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Abstract. An important area of study in mathematical ecology is the coexistence of populations of herbivores

and plants. The plant-herbivore model is a dynamic relationship where plants serve as a basic food source for

herbivores, whereas herbivores are essential in the formation of plant populations and communities. In this paper,

we study the dynamical behavior of a discrete-time plant-herbivore model. Existence and stability of equilibria

are studied. Moreover, we analyse the transcritical bifurcation of the proposed system using bifurcation theory.

The Neimark-Sacker bifurcation is also shown. The bifurcation diagrams are presented. Finally, some numerical

examples are provided to support our theoretical results. The used approaches are powerful and useful to be applied

for more nonlinear models.
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1. INTRODUCTION

Mathematical modelling has recently attracted the attention of theoretical ecologists and

mathematical biologists as a result of its rich dynamics and varied applications [3, 10, 14, 18,
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32]. Discrete-time and continuous-time models are two popular types of mathematical mod-

els used to simulate population dynamics. In contrast to differential equations, which are used

to describe continuous-time models, difference equations are used to describe discrete-time

models. In the case of non-overlapping generations, plant-herbivore interactions are frequently

described using discrete-time models: such generations have a specific life span and their old

generations are replaced by new generations after a regular interval of time. In addition, com-

pared to continuous-time models, discrete-time models offer richer dynamics. For instance, a

discrete-time model with a single species can exhibit chaos and more complex dynamical be-

haviour, but chaos in a continuous-time model requires at least three species [29].

The interaction between plants and herbivores has been studied by many researchers. Din [13]

investigated the dynamical behaviour of a plant-herbivore model including weak predator func-

tional response. Period-doubling and Neimark-Sacker bifurcations were studied by Li et al.[28]

for a plant-herbivore model that included plant toxicity in the functional response of plant-

herbivore interactions. The interested reader is further directed to [1, 4, 7, 8, 9, 11, 12, 15, 16,

17, 21, 27] for some other discussions related to qualitative behaviour of plant-herbivore mod-

els.

A difference equation model for the plant-herbivore system was developed and analyzed by

Allen et al. [2] in 1993. The population at the three states that are most important for the man-

agement and control of the apple twig borer and grape vine systems were taken into consider-

ation when developing the model. After that, it was simplified to a discrete two-dimensional

model with two forms: the exponential function form and the rational function form. In this

study, we take into consideration the following discrete two-dimensional model.

(1.1)


xn+1 =

xn

α(1+ yn)+βxn
,

yn+1 = γyn(1+ xn),

where xn ≥ 0 and yn ≥ 0, respectively, represent the population biomass of the herbivore and

the plant. The parameters α , β , and γ are all positive.

This research aims to find the main equilibrium points of system (1.1) and to investigate the

dynamics and bifurcations of system (1.1) in the closed first quadrant R2
+. The stability and
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bifurcation diagrams are presented. The paper is organized as follows. In section 2, we anal-

yses the presence of steady-states and their regional asymptotic behaviour. Section 3 focuses

on examining transcritical bifurcation about the boundary equilibrium point of system (1.1).

Moreover, Neimark-Sacker bifurcation at positive equilibrium point of system (1.1) is covered

in Section 3. In Section 4, numerical simulations are carried out to verify the theoretical discus-

sion. A brief conclusion is given in the last section.

Definition 1.1. Let M = (x,y) be a fixed point of the system (1.1) with multipliers λ1 and λ2.

(1) M is called a sink (locally asymptotic stable) if |λ1|< 1 and |λ2|< 1.

(2) M is called a saddle if |λ1|< 1 and |λ2|> 1, or if |λ1|> 1 and |λ2|< 1.

(3) M is called a source if |λ1|> 1 and |λ2|> 1.

(4) M is called a non-hyperbolic if |λ1|= 1 or |λ2|= 1.

Lemma 1.2. Let ρ(λ ) = λ 2−T λ +D, where ρ(1)> 0. Moreover, λ1 and λ2 are the two roots

of ρ(λ ) = 0. Then,

(1) |λ1|< 1 and |λ2|< 1 if and only if ρ(−1)> 0 and ρ(0)< 1.

(2) |λ1|< 1 and |λ2|> 1 (or |λ1|> 1 and |λ2|< 1) if and only if ρ(−1)< 0.

(3) |λ1|> 1 and |λ2|> 1 if and only if ρ(−1)> 0 and ρ(0)> 1.

(4) λ1 and λ2 are complex numbers and λ1 = |λ2|= 1 if and only if |T |< 2 and ρ(0) = 1.

2. LOCAL STABILITY OF STEADY-STATES

In this section, we study the existence and stability of fixed points of the system (1.1) in R2
+.

The equilibrium points that represent the steady states of the system (1.1) can be derived by

resolving the algebraic system:

(2.1) x =
x

α(1+ y)+βx
, y = γy(1+ x).

The algebraic system (2.1) accepts three solutions namely O = (0,0), E = (1−α

β
,0) and

P =
(

1−γ

γ
, γ(1+β )−(αγ+β )

γα

)
. These solutions represent the equilibrium points of the system

(1.1). Results about the presence of equilibrium points according to the parameters’ values

are outlined as follows:

Lemma 2.1. For system (1.1), we can have at most three equilibrium points:
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(1) The trivial equilibrium point O always exists;

(2) The boundary equilibrium point E exists if 0 < α < 1;

(3) The interior equilibrium point P exists if β/(1+β −α)< γ < 1, and 0 < α < 1.

The biological interruption for the three equilibrium points is: The fixed point O depicts an

environment devoid of both plant and herbivore. The circumstance where there is plant but no

herbivore is represented by the equilibrium point E. The coexistence of a fixed nonzero number

of plant and herbivore is referred to as P.

The first step in studying the stability of the equilibrium points of the system (1.1) is to find the

Jacobian matrix. The Jacobian matrix J of the system (1.1) evaluated at any equilibrium point

(x,y) is given by

(2.2) J(x,y) =


α(1+ y)

(α(1+ y)+βx)2 − αx
(α(1+ y)+βx)2

γy γ(1+ x)

 .

The characteristic polynomial of J is

ρ(λ ) = λ
2−T λ +D,

where

T = Tr(J(x,y)) =
α(1+ y)

(α(1+ y)+βx)2 + γ(1+ x),

D = Det(J(x,y)) =
αγ(1+ y)(1+ x)+αγxy

(α(1+ y)+βx)2 .

The stability of the equilibrium points of the system (1.1) is confirmed by 0the next Theorems

under some conditions.

Theorem 2.2. For the equilibrium point O, the following results are true:

• O is locally asymptotically stable (a sink point) if α > 1 and 0 < γ < 1.

• O is unstable saddle if 0 < α < 1 and 0 < γ < 1, or if α > 1 and γ > 1.

• O is a source if 0 < α < 1 and γ > 1.

• O is a non-hyperbolic if α = 1, or if γ = 1.
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Proof. The Jacobian matrix (2.2) evaluated at equilibrium point O = (0,0) is given by

J(O) =

 1
α

0

0 γ

 ,

the eigenvalues of J(O) are λ1 =
1
α

and λ2 = γ . By using Definition 1.1, we can easily obtain

the results of this Theorem. �

Theorem 2.3. For the equilibrium point E of the system (1.1), the following statements are true:

• E is a stable sink if 0 < γ < β/(1+β −α).

• E is never a source.

• E is a saddle point if γ > β/(1+β −α).

• E is a non-hyperbolic point γ = β/(1+β −α).

Proof. The evaluation of J(x,y) at E = (1−α

β
,0) gives

J(E) =

 α
α(1−α)

β

0
γ(1+β −α)

β

 .

The roots of the characteristic polynomial of J(E) are

λ1 = α < 1, λ2 =
γ(1+β −α)

β
.

The findings of this Theorem are easily obtained by using Definition 1.1. �

Theorem 2.4. For the equilibrium point P of the system (1.1), the following statements are true:

(1) P is locally asymptotically stable (stable sink) if and only if

γ <
2β

1+β −α
.

(2) P is unstable (source) if and only if

γ >
2β

1+β −α
.

(3) The roots of equation ρ(λ ) = 0 are complex numbers with modulus one if and only if

α +β < 1 and γ =
2β

1+β −α
.
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Proof. The Jacobian matrix J(x,y) evaluated at the positive equilibrium P =(
1−γ

γ
, (γ(1+β )−(αγ+β )

γα

)
is given by

(2.3) J(P) =

 1+β − β

γ
−α(1− γ)

γ

γ(1+β )− (αγ +β )

α
1

 .

Hence, the characteristic polynomial of J(P) is

(2.4) ρ(λ ) = λ
2−
(

2+β − β

γ

)
λ +2+3β −α(1− γ)− 2β

γ
− γ(1+β ).

From Equation (2.4), we can get

ρ(1) =
(1− γ)(γ(1+β −α)−β )

γ
, ρ(0) = 2+3β −α(1− γ)− 2β

γ
− γ(1+β ),

and

ρ(−1) = 5+4β − 3β

γ
−α(1− γ)− γ(1+β ).

From the existence conditions of the equilibrium points P, it is clear ρ(1)> 0 is always satisfied.

Moreover, one can prove that ρ(−1)> 0 as follows:

ρ(−1) = 5+4β − 3β

γ
−α(1− γ)− γ(1+β ),

= 1+4β − 3β

γ
−α(1− γ)− γ(1+β )+4,

= (1− γ)(1−α +β )−3(1− γ)(
β

γ
)+4,

> (1− γ)(
β

γ
)−3(1− γ)(

β

γ
)+4,

= 2(2+β − β

γ
)> 2(1+α)> 0.

Now, we need to investigate the sign of ρ(0)−1

ρ(0)−1 = 2+3β − 2β

γ
−α(1− γ)− γ(1+β )−1,

=
1
γ

(
2γ +3γβ −2β −αγ(1− γ)− γ

2(1+β )− γ
)
,

=
1
γ

(
−γ

2(1+β −α)+ γ(1+3β −α)−2β
)
,
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=
−(1+β −α)

γ

(
γ− 2β

1+β −α

)
(γ−1).

Based on the preceding discussion, we conclude that the type of the equilibrium point P is

solely determined by the sign of ρ(0)−1. Thus, using Lemma 1.2 we obtain the results of this

Theorem. �

3. BIFURCATION ANALYSIS

This section, which is based on theoretical investigations in Section 2 , examines the possi-

bility of bifurcations around equilibria.

3.1. Transcritical Bifurcation of System (1.1). We first discuss the Transcritical bifurcation

of the system (1.1) about equilibrium point E. Consider γ as a bifurcation parameter in the

vicinity of the boundary equilibrium point E = (1−α

β
,0). From Theorem 2.3, we can see that if

γ1 =
β

1−α+β
holds then one of the eigenvalues about E is 1. We define the set TB as follows

TB :=
{
(α,β ,γ1) ∈ R∗

3

+ : γ1 =
β

1−α +β
> 0, β > 0, 0 < α < 1

}
.

Let un = xn−
(

1−α

β

)
and vn = yn, then the equilibrium E of system (1.1) transforms into O =

(0,0). By calculating we get

(3.1)


un+1 =

un +
1−α

β

α(1+ vn)+β (un +
1−α

β
)
−
(

1−α

β

)
,

vn+1 = γvn(1+un +
1−α

β
).

Consider a small perturbation γ∗ to the parameter γ (i.e. γ = γ∗+ γ1), with 0 <| γ∗ |� 1, then

system (3.1) is perturbed into

(3.2)


un+1 =

un +
1−α

β

α(1+ vn)+β (un +
1−α

β
)
−
(

1−α

β

)
,

vn+1 = (γ∗+ γ1)vn(1+un +
1−α

β
).
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Letting γ∗n+1 = γ∗n = γ∗, system (3.2) can be written as

(3.3)



un+1 =
un +

1−α

β

α(1+ vn)+β (un +
1−α

β
)
−
(

1−α

β

)
,

vn+1 = (γ∗n + γ1)vn(1+un +
1−α

β
),

γ∗n+1 = γ∗n .

Expanding system (3.3) up to third order about (un,vn,γ
∗
n ) = (0,0,0) by Taylor series, we get

(3.4)



un+1 = a11un +a12vn +a13u2
n +a14unvn +a15v2

n +a16u3
n+

a17u2
nvn +a18unv2

n +a19v3
n +R4(un,vn,γ

∗
n ),

vn+1 = a21un +a22vn +a23u2
n +a24unvn +b24vnγ∗n +a25v2

n +a26u3
n+

a27u2
nvn +a28unv2

n +b28unvnγ∗n +a29v3
n +R4(un,vn,γ

∗
n ),

γ∗n+1 = γ∗n ,

where

a11 = α , a12 =
α(1−α)

β
, a13 =−αβ , a14 =−α(1−2α) , a15 =

α2(1−α)

β
,

a16 = αβ
2 , a17 = αβ (3α−1) , a18 = α

2(3α−2) , a19 =−
α3(1−α)

β
,

a22 = 1 , a24 =
4β

1−α +β
, a21 = a23 = a25 = a26 = a27 = a28 = a29 = 0,

b24 = 2 , b28 =
1
2
.

Next, we create an invertible matrix J
′
(E) as follows

J
′
(E) =


α

α(1−α)
β

0

0 1 0

0 0 1

 .

The eigenvalues of J
′
(E) are

λ1 = α , λ2,3 = 1 ,
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while the corresponding eigenvectors

V1 =


1

0

0

 , V2 =


α

β

0

 , V3 =


0

0

1

 ,

respectively. Let T = (V1,V2,V3), i.e.,

T =


1 α 0

0 β 0

0 0 1

 , then T−1 =


1 −α

β
0

0 1
β

0

0 0 1

 .

The transformation (un,vn,γ
∗
n )

T = T (Xn,Yn,δn)
T converts system (3.4) to

(3.5)


Xn+1 = αXn +F(Xn,Yn,δn)+R4(Xn,Yn,δn),

Yn+1 = Yn +G(Xn,Yn,δn)+R4(Xn,Yn,δn),

δn+1 = δn,

where

F(Xn,Yn,δn) = m13X2
n +m14XnYn−αm26Ynδn +m15Y 2

n +m16X3
n +m17X2

n Yn+

m18XnY 2
n −αm27XnYnδn−αm28Y 2

n δn +m19Y 3
n ,

G(Xn,Yn,δn) = m24XnYn +m25Y 2
n +m26Ynδn +m27XnYnδn +m28Y 2

n δn,

and

m13 =−αβ , m14 =
2αβ ((α−1)(1−α+β )−2)

1−α+β
, m15 =

α2β ((2α−1)(1−α+β )−4)
1−α+β

,

m16 = αβ 2, m17 = αβ 2(6α−1), m18 = 4α2β 2(3α−1),m19 = 4α3β 2(2α−1),

m24 =
4β

1−α+β
, m25 =

4αβ

1−α+β
, m26 = 2, m27 =

1
2 , m28 =

1
2α.

By the center manifold theorem, there exists a center manifold that can be represented as fol-

lows:

Xn = h(Yn,δn) = s1Y 2
n + s2Ynδn + s3δ

2
n +R4(Xn,Yn,δn).(3.6)

therefore,

Xn+1 = αXn +F(h(Yn,δn),Yn,δn)+R4(Xn,Yn,δn).
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Hence,

h(Yn+1,δn+1) = s1Y 2
n+1 + s2Yn+1δn+1 + s3δ

2
n+1 +R4(Xn,Yn,δn)

= s1(Yn +G(Xn,Yn,δn))
2 + s2(Yn +G(Xn,Yn,δn))δn+1

+s3δ
2
n+1 +R4(Xn,Yn,δn).

Next, we obtain the center manifold equation as follows

(3.7)
αXn +F(h(Yn,δn),Yn,δn) = s1(Yn +G(Xn,Yn,δn))

2

+s2(Yn +G(Xn,Yn,δn))δn+1 + s3δ
2
n+1.

By comparing the coefficients of the same order terms in equation (3.7), we end up with

s1 =
α2β ((2α−1)(1−α +β )−4)

1−α +β
, s2 =−2α , s3 = 0 .

Therefore, we consider system (3.5) restricted to the center manifold as follows:

Xn+1 = f (Yn,δn) = Yn +G(Xn,Yn,δn)+R4(Xn,Yn,δn),

= Yn +2Ynδn +
4αβ

1−α +β
Y 2

n +

(
−8αβ

1−α +β
− 1

2
α

)
Y 2

n δn +
4β

1−α +β
Y 3

n .

In addition,

f (0,0) = 0 ,
∂ f (0,0)

∂Yn
= 1 ,

∂ f (0,0)
∂δn

= 0

∂ 2 f (0,0)
∂Yn∂δn

= 2 6= 0 ,
∂ 2 f (0,0)

∂ 2Yn
=

8αβ

1−α +β
6= 0.

From the above analysis and theorem in [26, 25], we have the following Theorem.

Theorem 3.1. System (1.1) undergoes a Transcritical bifurcation about the equilibrium point

E when the parameter γ varies in a small neighborhood of γ1.

3.2. Neimark-Sacker Bifurcation of System (1.1). In this section, we will examine the

Neimark-Sacker bifurcation of system (1.1) around the positive equilibrium point

P =

(
1− γ

γ
,
γ(1+β )− (αγ +β )

γα

)
.

The bifurcation is triggered by the parameter γ . We will determine conditions under which

system (1.1) will have an equilibrium point with non-hyperbolic properties, consisting of a pair

of complex conjugate eigenvalues with magnitude equal to one. The equilibrium point P will
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experience a Neimark-Sacker bifurcation if the parameters (α,β ,γ) vary within the vicinity of

the following set

NB =

{
(α,β ,γ) ∈ R∗

3

+ : 0 < α < 1,β > 0,α +β < 1 and γ =
2β

1+β −α
> 0
}
.

Now, we consider the change of variables un = xn− x0, vn = yn− y0, which transforms fixed

point P =
(

1−γ

γ
, γ(1+β )−(αγ+β )

γα

)
to the origin (un,vn) = (0,0), and system (1.1) into

(3.8)


un+1 =

un + x0

α(1+ vn + y0)+β (un + x0)
− x0,

vn+1 = γ(vn + y0)(1+un + x0)− y0.

Consider the parameter γ in a neighborhood of γ0, i.e. γ = γ0 + γ̄ . Next, we get

(3.9)


un+1 =

un + x0

α(1+ vn + y0)+β (un + x0)
− x0 = F(un,vn, γ̄),

vn+1 = (γ0 + γ̄)(vn + y0)(1+un + x0)− y0 = G(un,vn, γ̄).

the characteristic equation associated with the linearization of the model (3.9) at (un,vn)= (0,0)

is given by

(3.10) λ
2−T (γ̄)λ +D(γ̄) = 0,

where

T (γ̄) =
(

2+β − β

(γ + γ̄)

)
,

D(γ̄) =

(
2+3β −α(1− (γ + γ̄))− 2β

(γ + γ̄)
− (γ + γ̄)(1+β )

)
.

Equation (3.10) has a pair of complex conjugate roots with unit modulus since (α,β ,γ) ∈NB.

These roots are given by

λ1,2(γ̄) =
T (γ̄)± i

√
4D(γ̄)−T (γ̄)2

2
,

it follows that

| λ1,2(γ̄) |=
√

D(γ̄) =

√(
2+β −α +(α−1−β )γ̄− 2β (1+β −α)

2β +(1+β −α)γ̄

)
,

and

| λ1,2(0) |=
√

D(0) = 1,
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which implies

(3.11)
(

d | λ1 |
dγ̄

)
γ̄=0

=

(
d | λ2 |

dγ̄

)
γ̄=0

=
(1+β −α)(1−β −α)

2β
> 0.

Moreover, we required that when γ̄ = 0, λ
j

1,2 6= 1, j = 1,2,3,4 which is equivalent to T (0) 6= 0,1,

lead to

(3.12) γ 6= β

2+β
, γ 6= β

1+β
.

Expanding F and G by Taylor series at (un,vn) = (0,0) to the third order allows us to deduce

the normal form of system (3.9), which is represented by

(3.13)


un+1 = a11un +a12vn + f (un,vn),

vn+1 = a21un +a22vn +g(un,vn),

where

f (un,vn) = a13u2
n +a14unvn +a15v2

n +a16u3
n +a17u2

nvn +a18unv2
n +a19v3

n+

R f ,4(un,vn),

g(un,vn) = a23u2
n +a24unvn +a25v2

n +a26u3
n +a27u2

nvn +a28unv2
n +a29v3

n+

Rg,4(un,vn).

and

a11 =

(
1+β +α

2

)
, a12 = α

(
α +β −1

2β

)
, a13 =−

β

2
(1+β +α) ,

a14 =
−α(3β +3β 2−α +α2)

β
,

a15 =
α2

2

(
1−β −α

β

)
, a16 =

β 2

2
(1+β +α) , a17 =

α

2
(3β +2β

2 +2αβ +α−1),

a18 =
α2

2
(3β +2β

2 +2αβ +α−1), a19 =
α3

2

(
1−β −α

β

)
, a21 =

(
β

α

)
, a22 = 1,

a24 =
4β

1+β −α
, a23, a25, a26, a27, a28, a29 = 0.

Now, let

J
′
(P) =

 1+β+α

2
α(α+β−1)

2β

β

α
1

 .
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The eigenvalues of matrix J
′
(P) are

λ1,2 =
3+β +α

4
± i

√
(1−β −α)(7+β +α)

4
.

Next, we study the normal form of (3.13). Let κ = ℑ(λ1,2) and ω = ℜ(λ1,2), we define

T =

 a11 0

κ−a11 −ω

=

 1+β+α

2 0
1−β−α

4 −ω

 ,

and consider the following transformation:

(3.14)

 u

v

= T

 X

Y

 .

Hence, by applying the transformation (3.14) on Equation (3.13), we obtain

(3.15)


Xn+1 = κXn−ωYn + f̄ (Xn,Yn),

Yn+1 = ωXn +κYn + ḡ(Xn,Yn),

where

f̄ (Xn,Yn) =
a13

2a12
u2

n +
2a14
a12

unvn +
a15

2a12
v2

n +
a16
6a12

u3
n +

a17
2a12

u2
nvn +

a18
2a12

unv2
n+

a19
6a12

v3
n +R f̄ ,4(un,vn),

ḡ(Xn,Yn) =
a13(κ−a11)

2a12
u2

n +
(

2a14(κ−a11)
a12

− 2a24
ω

)
unvn +

a15(κ−a11)
2a12

v2
n +

a16(κ−a11)
6a12

u3
n

+a17(κ−a11)
2a12

u2
nvn +

a18(κ−a11)
2a12

unv2
n +

a19(κ−a11)
6a12

v3
n +Rḡ,4(un,vn).

From equation (3.14), we obtain un = a11Xn and vn = MXn−ωYn, where M =
(

1−β−α

4

)
. Thus,

we get the following form

f̄ (Xn,Yn) = b13X2
n −b14XnYn +b15Y 2

n +b16X3
n +b17X2

n Yn−b18XnY 2
n −b19Y 3

n +

R f̄ ,4(Xn,Xn),

ḡ(Xn,Yn) = M(b13− 2a24a11
ω

)X2
n − (Mb14−2a24a11)XnYn +Mb15Y 2

n +Mb16X3
n+

Mb17X2
n Yn−Mb18XnY 2

n −Mb19Y 3
n +Rḡ,4(Xn,Xn),

where

b13 =
a13a2

11 +4Ma14a11 +M2a15

2a12
, b14 =

2a14a11 +ωMa15

a12
, b15 =

ω2a15

2a12
,
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b16 =
a16a3

11 +3Ma17a2
11 +3M2a18a11 +M3a19

6a12
, b17 =

ω2a18a11 +ω2Ma19

2a12
,

b18 =
ωa17a2

11 +2ωMa18 +ωM2a19

2a12
, b19 =

ω3a19

6a12
.

Furthermore,

f̄XX =
a13a2

11 +4Ma14a11 +M2a15

a12
, f̄XYY =−

ωa17a2
11 +2ωMa18 +ωM2a19

a12
,

f̄XXX =
a16a3

11 +3Ma17a2
11 +3M2a18a11 +M3a19

a12
, f̄XY =−2a14a11 +ωMa15

a12
,

f̄XXY =
ω2a18a11 +ω2Ma19

a12
, f̄YY =

ω2a15

a12
, f̄YYY =−ω3a19

a12
,

ḡXX = M f̄XX −
4Ma14a11

ω
, ḡXY = M f̄XY +2a14a11 , ḡXXX = M f̄XXX ,

ḡXYY = M f̄XYY , ḡYY = M f̄YY , ḡYYY = M f̄YYY , ḡXXY = M f̄XXY .

In order for (3.15) to undergo a Neimark-Sacker bifurcation, It is necessary for the discrimina-

tory value L to be nonzero

L =

([
Re(λ2ξ21)−Re

(
(1−2λ1)ν

2
2

1−λ
ξ20ξ11

)
− 1

2
| ξ11|2−|ξ02 |2

])
γ̄=0

,

where

ξ20 =
1
8
[

f̄XX − f̄YY +2ḡXY + i
(
ḡXX − ḡYY −2 f̄XY

)]
,

ξ11 =
1
4
[

f̄XX + f̄YY + i(ḡXX + ḡYY )
]
,

ξ02 =
1
8
[

f̄XX − f̄YY −2ḡXY + i
(
ḡXX − ḡYY +2 f̄XY

)]
,

ξ21 =
1

16
[

f̄XXX + f̄XYY + ḡXXY + ḡYYY + i
(
ḡXXX + ḡXYY − f̄XXY − f̄YYY

)]
.

By calculation, we get

ξ20 =
1
8

(
a13a2

11 +4Ma14a11 +M2a15 +ω2a15−4a14a11−2ωMa15

a12
+4a14a11

)
+

i
8

(
Ma13a2

11 +4M2a14a11 +M3a15−Mω2a15 +4a14a11 +2ωMa15

a12
− 4Ma14a11

ω

)
,
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ξ11 =
1
4

(
a13a2

11 +4Ma14a11 +M2a15 +ω2a15

a12

)
+

i
4

(
Ma13a2

11 +4M2a14a11 +M3a15 +Mω2a15

a12
− 4Ma14a11

ω

)
,

ξ02 =
1
8

(
a13a2

11 +4Ma14a11 +M2a15−ω2a15 +4Ma14a11 +2ωM2a15

a12
−4a14a11

)
+

i
8

(
Ma13a2

11 +4M2a14a11 +M3a15−Mω2a15−4a14a11−2ωMa15

a12
− 4Ma14a11

ω

)
and

ξ21 =
1
16

(
a16a3

11 +3Ma17a2
11 +3M2a18a11 +M3a19−ωa17a2

11−2ωMa18−ωM2a19

a12
+

ω2Ma18a11 +ω2M2a19−ω3Ma19

a12

)
+

i
16

(
Ma16a3

11 +3M2a17a2
11 +3M3a18a11

a12

+
M4a19−ωMa17a2

11−2ωM2a18−ωM3a19−ω2a18a11−ω2Ma19 +ω3a19

a12

)
.

We have the following conclusion as a result of the analysis above.

Theorem 3.2. If L 6= 0 holds, then model (1.1) undergoes Neimark-Sacker Bifurcation about P as

(α,β ,γ) go through NB. Additionally, an attracting (resp. repelling) closed curve bifurcates from P

if L < 0( resp. L > 0).

4. NUMERICAL SIMULATION

In this section, we present bifurcation diagrams, the Lyapunov exponents, and phase portraits gener-

ated by Matlab software for different parameter values. These diagrams support our theoretical findings

and demonstrate some novel dynamical behaviours in system (1.1). Next, we consider some special cases

of system (1.1). In first example, we verify the existance of the Transcritical bifurcation of system (1.1)

at the equilibrium point E. Second example shows local asymptotic stability of the positive equilibrium

point P of system (1.1) and its Neimark-Sacker bifurcation under certain parametric values.

Example 4.1. Let us consider the particular case of system (1.1) defined by the following values of the

parameters:

α = 0.6 , β = 0.3 , γ ∈ [0.3,0.75],
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(a) Bifurcation diagram (b) Maximum Lyapunov exponent with

for α = 0.6, β = 0.3, γ ∈ [0.3,0.89] γ ∈ [0.75,0.96], (α,β ) = (0.6,0.3) and

initial conditions (x0,y0) = (0.816,0.583).

FIGURE 1. Bifurcation diagram and MLE for system (1.1).

where γ is considered as the bifurcation parameter and the initial condition is (x0,y0) =

(0.16666,0.58331). Then, as the bifurcation parameter γ passes through γ1 ≈ 0.428571, system (1.1)

undergoes a Transcritical bifurcation at its boundary equilibrium point E ≈ (1.3333,0). Figure 1 (a)

shows the bifurcation diagram of system (1.1) at the equilibrium point E, it is clear that the equilibrium

point E is asymptotically stable for 0.3 < γ ≤ γ1. Then, E loses its stability when γ > γ1, and a new

asymptotically stable interior equilibrium P =
(

1−γ

γ
, γ(1+β )−(αγ+β )

γα

)
is born.

From the viewpoint of biology, the occurrence of a transcritical bifurcation corresponds to change in

the system’s dynamical behavior. When the parameter γ < γ1 the boundary equilibrium E is stable,

that is, there is plant but the herbivore population goes to extinction. However, if γ > γ1 the boundary

equilibrium is unstable, then both the populations of plant and herbivore will coexist.

Example 4.2. Choosing the following values for the parameters:

α = 0.6 , β = 0.3 , γ ∈ [0.75,0.96],

when γ1 < γ < γ0 = 0.85714, system (1.1) has a unique positive stable equilibrium point (see Figure 2

(a) and (c)). At γ0 the characteristic equation of (1.1) at the positive equilibrium is given by

λ
2−1.9499λ +0.9999 = 0 ,
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FIGURE 2. Phase portraits and orbits evolution of system (1.1) for γ ∈ {0.75,0.84,0.85714}.
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with the following complex roots

λ1 = 0.975+0.223i , λ2 = 0.975−0.223i .

Furthermore, it is easy to see that

ρ(1) = 0.05007,
(

d|λ1,2|
dγ̄

)
γ̄=0

= 0.1166, T (0) = 1.9499,

which leads to µn
1,2 6= 1, for any n = 1,2,3,4. f and g, provided in (3.13), are given by

f (un,vn) =−0.285u2
n−1.86unvn +0.06v2

n +0.0855u3
n +0.312u2

nvn +0.1872unv2
n

+0.036v3
n +R f ,4(un,vn),

g(un,vn) = 1.7142unvn +Rg,4(un,vn).

Moreover, the first Lyapunov exponent for these values of the parameters is given by L = 0.0001898,

which prove that system (1.1) undergoes Neimark-Sacker bifurcation. The bifurcation diagrams for

xn and yn are depicted in Figure 1 (a), and the maximum Lyapunov exponent is plotted in Figure 1

(b). Figures 2 and 3 show that the equilibrium point P is a stable attractor when γ < 0.85714. When

γ > 0.85714 the Neimark–Sacker bifurcation occurs. Figures 2 and 3 also illustrate that increasing the

value of γ leads to the change of stability of the equilibrium point P. Figure 2 (e) depicts the invariant

closed curve ϒSN around P, which shows that Theorem 3.2 is correct.

Remark 4.3. From the information provided above, we can deduce that all orbits with initial conditions

within the invariant curve ϒSN , excluding the equilibrium point P, will asymptotically converge towards

ϒSN . Additionally, all orbits starting from outside the curve will also eventually approach ϒSN .

As γ increases above γ1, the invariant curve ϒSN expands, but as γ decreases below γ1, the curve narrows.

(i.e The distance between the equilibrium point P and ϒSN tends to decrease as γ approaches γ1 (see

Figure 4)).

5. CONCLUDING REMARKS

We investigated a discrete-time plant-herbivore model in this study. We studied the equilibrium solu-

tions, stability, and bifurcation of the model. We saw the transition from normal to chaotic behaviour.

By using the centre manifold theorem and bifurcation theory of normal forms, it is demonstrated that

the plant-herbivore model experiences transcritical bifurcation at its boundary equilibrium. At a positive

steady-state of the plant-herbivore model, Neimark-Sacker bifurcation direction and existence criteria

are investigated. When considering the bifurcating behaviour for biological populations, it should be
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closed curve ϒSN as γ changes (left panel), and Invariant closed curves ϒSN for

different values of γ (right panel).

mentioned that these phenomena are crucial for competition between plants and herbivores. Chaos and

bifurcating behaviour have long been seen negatively in biology. On the other hand, unpredictable be-

haviour in a population can increase the danger of extinction. These are therefore disastrous for the

biological population’s ability to reproduce. The plant and herbivore came close to having constant val-

ues for the various values of γ . The dynamics on the invariant curve showed periodic and quasi-periodic

orbits as γ was changed. Additionally, the stable, closed, invariant curves lost stability and dispersed into

chaotic attractors.
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