956x2y1−0.881956x1y2) ,

Be2(x,y) = (1.05835x2y1 +1.05835x1y2−1.51192x2y2).

and

Ce1(x,y,u) = 0,

Ce2(x,y,u) = 0.
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Let the two eigenvectors of A(h−) and AT (h−), be q̃a, q̃b ∈ R2 which correspond to λ1,2.

Therefore, q̃a ∼ (−0.966772,0.255639)T and q̃b ∼ (−0.91238,−0.409345)T . For 〈q̃a, q̃b〉= 1,

after which the normalized vector can be used as q̃b = ϑ+q̃b where, ϑ+ = 1.28631. Then, we

obtain

q̃a ∼ (−0.966772,0.255639)T and q̃b ∼ (−1.1736,−0.526543)T .

The Lyapunov coefficient s1 (h−) = 2.94871 > 0 is obtained from (10). Consequently, the PD

bifurcation is sub-critical, and Theorem 1 is established.

The trajectories of the model are depicted in Figure 1 (a-b) as evolving from a fixed point

to a chaotic attractor via a PD bifurcation. Figure 1(c) depicts the estimated MLEs for Figure

1 (a-b). The phase portraits are presented in Figure 2 to illustrate the presented bifurcation in

Figure 1, which essentially demonstrates the bifurcation of a smooth, invariant closed curve into

a chaotic attractor from a stable fixed point.

(a) (b)

(c)

FIGURE 1. Visualisation of PD bifurcation and MLEs of species for changing param-

eter h
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FIGURE 2. The phase diagram for altering the input of h. The fixed point is indicated

by red ∗

Scenario (ii): In this scenario, we use the parameter values: ηp = 2.7, βp = 3.26, δp =

1.5, φp = 1.05, γp = 0.8, τ = 0.5896 and h varies between 0.5≤ h≤ 1.2. We arrive at a fixed

point ζ̃3(x∗,y∗) = (0.645685,0.506165) and a point hNS = 0.7013 for NS bifurcation. The

estimated eigenvalues are λ1,2 =−0.375741±0.926724i.

Also,

d |λi(h)|
dh

|h=hNS = 0.0493261 6= 0

−(tr(U
ζ̃3
))|h=hNS =−0.751482 6= 0,1.

Consider the two eigenvectors of A(hNS) and AT (hNS), be q̃a, q̃b ∈ C2 which correspond to

λ1,2. Therefore,

q̃a ∼ (−0.143775+0.520139i,0.841893)T and q̃b ∼ (0.841893,0.143775−0.520139i)T .
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For 〈q̃a, q̃b〉= 1, after which the normalized vector can be used as q̃b = ϑNSq̃b where, ϑNS =

−1.80929× 10−16 + 1.14181i. Also, the Taylor coefficients are obtained as follows by using

Eq.(15).

ĥ20 (hNS) =−1.02373+0.951245i,

ĥ11 (hNS) =−1.03832+0.828311i,

ĥ02 (hNS) =−1.0529−2.13156i,

ĥ21 (hNS) = 0.968173−5.98468i.

The Lyapunov coefficient s2 (hNS) = −4.19732 > 0 is obtained from (16). As a result, The-

orem 2 is established, and the bifurcation is NS, which is super-critical.

The parameter h is utilized to generate the bifurcation diagram (NS) for the system (4). Figure

3 depicts the NS bifurcation. The phase portraits are shown in Figure 4 corresponding to Figure

3 (a,b) for several choices of h demonstrating how the smooth invariant curve behaves as it

grows in radius and separates from the stable fixed point. We have also explored NS bifurcation;

Figure 5 displays the corresponding NS bifurcation diagrams. To do this, the fractional order

τ was changed within the range 0.02 ≤ τ ≤ 0.8, while all other parameters for Figure 3 were

fixed with h = 0.7013.

Scenario (iii): If other parameter values alter (for example, the parameter βp), the proposed

model in the NS bifurcation diagram may have more dynamic behavior. The following values

are used to generate a new NS diagram: ηp = 2.7, h = 0.7013, δp = 1.5, φp = 1.05, γp =

0.8, τ = 0.5896 and βp varies between 3.1 ≤ βp ≤ 3.8, as depicted in Figure 6 (a-b). The

model has a Neimark-Sacker bifurcation at βpNS = 3.26.

6.1. Biological Implications. In discrete prey-predator models, bifurcations can have impor-

tant ecological ramifications. The relationships between a group of animals that hunt and an-

other group of animals that hunting are explained by these models. The animals that hunt are

the ones that consume the prey in these models.

Neimark-Sacker and period-doubling bifurcations are phenomena observed in dynamical sys-

tems, such as ecological models. These splits can provide insight into the complexity and sta-

bility of ecological systems, and they have important biological ramifications. In population
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(a) (b)

(c)

FIGURE 3. Visualisation of NS bifurcation and MLEs of species for changing param-

eter h

dynamics, period-doubling bifurcations are characterised by the doubling of the oscillation pe-

riod, which can have important ecological ramifications. Period-doubling bifurcations often

signify the transition of a system’s dynamics from regular, predictable patterns to random ones.

In the context of ecological models, this change may indicate a decline in predictive capac-

ity and the emergence of complex, stochastic population level fluctuations. Period-doubling

bifurcations are associated with the generation of stable cycles of different lengths that make

up periodic orbits. From an ecological point of view, this can be understood as the oscillation

between distinct population cycles, such as the periodic oscillations of populations of predators

and prey with differing lengths. Through the analysis of these models, we can gain insight into

the basic principles governing population cycles and other ecological processes, and develop

more effective strategies to improve the stability and resilience of ecosystems.
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FIGURE 4. The phase diagram for altering the input of h. The fixed point is indicated

by a red ∗

(a) (b)

FIGURE 5. Visualisation of NS Bifurcation of species for changing fractional order τ

In dynamical systems, the transition from periodic to quasi-periodic behaviour is associated

with Neimark-Sacker bifurcations. This may signal a shift in ecological models from simple,

repeatable population cycles to more intricate, non-repetitive patterns. The ecological system
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(a) (b)

FIGURE 6. Visualisation of NS Bifurcation of species for changing parameter βp

FIGURE 7. The phase diagram for altering the input of βp. The fixed point is indicated

by a red ∗

experiences quasi-periodic oscillations when Neimark-Sacker bifurcations are present. The

oscillations are not exactly repeated, which increases the complexity of the temporal dynamics

of interacting species. Neimark-Sacker bifurcation in discrete prey-predator models generally

highlights how important it is to understand population dynamics and interactions in ecological

systems. We may learn more about the underlying mechanisms underlying population cycles

and other ecological processes by examining these models. We can also use this knowledge to

create more potent policies aimed at enhancing the resilience and stability of ecosystems.
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7. CHAOS MANAGEMENT

Because dynamical systems avoid chaos, they are considered the best method for chaos con-

trol based on a performance criterion. Numerous academic fields, including physics, biology,

ecology, and telecommunications, study chaotic behavior. Effective chaos management ap-

proaches can be also applied in a wide range of industries, such as physics labs, biochemistry,

cardiology, turbulence, and communication systems. Managing chaos dynamics in discrete-

time systems has drawn the attention of numerous scientists in recent times.

In this part, we will apply Ott-Grebogi-Yorke (OGY) [26] feedback control and a hybrid

control technique to system (4) in order to prevent chaos at the positive fixed point of system

(4) due to Neimark-Sacker bifurcation. We write system (4) as follows:

(17)
xn+1 = xn +

hτ

Γ(τ +1)
(δpxn(1− xn)−φpxnyn) = ˜gp1(x,y,βp),

yn+1 = yn +
hτ

Γ(τ +1)
(
βpxnyn +(1−ηp)yn− γpy2

n
)
= ˜gp2(x,y,βp).

where βp is assumed to be the prominent parameter for eliminating chaos. Moreover, it is

considered that βp ∈ (βp0− δ1,βp0 + δ1) with δ1 > 0 and βp0 denoting the nominal value of

βp. In the neighbourhood of the fixed point ζ3(x∗,y∗), where x∗ = γpδp+(−1+ηp)φp
γpδp+βpφp

and y∗ =
δp(1+βp−ηp)

γpδp+βpφp
, one can approximate system (17) as

(18)

 xn+1− x∗

yn+1− y∗

≈ Ãcc

 xn− x∗

yn− y∗

+ B̃cc
[
βp−βp0

]
,

where

Ãcc =

 ∂ ˜gp1(x,y,βp)
∂x

∂ ˜gp1(x,y,βp)
∂y

∂ ˜gp2(x,y,βp)
∂x

∂ ˜gp2(x,y,βp)
∂y


=

 γp(δp−δ 2
p ˜µdd)+(βp−δp(−1+ηp) ˜µdd)φp

γpδp+βpφp

− ˜µddφp(γpδp+(−1+ηp)φp)
γpδp+βpφp

βpδp(1+βp−ηp) ˜µdd
γpδp+βpφp

−γpδp(−1+(1+βp−ηp) ˜µdd)+βpφp
γpδp+βpφp

 ,
and

B̃cc =

 ∂ ˜gp1(x,y,βp)
∂βp

∂ ˜gp2(x,y,βp)
∂βp

=

 0
δp(1+βp−ηp) ˜µdd(γpδp+(−1+ηp)φp)

(γpδp+βpφp)2


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As a result, the controllability matrix of the system (17) is as follows:

C̃cc =
[

B̃cc : ÃccB̃cc

]
=

 0 −δp(1+βp−ηp) ˜µdd
2
φp(γpδp+(−1+ηp)φp)

2

(γpδp+βpφp)3

δp(1+βp−ηp) ˜µdd(γpδp+(−1+ηp)φp)

(γpδp+βpφp)2
−δp(1+βp−ηp) ˜µdd(γpδp(−1+(1+βp−ηp) ˜µdd)−βpφp)(γpδp+(−1+ηp)φp)

(γpδp+βpφp)3



So, it is simple to establish that C̃cc has a rank of 2. We imagine that[
βp−βp0

]
=−K̃cc

 xn− x∗

yn− y∗

 where K̃cc = [σ̃c1 σ̃c2], then system (17) becomes

 xn+1− x∗

yn+1− y∗

≈ [Ãcc− B̃ccK̃cc]

 xn− x∗

yn− y∗.


Furthermore, system (4) provides the appropriate controlled system, which is

(19)
xn+1 = xn +

hτ

Γ(τ +1)
(δpxn(1− xn)−φpxnyn) ,

yn+1 = yn +
hτ

Γ(τ +1)
(
(βp0− σ̃c1(xn− x∗)− σ̃c2(yn− y∗))xnyn +(1−ηp)yn− γpy2

n
)
.

Moreover,

Ãcc− B̃ccK̃cc =

 ˜b11 ˜b12

˜b21 ˜b22

 ,
where

˜b11 = 1+ ˜µdd

(
−

δp(1+βp−ηp)φp

γpδp +βpφp
−

δp(γpδp +(−1+ηp)φp)

γpδp +βpφp
+δp

(
1−

γpδp +(−1+ηp)φp

γpδp +βpφp

))
˜b12 =−

˜µddφp(γpδp +(−1+ηp)φp)

γpδp +βpφp

˜b21 =
βpδp(1+βp−ηp) ˜µdd

γpδp +βpφp
−

δp(1+βp−ηp) ˜µdd(γpδp +(−1+ηp)φp)σ̃c1

(γpδp +βpφp)2

˜b22 = 1+ ˜µdd

(
1−ηp−

2γpδp(1+βp−ηp)

γpδp +βpφp
+

βp(γpδp +(−1+ηp)φp)

γpδp +βpφp

)
−

δp(1+βp−ηp) ˜µdd(γpδp +(−1+ηp)φp)σ̃c2

(γpδp +βpφp)2

Furthermore,

(20) λc
2− Λ̃bbλc + z̃bb = 0,
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where

(21)
Λ̃bb = ˜b11 + ˜b22,

z̃bb = ˜b11 ˜b22− ˜b12 ˜b21.

Thus, the lines of marginal stability may be obtained by solving the equations λc1 =±1 and

λc1λc2 = 1. The eigenvalues of open unit disc also guarantee adherence to these constraints.

We derive the following equations from Eq.(20), taking into account the situations λc1λc2 = 1,

λc1 =−1 and λc1 = 1 sequentially.

Lb1 = z̃bb−1,

Lb2 = Λ̃bb− z̃bb−1,

Lb3 = 1+ Λ̃bb + z̃bb.

As a result, the stability zone for system(17) in the σ̃c1, σ̃c2-plane form a triangle bordered by

Lb1,Lb2 and Lb3.

To avoid an NS bifurcation in a discrete model operating in discrete time, the authors of [35]

used a hybrid control strategy. In the prey-predator model with fractional order, we propose a

hybrid control method for controlling a NS bifurcation. A hybrid control approach is used to

control chaos in the system (4). We modify our uncontrolled system (4) as follows:

(22) Xn+1 = G̃(Xn,τ,h)

where Xn ∈R2, G̃(.) is a nonlinear vector function and τ,h∈R is a bifurcation parameter. When

the hybrid control technique is utilized, the controlled system (22) becomes

(23) Xn+1 = ωpG̃(Xn,τ,h)+(1−ωp)Xn,

where ωp denotes as the parameter to eliminate chaos. When we impose a control strategy

described above to the system (4), we obtain,

(24)
xn+1 = ωp

(
xn +

hτ

Γ(τ +1)
(δpxn(1− xn)−φpxnyn)

)
+(1−ωp)xn,

yn+1 = ωp

(
yn +

hτ

Γ(τ +1)
(
βpxnyn +(1−ηp)yn− γpy2

n
))

+(1−ωp)yn.
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Scenario (iv): We now investigate the OGY of system (4) by setting

(ηp, δp, φp, γp, βp0, τ, h) = (2.7,1.5,1.05,0.8,3.6,0.5896,0.7013). System (4) is un-

stable in this case and has a single non-negative fixed point (x∗,y∗) = (0.599398,0.572289).

The controlled system is then given by,

(25)
xn+1 = xn +0.909032(1.5xn(1− xn)−1.05xnyn) ,

yn+1 = yn +0.909032
(
(3.6− σ̃c1(xn− x∗)− σ̃c2(yn− y∗))xnyn +(1−2.7)yn−0.8y2

n
)
,

where K̃ = [ ˜σb1 ˜σb2]. We also obtain,

Ãcc =

 0.182693 −0.572115

1.87282 0.583817

 ,

B̃cc =

 0

0.311824

 ,
C̃cc =

 0 −0.178399

0.311824 0.182048

 .
The rank of the matrix C̃cc is then proved to be 2. As a result, the system (25) can be

controlled, and the identifying matrix of the managed system is provided by,

Ãcc− B̃ccK̃cc =

 0.182693 −0.572115

1.87282−0.311824σ̃c1 0.573817−0.311824σ̃c2

 .
Also,

Lb1 = 0.178131−0.178399σ̃c1−0.056968σ̃c2 = 0,

Lb2 =−1.41162+0.178399σ̃c1−0.254856σ̃c2 = 0,

Lb3 = 2.94464−0.178399σ̃c1−0.368792σ̃c2 = 0.

The stable triangular zone for the regulated system (25) is thus represented in Figure 8.

Scenario (v): To determine the efficiency of the hybrid control strategy in minimizing chaotic

scenarios, we use the parameter values described for the OGY technique except h = 0.5699 <

hNS. As a consequence, it shows that the fixed point ζ̃3(x∗,y∗) = (0.599398,0.572289) of the

system (4) is unstable, whereas for the regulated system (24), ζ̃3 will be stable if 0 < ωp <

0.5499. By taking ωp = 1.01393, we can see that the controlled system (24) has a fixed point
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ζ̃3(x∗,y∗) that acts as a sink, eliminate irregular behavior around ζ̃3(x∗,y∗). The phase image

and stable trajectories are depicted in Figure 9. Furthermore, we present the NS bifurcation

diagrams (Figure 10) of the controlled system (24) for various values of ωp and show that the

system is under control when ωp = 0.5499.

FIGURE 8. Stable zone created by OGY method

(i) (ii)

FIGURE 9. Controlling chaos of the uncontrolled system (17) (i) Time trajec-

tory (ii) Phase picture
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(i) (ii)

(i) (ii)

FIGURE 10. NS bifurcation in prey populations for (i) ωp = 1.123, (ii) ωp =

0.7289, (iii) ωp = 6036, (iv) ωp = 0.5499

8. DISCUSSIONS

This paper has investigated the dynamics of a discrete model of prey and predator with

fractional-order intraspecific competition. Under certain parametric conditions, four fixed

points have been found, and the stability of these fixed points is discussed in detail throughout

the article. We have shown both analytically and computationally that, under specific circum-

stances, the model system can experience Neimark-Sacker bifurcations and period-doubling bi-

furcations. We have observed that the model parameters significantly impact the stability of the

fixed points. Notably, our results show that the model exhibits chaotic behavior and the system

destabilizes with increasing parameters h,βp splitting the system into chaotic and stable states.

The dynamic behavior of the proposed system with varying levels of complexity is revealed by

the existence of distinct bifurcations from various angles. For example, the NS bifurcation ini-

tiates a way toward chaos by generating a vibrant transition from a stable position to appealing
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cycles, leading to the emergence of complex dynamics including chaotic attractors and periodic

windows. Environmental changes can cause populations with irregular oscillations to suddenly

transition to ones with regular oscillations. Crucial information about nonlinear systems can be

gained from the invariant curve in the supercritical Neimark-Sacker bifurcation. It is essential

to comprehend the shift from a periodic position to complex dynamics because it shows how the

system behaves when the parameter changes. A curve for supercritical NS in ecology indicates

that populations of both predator and prey may coexist and self-produce. There may be quasi-

periodic or periodic dynamics on the invariant curve. A PD bifurcation in the model illustrates

how the populations of predators and prey have evolved. The evolution of chaotic nature from

a stable position is linked to the PD bifurcation. It illustrates the diversity and pervasiveness of

chaotic nature in a range of natural systems and occurrences. Additionally, we demonstrate the

numerical and analytical result of the OGY and hybrid control strategies to eliminate chaotic

scenarios.

Our key conclusion is that the term memory which is represented by the parameter τ has a

considerable effect on the behavior of the system. According to our findings, a feeble memory

is indicated by a τ value that is going close to 1, which causes chaotic behavior. On the other

hand, an intense memory is indicated by a τ value that is approaching zero, which makes the

system stable. These results highlight the critical role memory plays in the model’s behavior.

In conclusion, this work provides a thorough examination of dynamic behavior of the proposed

model and demonstrates how, under specific parametric circumstances, bifurcations and chaos

might arise. We also show how system behavior is influenced by memory.
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