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Abstract. In this study, a novel stochastic model for coronavirus disease 2019 (COVID-19) transmission is formu-

lated with the presence of immigration, vaccination and general incidence function. The environment variability

in this work is characterized by Gaussian white noise. We prove the existence, uniqueness and positivity of the

solution of the model and investigate the stochastic ultimate boundedness. Sufficient conditions are presented

for the extinction of the disease according to the values of the threshold parameter RS
0 that represents the basic

reproduction number of our stochastic model. Moreover, we prove that the number of infected individuals is al-

ways persistent in the mean. Also, the sensitivity analysis is used to discover parameters that have impact on the

threshold parameter RS
0. Some numerical experiments are also presented to illustrate the theoretical results.
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1. INTRODUCTION

In Epidemiology, mathematical modeling is an essential tool in studying and analyzing the

spread of infectious diseases and it is considered as an effective way to forecast the outbreak
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of an epidemic. Understanding the transmission of diseases in communities and countries is

extremely important to identify factors that are responsible for their existence.

Recently, many authors have proposed and studied different types of deterministic epidemic

models. For instance, Semlali et al [1] studied the global stability of ordinary differential equa-

tions (ODEs) model with general incidence rate, taking into account the effects of immigration

and vaccination. They divided the total population into three classes S(t), I(t) and R(t) that

represent susceptible, infected and recovered individuals at time t, respectively. More precisely,

the dynamics of the three classes was governed by the following system of ODEs

(1)


dS
dt = A+b−µS− f (S, I)I−νS,
dI
dt = c+ f (S, I)I− (µ + γ + r)I,
dR
dt = rI +νS−µR,

where the susceptible individuals are recruited at a rate A and become infected by effective

contact with infected individuals at rate f (S, I)I. The natural death rate in all classes is denoted

by µ , while γ is the death rate due to COVID-19. The parameter ν is the rate of vaccination and

r denotes the recovery rate of the infected individuals. Finally, b and c represent the immigrant

to susceptible and the immigrant to infected, respectively.

Most real world problems are not deterministic and our real life is full of randomness and

stochasticity and is influenced by environmental fluctuations. May [2] revealed that some main

parameters of the epidemic model, such as birth rates, death rates, recruited rates and disease

spread rates, are affected by environmental noise to some extent. Therefore, incorporating

stochastic effects into the model can bring more advantages and gives us a more realistic way

of modeling epidemic models compared to their deterministic corresponding models [2, 3].

There are different possible approaches that result in different effects on epidemic dynamical

systems to include random perturbations in the models [4, 5, 6, 7, 8]. Particularly, approaches

observed most often, such as parameters disturbance, ambient noise which is proportional to

the variables [9, 10].

Brownian motion is the primary choice for simulating random motion and noise in modeling

continuous-time systems. This choice is based on their good statistical characteristics. For
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example, Brownian motion has finite moments of all orders and there are powerful analytical

tools that can solve the Brownian motion problem.

In order to better simulate the impact of environmental noise during disease transmission,

we consider a random disturbance depending on the variables of state S, I and R. Thus, the

stochastic version of the deterministic system (1) is given by the following system of stochastic

differential equations (SDEs)

(2)


dS(t) = [A+b−µS(t)− f (S(t), I(t))I(t)−νS(t)]dt +σ1S(t)dB1(t),

dI(t) = [c+ f (S(t), I(t))I(t)− (µ + γ + r)I(t)]dt +σ2I(t)dB2(t),

dR(t) = [rI(t)+νS(t)−µR(t)]dt +σ3R(t)dB3(t),

where Bi(t) are independent standard Brownian motions with Bi(0) = 0, defined on a complete

probability space (Ω,F,P) with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is

increasing and right continuous while F0 contains all P-null sets) and σi denote the intensities

of perturbations, i=1, 2, 3.

It is important to note that the model presented by system (2) generalizes several special

cases. For instance, we obtain the model in [9, 11] when b = 0, c = 0, ν = 0 and f (S, I) =
βS

1+kI . Also, we get the model of Jiang et al. [12] when b = 0, c = 0, ν = 0 and f (S, I) = βS.

Furthermore, the model introduced in [13] is a particular case of system (2), it suffices to take

b = 0, c = 0, ν = 0, f (S, I) = βS and B1(t) = B2(t) = B3(t) for all t ≥ 0.

Obviously, the first two equations of system (2) do not depend on the variable R, model (2)

can be rewrite by following system

(3)

 dS(t) = [A+b−µS(t)− f (S(t), I(t))I(t)−νS(t)]dt +σ1S(t)dB1(t),

dI(t) = [c+ f (S(t), I(t))I(t)− (µ + γ + r)I(t)]dt +σ2I(t)dB2(t).

Moreover and according to [1], we assume that the general incidence function f is continuously

differentiable in the interior of R2
+ and satisfies the following conditions

(H1) f (0, I) = 0, for all I ≥ 0.

(H2) ∂ f
∂S (S, I)> 0, for all S > 0 and I ≥ 0.

(H3) ∂ f
∂ I (S, I)≤ 0, for all S≥ 0 and I ≥ 0.

Furthermore, we assume that
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(H4) f (S, I)≤ δS, for some real constant δ > 0 and all S > 0.

The rest of the present paper is organized as follows. In the next section, the well posedness

of the stochastic model (3) is proved by showing the existence, uniqueness and positivity of the

solution. Also, the stochastic ultimate boundedness of the solution is established. In Section 3,

we show the extinction of the disease in terms of the threshold parameter RS
0. In Section 4, the

sensitivity analysis is used to discover parameters that have impact on the threshold value RS
0. In

Section 5, the persistence in the mean is investigated. We give some numerical simulations to

illustrate our main results in Section 6. The paper ends with a brief discussion and conclusion.

2. EXISTENCE, UNIQUENESS OF THE GLOBAL POSITIVE SOLUTION AND STOCHAS-

TIC ULTIMATE BOUNDEDNESS

Since the solution of the stochastic model (3) has biological significance, it should be positive.

Furthermore, to study the dynamical behavior of the system (3), it is necessary to prove that the

solution has a global existence.

Our main goal in this section is to prove that the solution of model (3) is global positive and

bounded.

Theorem 2.1. For any given initial condition (S(0), I(0)) ∈ R2
+, there is a unique positive

solution (S(t), I(t)) of model (3) for all t ≥ 0 and the solution will remain in R2
+ with probability

one. That is (S(t), I(t)) ∈ R2
+ for all t ≥ 0 almost surly (a.s.).

Proof. Since the coefficients of system (3) are locally lipschitz continuous, then from [14], for

any initial condition (S(0), I(0)) ∈ R2
+, there is a unique local solution (S(t), I(t)) on t ∈ [0, te),

where te is the explosion time. To show that this solution is global, we need to prove te = +∞

almost surely.

We consider the following stopping time t∗ by

t∗ = in f{t ∈ [0, te) : S(t)≤ 0 or I(t)≤ 0}, with inf /0 =+∞.

It’s clear that t∗ ≤ te, so if we prove that t∗ = +∞ (a.s.), then te = +∞ (a.s.) which means that

(S(t), I(t)) will remain in R2
+ (a.s) for all t ≥ 0.

Assume that t∗ <+∞, then there exists a T > 0 such that P(t∗ < T )> 0.

Define the C2-function V: R2
+→ R by



DYNAMICAL BEHAVIOR OF A STOCHASTIC SIR EPIDEMIC MODEL 5

V (S, I) = lnS+ lnI.

By Itô’s formula, for all t ∈ [0, t∗) and almost all ω ∈ {t∗ < T} we obtain

lnS(t)+ lnI(t)− lnS(0)− lnI(0) =
∫ t

0

[
A+b
S(s)

− (µ +ν)− f (S(s), I(s))I(s)
S(s)

−1
2

σ
2
1

]
ds+

∫ t

0

[
c

I(s)
+ f (S(s), I(s))

−(µ + γ + r)− 1
2

σ
2
2

]
ds+σ1B1(t)+σ2B2(t)

≥
∫ t

0

[
− (2µ +ν + γ + r)− f (S(s), I(s))I(s)

S(s)

−1
2
(σ2

1 +σ
2
2 )

]
ds+σ1B1(t)+σ2B2(t).

According to (H4), we have

lnS(t)+ lnI(t)− lnS(0)− lnI(0) ≥
∫ t

0

[
− (2µ +ν + γ + r)−δ I(s)

−1
2
(σ2

1 +σ
2
2 )
]
ds+σ1B1(t)+σ2B2(t).

From the definition of t∗, it follows that the solution of system (3) is positive on [0, t∗) for almost

all ω ∈ {t∗ < T} and S(t∗) = 0 or I(t∗) = 0.

Therefore, lim
t→t∗

(lnS(t)+ lnI(t)) =−∞. Letting t 7→ t∗ in the inequality above, we get

−∞≥−[2µ +ν + γ + r+
1
2
(σ2

1 +σ
2
2 )]t

∗−δ

∫ t∗

0
I(s)ds+σ1B1(t∗)+σ2B2(t∗)>−∞,

that contradicts our assumption. Thus, t∗ = te =+∞ (a.s.). This completes the proof.

Theorem 2.1 shows that the solution of model (3) will remain in R2
+ and one need know how

the solution varies in R2
+ in more details. In population dynamic systems, the properties of

positivity and non-explosion are important but are often not sufficient. It is necessary to discuss

other properties of the solution of system (3). From a biological point of view, the property of

stochastically ultimate boundedness is more desirable than the nonexplosion property.

First, we give the definition of the stochastic ultimate boundedness of the solution, then an

essential theorem follows directly.

Definition 1. The solution X(t) = (S(t), I(t)) of system (3) is said to be stochastically ultimately

bounded if, for any ε ∈ (0,1), there is a positive constant α such that for any initial value
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X(0) ∈ R2
+, the solution X(t) of model (3) verifies the property

limsup
t→∞

P(‖X‖> α)≤ ε .

Theorem 2.2. For any initial value X(0) = (S(0), I(0)) ∈ R2
+, system (3) is stochastically

ultimately bounded.

Proof. Let m0 > 0 be sufficiently large such that every component of X(0) is contained within

the interval ( 1
m0
,m0). For each integer m≥ m0, define the stopping time

tm = in f
{

t ≥ 0 : S(t) /∈ ( 1
m ,m) or I(t) /∈ ( 1

m ,m)
}

,

which by Theorem 2.1 has the properties that tm 7→+∞ almost surely as m 7→+∞. We have

d(S(t)+ I(t)) = [A+b+ c− (µ +ν)S(t)− (µ + γ + r)I(t)]dt

+σ1S(t)dB1(t)+σ2I(t)dB2(t)

= [A+b+ c−µ(S(t)+ I(t))−νS(t)− (γ + r)I(t)]dt

+σ1S(t)dB1(t)+σ2I(t)dB2(t).

On the other hand, by applying Itô’s formula to eµt(S(t)+ I(t)) we get

d
[
eµt(S(t)+ I(t))

]
= eµt

[
µ
(
S(t)+ I(t))dt +d(S(t)+ I(t)

)]
= eµt

[(
A+b+ c−νS(t)− (γ + r)I(t)

)
dt +σ1S(t)dB1(t)

+σ2I(t)dB2(t)
]

=
[
(A+b+ c)eµt−νS(t)eµt− (γ + r)I(t)eµt

]
dt + eµt

σ1S(t)dB1(t)

+eµt
σ2I(t)dB2(t)

≤
(
(A+b+ c)eµt

)
dt + eµt

σ1S(t)dB1(t)+ eµt
σ2I(t)dB2(t).

By integrating this inequality and taking expectations on both sides, we obtain

E
[
eµ(t∧tm)

(
S(t ∧ tm)+ I(t ∧ tm)

)
− (S(0)+ I(0))

]
≤ E

[∫ t∧tm

0

(
A+b+ c

)
eµsds

]
≤ A+b+ c

µ

(
eµt−1

)
.

Let m→+∞, then

eµtE
[
(S(t)+ I(t))

]
− (S(0)+ I(0))≤ A+b+c

µ

(
eµt−1

)
.
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Therefore,

E
[
(S(t)+ I(t))

]
≤ (S(0)+ I(0))e−µt + A+b+c

µ

(
1− e−µt).

Consequently,

limsup
t→∞

E
[
(S(t)+ I(t))

]
≤ A+b+c

µ
.

Thus,

limsup
t→∞

E‖X‖ ≤ A+b+c
µ

, where ‖X‖=
√

S2 + I2 ≤ S+ I.

Then for any given 0 < ε < 1, let α = A+b+c
µε

. By virtue of Markov’s inequality, we get

limsup
t→∞

P(‖X‖> α)≤ limsup
t→∞

E‖X‖
α
≤ A+b+c

µ
× 1

α
= ε .

This completes the proof.

Consider the feasible region for the corresponding deterministic system of the stochastic

model (3), see [1].

Γ =
{
(S, I) ∈ R2

+ : S+ I ≤ A+b+c
µ

}
,

and define the set Γ∗ ⊂ Γ by

(4) Γ
∗ =

{
(S, I) ∈ R2

+ : S+ I ≤ A+b
µ +ν

}
.

In the following, we will prove that Γ∗ is almost surely positively invariant with respect to the

stochastic model (3).

Theorem 2.3. The region Γ∗ is almost surely positive invariant of the stochastic model.

Proof. Let (S(0), I(0)) ∈ Γ∗ and k0 > 0 be sufficiently large such that each component of

(S(0), I(0)) is contained within the interval ( 1
k0
, A+b

µ+ν
]. Define, for each integer k ≥ k0, the

stopping times

τk = in f
{

t > 0 : (S(t), I(t)) ∈ Γ∗ and (S(t), I(t)) /∈
(

1
k ,

A+b
µ+ν

]2}
and

τ = in f
{

t > 0 : (S(t), I(t)) /∈ Γ∗
}

.

It suffices to prove that P(τ =+∞) = 1, that is, P(τ < t) = 0 for all t > 0.

Obviously, (τ < t) ⊂ (τk < t), then P(τ < t) ≤ P(τk < t). So, we only need to show that

limsup
k→∞

P(τk < t) = 0.
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For this, we consider the C2-function U : R2
+→ R+ defined by

U (S, I) =
1
S
+

1
I
.

For all t ≥ 0 and 0≤ s≤ t ∧ τk, using Itô’s formula, we obtain

dU (S(s), I(s)) = LU (S(s), I(s))ds− σ1
S(s)dB1(s)− σ2

I(s)dB2(s),

where

LU (S(s), I(s)) =

[
− A+b

S2(s)
+

µ +ν

S(s)
+

f (S(s), I(s))I(s)
S2(s)

+
σ2

1
S(s)

]
+

[
− c

I2(s)
− f (S(s), I(s))

I(s)
+

µ + γ + r
I(s)

+
σ2

2
I(s)

]
.

Then

dU (S(s), I(s)) ≤
(

µ +ν +
f (S(s), I(s))I(s)

S(s)
+σ

2
1

) ds
S(s)

+
(

µ + γ + r+σ
2
2

) ds
I(s)

− σ1

S(s)
dB1(s)−

σ2

I(s)
dB2(s).

According to (H4) and (4), we get

dU (S(s), I(s)) ≤
(

µ +ν +
δ (A+b)

µ +ν
+σ

2
1

) ds
S(s)

+
(

µ + γ + r+σ
2
2

) ds
I(s)

− σ1

S(s)
dB1(s)−

σ2

I(s)
dB2(s).

Therefore,

(5) dU (S(s), I(s))≤ NU (S(s), I(s))ds− σ1

S(s)
dB1(s)−

σ2

I(s)
dB2(s),

where

N = max
{

µ +ν +
δ (A+b)

µ +ν
+σ

2
1 ,µ + γ + r+σ

2
2

}
.

By integrating, taking the expectation on both sides of (5) and applying Fubini’s theorem, we

obtain

E[U (S(s), I(s))]≤U (S(0), I(0))+N
∫ s

0 E[U (S(u), I(u))]du.

From Gronwall Lemma, we have for all 0≤ s≤ t ∧ τk,

E[U (S(s), I(s))]≤U (S(0), I(0))eNs.

Hence,

(6) E[U (S(t ∧ τk), I(t ∧ τk))]≤U (S(0), I(0))eN(t∧τk) ≤U (S(0), I(0))eNt ,∀t ≥ 0.
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Since U (S(t ∧ τk), I(t ∧ τk)) > 0 and some component of (S(τk), I(τk)) is less than or equal to
1
k , then U (S(τk), I(τk))≥ k, which implies that

(7) E[U (S(t ∧ τk), I(t ∧ τk))]≥ E[U (S(τk), I(τk))χ{τk<t}]≥ kP(τk < t),

where χ{τk<t} is the indicator function of {τk < t}.

By (6) and (7), we get that for all t ≥ 0

P(τk < t)≤ U (S(0),I(0))eNt

k .

Thus, limsup
k→∞

P(τk < t) = 0.

This completes the proof.

3. EXTINCTION OF DISEASE

Among the main concerns of epidemiology is how to regulate the dynamics of the disease

in order to eradicate it in the long term. For this reason, we investigate the conditions for the

extinction of the disease.

Our stochastic SIR epidemic model describes the dynamics of a communicable disease into

a population with positive flow of infective c. In this case, the infection cannot be eliminated

from the population and persists in the mean. That means, as people migrate, the disease will

persist as long as there are undiagnosed infections. c = 0 will be an ideal case before migration

is controlled. In the following, we will show by Theorem 3.1 the conditions for the extinction

of the disease.

Also, model (3) can be rewrite by following system

(8)

 dS(t) = [A+b−µS(t)− f (S(t), I(t))I(t)−νS(t)]dt +σ1S(t)dB1(t),

dI(t) = [ f (S(t), I(t))I(t)− (µ + γ + r)I(t)]dt +σ2I(t)dB2(t).

For the corresponding deterministic system of (8), we can use the results presented by Semlali

et al. [1]. It is easy to get the basic reproduction number of disease that is given as follows

(9) R0 =
f ( A+b

µ+ν
,0)

µ + γ + r
.

Similarly, we define the following threshold of our stochastic SIR epidemic model (8) by

(10) RS
0 = R0−

σ2
2

2(µ + γ + r)
.
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Remark 1. In absence of noise, we have RS
0 = R0.

Theorem 3.1. Let (S(t), I(t)) be the solution of the system (8) with any initial value

(S(0), I(0)) ∈ Γ∗. Then

limsup
t→∞

lnI(t)
t ≤ (µ + γ + r)(RS

0−1) (a.s.).

Moreover, if RS
0 < 1, then lim

t→∞
〈I〉t = 0 (a.s.) and lim

t→∞
〈S〉t = A+b

µ+ν
(a.s.). In other words, the

disease dies out with probability one.

Proof. Applying Itô’s formula to S(t)+ I(t), we obtain

d(S(t)+ I(t)) = [A+b− (µ +ν)S(t)− (µ + γ + r)I(t)]dt

+σ1S(t)dB1(t)+σ2I(t)dB2(t).

Then

S(t)+ I(t)
t

− S(0)+ I(0)
t

= A+b− (µ +ν)〈S〉t− (µ + γ + r)〈I〉t

+
σ1

t

∫ t

0
S(s)dB1(s)+

σ2

t

∫ t

0
I(s)dB2(s).

Therefore,

(µ +ν)〈S〉t = A+b− (µ + γ + r)〈I〉t−
S(t)+ I(t)

t
+

S(0)+ I(0)
t

+
σ1

t

∫ t

0
S(s)dB1(s)+

σ2

t

∫ t

0
I(s)dB2(s).

Thus,

(11) 〈S〉t =
A+b
µ +ν

− µ + γ + r
µ +ν

〈I〉t−G(t),

where

G(t) = S(t)+I(t)
(µ+ν)t −

S(0)+I(0)
(µ+ν)t −

σ1
(µ+ν)t

∫ t
0 S(s)dB1(s)− σ2

(µ+ν)t

∫ t
0 I(s)dB2(s).

Since (S(t), I(t)) ∈ Γ∗, we have

(12) lim
t→∞

G(t) = 0 (a.s.).

Now, we apply Itô’s formula to lnI(t), we get

dlnI(t) = [ f (S(t), I(t))− (µ + γ + r+ 1
2σ2

2 )]dt +σ2dB2(t).
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Hence,
lnI(t)

t = f (S(t), I(t))− (µ + γ + r+ 1
2σ2

2 )+
σ2B2(t)

t + lnI(0)
t .

Since S≤ A+b
µ+ν

and according to (H2) and (H3), we get
lnI(t)

t ≤ f
(

A+b
µ+ν

,0
)
− (µ + γ + r+ 1

2σ2
2 )+

σ2B2(t)
t + lnI(0)

t .

Consequently,
lnI(t)

t ≤ (µ + γ + r)(R0−
σ2

2
2(µ+γ+r) −1)+ σ2B2(t)

t + lnI(0)
t .

Thus,
lnI(t)

t ≤ (µ + γ + r)(RS
0−1)+ σ2B2(t)

t + lnI(0)
t .

By the large number theorem for martingales, we get

(13) lim
t→∞

B2(t)
t

= 0 (a.s.).

Since RS
0 < 1, then

(14) limsup
t→∞

lnI(t)
t
≤ (µ + γ + r)(RS

0−1)< 0 (a.s.).

This implies

(15) lim
t→∞

I(t) = 0 (a.s.).

From (11), we have

lim
t→∞
〈S〉t = A+b

µ+ν
− µ+γ+r

µ+ν
lim
t→∞
〈I〉t− lim

t→∞
G(t).

Taking into account (12) and (15), we get

(16) lim
t→∞
〈S〉t =

A+b
µ +ν

(a.s.).

The proof is therefore complete.

4. SENSITIVITY ANALYSIS

As in the previous section, we assume that there is no flow of infected immigrants, this

implies that c = 0. In the following, we will perform the sensitivity analysis.

The sensitivity analysis is essential to determine the best way to reduce the effect of disease. It

indicates the influence and the impact of each parameter on the disease and discover parameters

that have a high impact on the stochastic reproduction number RS
0.

The sensitivity of a variable with respect to model parameters is usually measured by sensitivity
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index. When the variable is a differentiable function of the parameter, the sensitivity index can

be defined using partial derivatives.

Definition 2. The normalized forward sensitivity index of RS
0 that depends differentiably on a

parameter p is defined by

(17) ρ
RS

0
p =

∂RS
0

∂ p
p

RS
0
.

We perform the sensitivity analysis using (17) with parameters A, b, σ2, ν , γ , r and µ , we get

ρ
RS

0
A = A

RS
0

∂RS
0

∂A =
2A ∂ f

∂S (
A+b
µ+ν

,0)

(µ+ν)
(

2 f ( A+b
µ+ν

,0)−σ2
2

) > 0,

ρ
RS

0
b = b

RS
0

∂RS
0

∂b =
2b ∂ f

∂S (
A+b
µ+ν

,0)

(µ+ν)
(

2 f ( A+b
µ+ν

,0)−σ2
2

) > 0,

ρ
RS

0
σ2 = σ2

RS
0

∂RS
0

∂σ2
=

−2σ2
2

2 f ( A+b
µ+ν

,0)−σ2
2
< 0,

ρ
RS

0
ν = ν

RS
0

∂RS
0

∂ν
=

−2ν(A+b) ∂ f
∂S (

A+b
µ+ν

,0)

(µ+ν)2
(

2 f ( A+b
µ+ν

,0)−σ2
2

) < 0,

ρ
RS

0
γ = γ

RS
0

∂RS
0

∂γ
= −γ

µ+γ+r < 0,

ρ
RS

0
r = r

RS
0

∂RS
0

∂ r = −r
µ+γ+r < 0,

ρ
RS

0
µ = µ

RS
0

∂RS
0

∂ µ
=−µ

[
1

µ+γ+r +
2(A+b) ∂ f

∂S (
A+b
µ+ν

,0)

(µ+ν)2
(

2 f ( A+b
µ+ν

,0)−σ2
2

)]< 0.

Equations above show that the parameters A and b are proportional to the stochastic repro-

duction number RS
0. Consequently, an increase or decrease in these parameters will increase

or decrease the stochastic reproduction number RS
0. However, the parameters σ2, ν , γ , r, µ

are inversely proportional to RS
0. So, an increase in these parameters will decrease RS

0, while a

decrease in these parameters will increase RS
0.
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5. PERSISTENCE OF DISEASE

In this section, we will investigate the persistence in the mean of the system (3). First we

recall the definition of the persistence in the mean, then we give two lemmas that we will use to

prove Theorem 5.1.

Definition 3. The variable I in system (3) is said to be persistent in the mean, if

liminf
t→∞

〈I〉t > 0 (a.s.), where 〈I〉t = 1
t
∫ t

0 I(s)ds.

Lemma 1. Let (S(t), I(t)) be the solution of system (3) with any initial value (S(0), I(0)) ∈R2
+,

we have

lim
t→∞

S(t)+I(t)
t = 0 (a.s.).

Moreover, we have

lim
t→∞

S(t)
t = 0 (a.s.) and lim

t→∞

I(t)
t = 0 (a.s.).

Proof. Let u(t) = S(t)+ I(t) and define w(u) = (1+u)θ , where θ is a positive real constant to

be chosen in the following. Using Itô’s formula, we get

dw(u(t)) = Lw(u(t))dt +θ(1+u(t))θ−1[σ1S(t)dB1(t)+σ2I(t)dB2(t)],

where

L(w(u)) = θ(1+u)θ−1[A+b+ c−µu−νS− (γ + r)I
]

+
θ(θ −1)

2
(1+u)θ−2(σ2

1 S2 +σ
2
2 I2)

= θ(1+u)θ−2
[
(1+u)(A+b+ c−µu−νS− (γ + r)I)

+
(θ −1)

2
(σ2

1 S2 +σ
2
2 I2)

]
≤ θ(1+u)θ−2

[
(1+u)(A+b+ c−µu)+

(θ −1)
2

(σ2
1 S2 +σ

2
2 I2)

]
≤ θ(1+u)θ−2

[
(1+u)(A+b+ c−µu)+(

θ −1
2
∨0)(σ2

1 ∨σ
2
2 )u

2
]

= θ(1+u)θ−2
[
−
[
µ− (

θ −1
2
∨0)(σ2

1 ∨σ
2
2 )
]
u2 +(A+b+ c−µ)u

+A+b+ c
]
.
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We choose θ > 0 such that

µ− (θ−1
2 ∨0)(σ2

1 ∨σ2
2 ) := λ > 0.

Then

Lw(u)≤ θ(1+u)θ−2[−λu2 +(A+b+ c−µ)u+A+b+ c].

Therefore,

dw(u(t)) ≤ θ(1+u(t))θ−2[−λu2(t)+(A+b+ c−µ)u(t)+A+b+ c
]
dt

+θ(1+u(t))θ−1[
σ1S(t)dB1(t)+σ2I(t)dB2(t)

]
.

For 0 < k < θλ , we get

d[ektw(u(t))] = L[ektw(u(t))]dt +θekt(1+u(t))θ−1[σ1S(t)dB1(t)+σ2I(t)dB2].

Thus,

(18) E[ektw(u(t))] = w(u(0))+E
[∫ t

0
L(eksw(u(s)))ds

]
,

where

L[ektw(u(t))] = kektw(u(t))+ ektL(w(u(t)))

≤ θekt(1+u(t))θ−2
[

k
θ
(1+u(t))2−λu2(t)+(A+b+ c−µ)u(t)

+A+b+ c
]

= θekt(1+u(t))θ−2
[
−
(

λ − k
θ

)
u2(t)+

(
A+b+ c−µ +

2k
θ

)
u(t)

+A+b+ c+
k
θ

]
≤ θektM,

where

M := supu∈R+

{
(1+u)θ−2

[
−
(

λ − k
θ

)
u2 +

(
A+b+ c−µ + 2k

θ

)
u+A+b+ c+ k

θ

]}
.

Therefore, from (18) we have

E[ekt(1+u(t))θ ]≤ (1+u(0))θ + θM
k ekt .

Hence,
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limsup
t→∞

E[(1+u(t))θ ]≤ θM
k := M0 (a.s.),

which together with the continuity of u implies that there exists a constant H > 0 such that

(19) E[(1+u(t))θ ]≤ H, f or all t ≥ 0.

With (19), we can proceed as in [3] to complete the proof.

Lemma 2. For any initial value (S(0), I(0)) ∈R2
+ the solution (S(t), I(t)) of system (3) verifies

lim
t→∞

∫ t
0 S(s)dB1(s)

t = 0 (a.s.) and lim
t→∞

∫ t
0 I(s)dB2(s)

t = 0 (a.s.).

Proof. We proceed as in Lemma 2.2 of [3]

Theorem 5.1. For any initial value (S(0), I(0)) ∈ R2
+, the variable I of model (3) is persistent

in the mean (a.s.). Moreover, we have

liminf
t→∞

〈I〉t ≥ c
µ+γ+r .

Proof. We have

dI = [c+ f (S, I)I− (µ + γ + r)I]dt +σ2IdB2(t).

Then
I(t)−I(0)

t = c+ 〈 f (S, I)I〉t− (µ + γ + r)〈I〉t + σ2
t
∫ t

0 I(s)dB2(s).

Therefore,

liminf
t→∞

I(t)−I(0)
t ≥ c− (µ + γ + r) liminf

t→∞
〈I〉t + liminf

t→∞

σ2
t
∫ t

0 I(s)dB2(s).

According to Lemma 1 and Lemma 2, we get

0≥ c− (µ + γ + r) liminf
t→∞

〈I〉t .

Consequently,

liminf
t→∞

〈I〉t ≥ c
µ+γ+r .

This completes the proof.

6. NUMERICAL SIMULATIONS

In this section, some numerical simulations are given to illustrate the obtained theoretical re-

sults. Throughout the following numerical simulations, we choose f (S, I) = βS
1+α1S+α2I , where

β is the rate of infection, α1 and α2 measuring the effects of saturation. The corresponding
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discretization system of model (3) is given as follows



Sk+1 = Sk +
[
A+b−µSk− βSkIk

1+α1Sk+α2Ik
−νSk

]
∆t +σ1Sk

√
∆tξk

+1
2σ2

1 Sk(ξ
2
k −1)∆t,

Ik+1 = Ik +
[
c+ βSkIk

1+α1Sk+α2Ik
− (µ + γ + r)Ik

]
∆t +σ2Ik

√
∆tξk

+1
2σ2

2 Ik(ξ
2
k −1)∆t,

where ξk (k = 1,2, ...) are independent Gaussian random variables which follow stan-

dard normal distribution N(0,1).

Firstly, taking A = 5, b = 1, c = 0, β = 0.01, γ = 0.01, µ = 0.01, ν = 0.01, r = 0.01,

α1 = 0.1, α2 = 0.1, σ1 = 0.03 and σ2 = 0.03. By computing, we get R0 = 3.2258 > 1 and RS
0 =

3.2108 > 1. Figure 1 is an illustration of the trajectories of S(t) and I(t) using the parameters

cited before, it supports the theoretical results seen in Section 3.
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FIGURE 1. Simulations of paths of S(t) and I(t) for the stochastic system and

the corresponding deterministic system when c = 0.

Secondly, we take c = 0.4 and the same other parameters as above. In this case, we have

c > 0, then according to Theorem 5.1, the disease will persist almost surely and the infection

cannot be eliminated from the population as illustrated in Figure 2. The performed simulation
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for the disease support our theoretical result where we assumed that the persistence will hold in

the population.
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FIGURE 2. Simulations of paths of S(t) and I(t) for the stochastic system and

the corresponding deterministic system when c = 0.4.

Thirdly, let A = 5, b = 1, c = 0, β = 0.02, γ = 0.05, µ = 0.1, ν = 0.01, r = 0.025, α1 = 0.02,

α2 = 0.5, σ1 = 0.1 and σ2 = 0.05. In this case, we have RS
0 = 2.9742 > 1. Therefore, from

Theorem 3.1 it follows that system is persistent in the mean, which means that the disease

persist in the population, see Figure 3.
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FIGURE 3. Dynamics of system (8) when c = 0 and RS
0 = 2.9742 > 1.
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Fourthly, we take A = 5, b = 1, c = 0, β = 0.01, γ = 0.05, µ = 0.02, ν = 0.01, r = 0.1,

α1 = 0.05, α2 = 0.05, σ1 = 0.3 and σ2 = 0.2. By computing, we have RS
0 = 0.9519 < 1. Hence,

according to Theorem 3.1, if RS
0 < 1, for the positive solution (S(t), I(t)) of the system (8) the

disease will extinct almost surely. Figure 4 clearly supports the theoretical result.
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FIGURE 4. Dynamics of system (8) when c = 0 and RS
0 = 0.9519 < 1.

Next, let A = 5, b = 1, c = 0, β = 0.02, γ = 0.1, µ = 0.01, ν = 0.05, r = 0.1, α1 = 0.07, α2 =

0.05, σ1 = 0.1 and σ2 = 0.5. By calculation, we have R0 = 1.1905 > 1 and RS
0 = 0.5952 < 1.

Therefore, we can deduce that the disease dies out when σ2 is sufficiently large as illustrated in

Figure 5.
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FIGURE 5. Dynamics of system (8) when c = 0, R0 = 1.1905 > 1 and RS
0 =

0.5952 < 1.
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At last, we take A = 5, b = 1, c = 0, β = 0.02, γ = 0.1, µ = 0.1, ν = 0.02, r = 0.1, α1 = 0.01,

α2 = 0.5. By computing, we have R0 = 2.2222 > 1. From the explicit expression of RS
0 in (10),

we see that RS
0 is a decreasing function of the second intensity of perturbations σ2, which is

demonstrated in Figure 6.
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FIGURE 6. Plot of the basic reproduction number as a function of σ2.

7. DISCUSSION AND CONCLUSION

In this work, we have studied a stochastic SIR epidemic model of COVID-19 transmis-

sion in the presence of immigration, vaccination and general incidence function by introducing

random perturbations of white noise type directly proportional to the components of the solu-

tion. First, we have proved the existence and uniqueness of the global positive solution and

investigated the stochastic ultimate boundedness.

In absence of infected immigrants (c = 0), sufficient conditions have been presented for the

extinction of the disease according to the values of RS
0 which is smaller than the basic repro-

duction number R0 of the corresponding deterministic system which shows that the stochastic

approach is more realistic than the deterministic approach. In other words, white noises can

change the behavior of the model and force the extinction of the disease.

When c > 0, we have shown that the infection cannot be eliminated from the population and

persists in the mean. i.e, as people migrate, the disease persists as long as there are undiagnosed

infections. In this case, it is impossible to have a disease-free equilibrium but the model has a

unique endemic steady state.
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On the other hand, we have performed the sensitivity analysis with parameters A, b, σ2, ν , γ ,

r and µ and we have indicated the influence and the impact of each parameter on the disease

and discovered parameters that have a high impact on the stochastic reproduction number RS
0.

It is known that COVID-19 can also spread indirectly through contact with an environment

contaminated by viral particles of SARS-COV-2. Therefore, taking into account environmental

contamination as in [15] and studying the memory effect on the dynamics of COVID-19 by

means of the Hattaf fractional operators introduced in [16, 17], will be main goal of our future

works.
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