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Abstract. It is well known that demyelination associated with multiple sclerosis alters coupling between axons in

a diseased nerve tract due to exposure of ion channels. In this work we ask the question whether the presence of

electric fields as a coupling mechanism between nerve axons, has any impact on the expected conduction properties

of the nerve under focal demyelination. Using an approximate geometry for a bundle of three axons, we allow

electric fields generated at a node of Ranvier to influence other nodes of Ranvier on different axons. In order to

introduce focal demyelination, we allow a new type of structure, intermediate between a node and an internodal

segment. We find that the nerve’s conduction profiles are different with and without field-based coupling. This

is important because it opens up the possibility for an experimental investigation to study whether field-based

coupling predominates over current-based coupling. Fields and currents may also be measured using different

methods and so there are implications for bio-instrumentation. From a systems perspective, the study is based

on a novel equation which allows electric fields to act as sources of current at axons’ nodes of Ranvier, thereby

generating new behaviors from the set of coupled partial differential equations that model the electrodynamics

of the nerve. In addition to our simulation study of focal demyelination, we present a justification for a certain

geometric W -matrix used in our phenomenological 2019 model. We also provide the first simulations of a tract

of tortuous axons, showing the impact of tract tortuosity on conduction velocity. The tortuous model is analyzed
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geometrically to illustrate the mechanism of synchronization. Finally, this same model is shown to be castable as

a learning machine - a formulation that has neuroscience implications.

Keywords: focal demyelination; electric fields; coupling; currents; nodes; multiple sclerosis; tortuosity.
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1. INTRODUCTION

Focal demyelination has been studied extensively in the biological literature. In [1], the

authors look at the corpus callosum of the rabbit and find a way to induce focal demyelination.

In [2], death of oligodendrocytes was associated with focal demyelination in the adult rat brain,

and the study in [3] uses novel MRI techniques to image focal demyelination in vivo induced

by lysolecithin in male Lewis rats.

Numerical methods in the neurosciences have a long history dating at least to Hodgkin and

Huxley [4]. While we celebrate the remarkable success of Hodgkin-Huxley neural theory [5] in

mimicking the real nerve, there is still no full analytical solution to those equations; they were

initially partly composed on the basis of empirical fits to observed data. This is a constraint on

our understanding of nerve function. One would ideally need to delve into ion channel structure

and function and perhaps even incorporate the molecular-quantum level and then step upward

classically to get an actual ‘derivation’ of the Hodgkin Huxley formula from first principles.

This is undoubtedly a hard task and has not been accomplished by anyone yet.

From the mathematical and biophysical perspective, studies on focal demyelination are thus

relatively few. Papers such as [6], within the past half-century, have looked at demyelination

in the context of stand-alone axons, providing computer simulation results. In the present pa-

per, we focus on current and field-coupled axon tracts as the arena in which to carry out this

investigation. Another paper, [7], also looks at focal demyelination. However, in it the authors

vary the paranodal seal resistance, whereas our work is carried out on the basis of varying the

paranodal capacitance. They have regularly spaced paranodes throughout their model, whereas

we topically insert paranodes to test their impact. Apart from these differences, they do not con-

sider coupling between axons, either via currents or fields, which we consider in this paper. The

other papers of the same group, such as [8], follow their 1995 model and hence the differences

from our work carry over to these later papers as well.
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Note that current-mediated coupling (as in the term ’current-coupled’) is commonly known

as ephaptic coupling in the literature and is based on a return path of the axoplasmic current

through the extracellular space [9]. Field-mediated coupling (as in the term ’field-coupled’)

as discussed in the present paper allows the endogenous electric fields generated at nodes of

Ranvier to influence the movement of and injection of ions into distant nodes of Ranvier on

different axons and doesn’t have an exact parallel in the literature1. However, for a comparison,

see [10], where the phrase ’ephaptic interactions’ is used in a somewhat similar context, with the

mention of ’fields’. Their Equations (4) and (5) however, appear to be a recasting of Equations

(9) and (11) of [9].

In the present paper we will take the Hodgkin-Huxley formulation for granted, and build on

top of it an understanding of demyelination, showing an important application of the program

to develop a deeper mathematical and biophysical understanding of axon-axon coupling. To-

wards this end, the paper is structured as follows. First, in Section 2 we describe the model

used in this study and present a working example. We also elucidate an important part of the

model which was phenomenologically justified previously. We provide a geometric analysis

of synchronization. Thereafter, in Section 3 we study focal demyelination in axon tracts under

current-mediated coupling as well as under field-mediated coupling, also providing simulations

of (normal myelination) conduction under tortuosity. Finally, we conclude in Section 4. In

Appendix 1 we frame the tortuous tract as a learning machine. The second appendix looks at

the geometry of the tract, as encoded in the tract matrix, in the sense of information theory and

illuminates a perspective on the progression of multiple sclerosis that has not been considered

before.

2. MATERIALS AND METHODS

2.1. Mathematical Model and Its Justification. The mathematical model that we use in this

paper is described in [11]. The central equation is presented here as well for a self-contained

treatment. The notation is succinctly described in Table 1.

1See also the footnote in Subsection 3.3.
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TABLE 1. Notational Summary

Symbol Meaning

cm,k per unit length capacitance of the node, paranode or internode

V,Vk transmembrane voltage of the (k-th) axon

G, Gaxoplasm
k ,Gm,k,Gext conductance (axoplasmic, myelin) of the (k-th) axon, extracellular

θk,θk(z) (z-dependent) inclination of the k-th axon w.r.t. the central axis of the containing cylinder

Wkp,Wkp(z) a (z-dependent) matrix that contains the inter-axonal distances

Kp,Kp(z) a (z-dependent) parameter related to the p-th axon, given by
Gax

p cosθp

Gext+∑axons,p Gax
p cosθp

I,Iin jected
k the current injected, such as ionic (or stimulation) current, into the (k-th) axon

I f ields
k the field-generated current

−−−→
E1−>2,

−−−→
E2−>1 electric field generated by axon 1 (or 2) impacting on axon 2 (or 1)

−→pi the dipole moment of all nodes on axon i, superposed

l mean distance of all nodes of axon 2 from the present node on axon 1

−→
li the vector containing all the distances relative to axon i

li j the distance between the present node on axon i and node j on the other axon

−→
p j

i the dipole moment of node j on axon i

C capacitance of the axonal membrane

η a constant appearing in the Hodgkin-Huxley equation

W̃kp(z) (k, p)-th entry in the (z-dependent) modified W matrix, as specified in this paper’s text

N total number of axons in the axon tract

−−−→
W̃k(z) (z-dependent) k-th row of the modified W matrix

−−−→
V (z, t) (z, t)-dependent column vector containing the transmembrane voltages of all the N axons

uk linear combiner output of the k-th neuron

wk j synaptic weights of neuron k

m total number of synapses in a neuron
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TABLE 2. Notational Summary (continued)

Symbol Meaning

x j input signals to the synapses of a neuron

ϕ(·) activation function of the neuron

bk bias of the k-th neuron

yk output signal of the k-th neuron

T1,T2 axon tract (1,2)

SW i
Tj
(z) subspace i of the (z-dependent) W matrix of axon tract j

F
a matrix, akin to the W matrix, but for collections of tracts; the W matrices ...

... of the component tracts are sub-matrices of this larger matrix

o a type of operation within a W matrix

s a type of operation within an F matrix

(1) cm,k(x)
∂Vk

∂ t
= Gaxoplasm

k cos2
θk

[
∂ 2Vk

∂ z2 −
N

∑
p=1

WkpKp
∂ 2Vp

∂ z2

]
−Gm,kVk + Iin jected

k + I f ields
k

This equation models nodes and internodes. In this equation, the capacitance enters on the left

hand side. In order to model a paranodal segment, we modify the value of cm,k. This is discussed

in detail in Section 3.1. Next, we provide a brief tour of the model.

The model was developed with the motivation to extend [9] to the three dimensional case

since all axon tracts are three dimensional. This allowed modeling axonal inclinations and in-

teraxonal distances, the latter phenomenologically. In order to allow the tracts to be tortuous

instead of merely linear, we introduced a z-dependence in the inclinations and interaxonal dis-

tances in [11]. In the same paper, we also introduced field-based interaction between the axons

in the tract. Another development in that paper was the study of spacetime perturbative effects

on the tract.
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When Equation (1) was introduced, the matrix containing the interaxonal distances, Wkp, was

phenomenologically placed. Here we present a justification of the introduction of this matrix.

The justification is based on electric field based coupling between the axons. In future work

we will explore a purely current-based justification. We focus on the term I f ields
k which stands

for the current injected at a node of axon k based on the impinging electric field from other

axons’ nodes. In particular, consider the electric field generated by axon 2 in its impact on axon

1, which enters into Equation (1) as a product with the conductivity in order to form the field-

generated current injection at a node. Denote it by
−−−→
E2−>1 ∼

−→p2
l3 where −→p2 is the dipole moment

of all nodes on axon 2, superposed (see Equation 4.13 in [12]), and l is the mean distance of

all nodes of axon 2 from the present node on axon 1 (the node under consideration). Next

suppose we denote by
−→
l2 the vector containing all the distances: [ 1

l3
21
, 1

l3
22
, ..., 1

l3
2B
] and by −→p2 the

vector containing all the dipole moments: [
−→
p1

2,
−→
p2

2, ...,
−→
pB

2 ]. Then
−−−→
E2−>1 is proportional to the

inner product between these two vectors. Similarly
−−−→
E1−>2 is proportional to the inner product

between −→p1 and
−→
l1 . If we collect all these inner products in a given axon’s equation, they lead

to a cubic-decay Wkp matrix.

2.2. Demonstration of the Program. The basic program was outlined in a flowchart in [13].

In this section we present a numerical experiment that demonstrates the working of our program,

extended as follows. In order to demonstrate the power and versatility of the program, we

extended it to include Gaussian random noise at the ion channels (this was also done in [14],

but for shorter spike trains) to introduce randomness into the simulations. We start with a tract

of N = 3 axons and do not invoke electric fields or focal demyelination. We stimulate the first

axon (topmost sub-figure in both Figures 1 and 2.). We record the voltage from the stimulated

node on all the three axons as well as from the terminal nodes in all three axons. The stimulation

magnitude is approximately 1.6e-5 Amps/centimeter. To achieve this, we inject 4 nano Amps

in a node of Ranvier which has a length of 2.5e-4 centimeters. For biological comparison,

the typical voltage gated sodium ion channel current is of the order of 2 pico Amperes, but

several thousands of these are present at a node and superpose in some way to generate an

action potential-like current profile. In [9], the authors inject a similar amount of current. In

the present studies, the current is injected in short square pulses of duration 10 microseconds
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each, input at node 20 at a frequency of 1 per 2 milliseconds. Note that the duration of an action

potential from our simulation program is about 1 millisecond, but if we include the refractory

period, we cannot have action potentials less than about 2 millisecond apart. From Figure 1

the 2 millisecond choice is just about right, though a slightly larger temporal gap might have

allowed equal magnitude of all the action potentials; the second and third action potentials for

example appear slightly diminished in amplitude, which would be consistent with having an

overlap between the refractory period of the preceding action potential and the injection of the

present current pulse. The results are shown in Figures 1 and 2. The figures show that random

ion channel noise can lead to fluctuations in the voltage recorded.

FIGURE 1. Voltage probe at the stimulated nodal position. Only axon 1 is stim-

ulated at position 20, but all three are shown, with axon 1 the topmost sub figure

and axon 3 the bottom subfigure. The x-axis is time in seconds and the y-axis

is voltage in volts, in all the three subfigures. The severity of the added noise

causes occassional large amplitude hyperpolarization.
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FIGURE 2. Voltage probe at the terminal position of all three axons. All three

are shown, with axon 1 the topmost sub figure and axon 3 the bottom subfigure.

The x-axis is time in seconds and the y-axis is voltage in volts, in all the three

subfigures. Propagation delays are clearly visible in the first and second axons

(top two sub-figures). The third axon does not show significant propagation

delay; the explanation may lie in a combination of noise and current-coupling

between the axons.

2.3. Theoretical and Geometric Analysis of Synchronization in Tortuous Tracts. In this

section, we will present an analysis of synchronization from a geometric perspective. We will

model the signal space geometrically after introducing an inner product on it. This will serve to

illustrate a key concept of synchronization. Consider the following equation:

(2) C
∂V
∂ t

= η
∂ 2V
∂x2 −GV + I

This is the (Hodgkin-Huxley) equation for a single axon. From [11], we note down the equation

for a tortuous tract of N coupled axons:

(3)

cmk(x)
∂Vk

∂ t
= Gaxoplasm

k cos2
θk(z)

[
∂ 2Vk

∂ z2 −
N

∑
p=1

Wkp(z)Kp(z)
∂ 2Vp

∂ z2

]
−GmkVk + Iin jected

k + I f ields
k
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Introduce

(4) W̃kk(z)≡ Gaxoplasm
k cos2

θk(z) [1−Wkk(z)Kk(z)]

and

(5) W̃kp(z)≡ Gaxoplasm
k cos2

θk(z)Wkp(z)Kp(z)

This W̃ matrix has different structure on the diagonal as opposed to the off-diagonal. Inserting

Equations (4) and (5) into Equation (3) above, we obtain,

(6) cmk(x)
∂Vk

∂ t
=

N

∑
p=1

W̃kp(z)
∂ 2Vp

∂ z2 −GmkVk + Iin jected
k + I f ields

k

The summation sign in this equation can now be treated as an inner product. Explicitly we note,

(7)
N

∑
p=1

W̃kp(z)
∂ 2Vp

∂ z2 =
[

W̃k1(z) W̃k2(z) ... W̃kN(z)
]


∂ 2V1
∂ z2

∂ 2V2
∂ z2

...
∂ 2VN
∂ z2


Henceforth we will denote the inner product in this formula as,

(8)
〈−−−→

W̃k(z),
∂ 2

∂ z2

−−−→
V (z, t)

〉
Inserting this back into Equation (6) we obtain,

(9) cmk(x)
∂Vk

∂ t
=

〈−−−→
W̃k(z),

∂ 2

∂ z2

−−−→
V (z, t)

〉
−GmkVk + Iin jected

k + I f ields
k

Note that
−−−→
W̃k(z) can be thought of as the geometrical “view” from the k-th axon and

−−−→
V (z, t) is

nothing but the vector of transmembrane voltages of all the axons at the pair (z, t). In this form,

Equation (9) tells us that the temporal evolution of the k-th axon’s voltage depends upon (in

addition to the last three terms) the projection of the system’s voltages upon the view from that

axon. Since the inner product is known to be related to the geometrical distance between the

constituent vectors, this gives us the following picture of what is happening with time (see also

Figure 3).
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FIGURE 3. Geometrical view of the evolution equation (9). Following formula

(8), the W -vectors (W1,W2 and others) are projected (via inner products), onto the

N-dimensional system space comprising the span of the voltage vectors whose

entries are V1 through VN . These N voltages, in this format, comprise a sub-set

of RN but, by using the so-called push-forward construction, can also be viewed

as a subspace of RN.

We start off the system with some set of voltages on all the axons and some fixed geometry.

As time progresses, each voltage migrates according to the law in Equation (9). The migration

rate of a voltage is higher if its separation (by which we mean the separation of its corresponding

geometrical vector) from the system voltage vector is larger (modulo a linear term). Visualize

the system voltage vector as a cloud (see also Figure 4). If any point in the cloud is far from

the cloud (in a mean sense), then the point will evolve at a much more rapid rate, than points

closer to the cloud. If this evolution is towards the cloud, it will result in synchronization. If the

evolution is away from the cloud then it will result in dispersal of the voltages. Since we know

that synchronization does take place in such systems, it must be the former case. Thus we have

a geometrical view of synchronization in axon tracts. An application of this view is discussed

in Subsection 3.4.
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To put Equation (9) in perspective, we discuss it in relation to the joint analytical-simulation

work [15] wherein the authors present a spike propagation model which allows them to simulate

large axon tracts containing axons with differing diameters, concluding that slow fibers synchro-

nize more effectively than fast fibers. They introduce a ‘co-moving’ frame which allows them

to do an analytical study. For their simulations, the authors consider a 1D representation, which

they argue is suitable for peripheral nerve bundles. Their argument is based on looking solely at

the extracellular potential which is considered as adequately modeled by only its z dependence,

ignoring the radial variation of the extracellular potential.

Our 3D Equation (3) is based on [13] where also, the radial variation of the extracellular

potential is ignored. However, in [13], the authors explicitly introduce the dependence of the

various membrane potentials on the angular inclinations of the axons and the inter-axonal dis-

tances. This dependence is visible in Equation (3) where we find the geometric variables θk(z)

and Wkp(z). These variables and the inner product in Equation (9) are z-dependent, which allows

for tract tortuosity to be modeled, a real-world possibility not considered in [15]2.

FIGURE 4. Cloud of points representing each of the system’s N transmembrane

voltages. A distant point (shown circled in red) can evolve over time to approach

the cloud or recede from it. If it does the former, the point is said to be synchro-

nizing with the rest of the system and in the latter case it is going away from the

mean.

2We note further that Equation (4) in [15] is similar to Equation (8) in [13], though the latter is derived based

on three dimensions whereas the former is based on the one-dimensional cable equation. Because of this inherent

difference, Schmidt and Knosche’s work is not directly amenable to an inner-product formulation.
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3. RESULTS

As mentioned in Section 2, in [13] we introduced a MATLAB program for simulating three-

dimensional axon tracts. Those tracts did not have demyelination - that is, there was a uniform

myelin coverage on all the internodal regions. However, in diseases such as multiple sclerosis,

the myelin coverage is no longer uniform. In this section we will approach the problem of

simulating axon tracts when the individual axons can have spot-demyelination, also known as

’focal’ demyelination, along their length.

3.1. Paranodes Affect Passage of Action Potentials.

These experiments indicate that sodium channels form along the internodal seg-

ments of demyelinated axons [16].

The above statement from [16] motivates us further to introduce focal demyelination in intern-

odal segments. Focal demyelination is simulated by creating a third type of segment, known

as a paranode, apart from the nodal and internodal types. The only difference between a node

and a paranode is in the capacitance per unit length [17]3. If the capacitance is high, the rate of

flow of charge, or current into the capacitor will be high. As a result, by Kirchhoff’s nodal law,

the current in the conductance will be lower. By Ohm’s law, this would imply that the potential

drop across the conductance, will be lower. As a result the action potential will reach a lower

height than when the capacitance is low.

This phenomenon is observed at the paranodes, where capacitance per unit length is higher

than that of the nodes. As a result, the action potential reaches a lower height at the paranodes

than at the nodes. For a fixed current, the rate of rise of the action potential (its slope) will be

lower for a higher capacitance. Thus the rate of rise of the action potential at the paranodes is

slower. The rate of diffusion across the succeeding internode to the next node is also slower

and so the action potential train slows down after passing through the paranodes4. This is

also observed and verified as shown in Figure 5 below. Figure 6 delves into this a little more

3Please see Subsection 3.2 for the exact value of the paranodal capacitance per unit length,
4Note that diffusion is part of the Hodgkin-Huxley system of equations, of which the present set of equations

(Equation (1)) are an extension. The second partial derivative with respect to space is a critical component of

diffusion in the system.
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rigorously. In it, we have plotted the first spike’s motion across the nodes separately from that

of the second spike. The second spike train shows a slowing down at the paranodal regions.

This is in contrast to the first spike train which speeds up slightly5.

At this stage, we would like to make a quick note that the studies in ([18], Figure 1A) indicate

that axon tracts may demyelinate in various geometries within the tract cross-section, and there

is indication that these demyelinated regions will contain axons with positions of demyelination

that are all on the same ‘level’ - the level (along the vertical, or z, tract-axis) of the cross-section

taken. Thus axonal misalignment might not play a particularly significant role in the placement

of the paranodes, within the biological-experimental context. Therefore, in our simulations

in this paper, we placed paranodes ‘facing’ each other on various axons in a tract, instead of

‘staggering’ them.

FIGURE 5. Slower and lower: Transformation of the action potential train on

encountering paranodal regions with higher capacitance per unit length. The x-

axis is time in seconds. The y-axis is voltage in volts. Please see Figure 6 for an

elucidation of the velocity changes.

5The differing behavior of the two spike trains might have to do with the refractory period of the axon; coupling-

current back-reaction effects from neightboring axons would also kick-in during the second spike’s propagation.

This investigation is left to future work.



14 AMAN CHAWLA, SALVATORE DOMENIC MORGERA

FIGURE 6. Graph showing the details of conduction velocity changes due to

the presence of the paranodal region on axon 1 of Figure 5. The secondary

spike train (blue) is stimulated 2.125 milliseconds after the primary one (red).

The primary train travels faster through the paranodes than the secondary train,

generating the impression of ‘before-fast’ and ‘after-slow’ visible in Figure 5.

3.2. Variation of Conduction Delays With Length of Internodal Regions. We vary the

length of the internodes and measure the resultant change in conduction velocity. This is done

in order to verify the remarks made in [19] indicating absence of continuous conduction in

fibers with long internodes. In Figure 5 it is clear that the initial conduction velocity is 2.7273

meters per second while after passing through the three paranodes, the conduction velocity is

about 2.3529 meters per second (a 13.73 percent change). In the next figure, Figure 7 below,

we increase the length of the internodal regions by a factor of two. We observe that conduction

stops completely after a single post-paranodal firing.
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FIGURE 7. An action potential train encounters a region of focal demyelination

and exhibits post-paranodal conduction failure. The x-axis is time in seconds

and the y-axis is voltage in volts.

That Figure 7 does not simply represent a much larger conduction delay was verified by

zooming in on the next node after the last node with a bonafide action potential. The following

figure, Figure 8, shows the result of zooming in. It is clear that the peak voltage attained is less

than 2 mV, which is fairly below threshold.

FIGURE 8. Subthreshold excitation on the next node (node 140) after the last

excited node (node 100), for the case simulated in Figure 7. The x-axis is time

in seconds and the y-axis is voltage in volts.
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In Figure 8, the paranodal capacitance has been set at 5.14e− 9 F/cm (within 2e− 9 F/cm

of the nodal capacitance of 3.14e− 9 F/cm [6]). Next, we wish to ascertain if the conduction

failure is aided by this high value of the paranodal capacitance. Towards this end, we obtain

the next figure, Figure 9, which shows that even with a lowered value of paranodal capacitance,

4.14e−9 F/cm, there is conduction failure. Additionally, we note that the final action potentials

on the three axons have a modified inter-action potential temporal separation as well. Thus the

data that is output after the paranodes is also modified (say, as in the case of time coding) with

reference to that before reaching the paranodes.

FIGURE 9. Conduction block even with a lower paranodal capacitance (4.14e−

9 F/cm) as compared to the previous case, Figure 7. Modified temporal sepa-

ration ratios between the three axons’ action potentials post paranodal transit,

indicating modification of time coded data. The x-axis is time in seconds and the

y-axis is voltage in volts.

Further, a note on trying to replicate the slowing down of action potentials of Figure 5 with-

out careful thought; all we get initially is a conduction block. If, however, we recall that the

internodal spacing used for generating Figure 5 is 20 as opposed to 40+, then, when we reduce

the spacing used in the replication down to 20, we right away obtain the same slowing down
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as observed in Figure 5. This phenomenon is related to the interaction between conduction

velocity and internodal spacing, as discussed in our forthcoming paper6.

Finally, we would like to discuss this section in the context of the synchronization picture

presented in Subsection 2.3 in relation to Figure 7 wherein axons 1, 2 and 3 are seen to be

falling into phase synchronization right before conduction failure. The governing equation for

Figure 7 is Equation (9) without z-dependence (tortuosity) and I f ields
k (field effects). Therefore,

the geometrical view of synchronization discussed earlier in this paper is not applicable here.

To gain an analytical insight into this subsection’s setting, we would have to extend Schmidt

and Knosche’s analysis to three dimensional linear tracts where there is a z-independent Wkp

matrix and z-independent inclinations θp. In the next subsection we introduce field effects via

I f ields
k .

3.3. Electric Fields and Focal Demyelination. In this subsection, we carry out the investi-

gations of the previous subsections, but with electric field ’gain’ turned on7. This enables the

fields generated at the nodes to influence the ions at distant nodes. However, just like in the

program presented in [11], electric fields are not computed using actual node-to-node distances,

but only approximate distances. We also make the simplifying assumption that paranodal fields

cannot influence other nodes and paranodes.

When we carry out the simulation just described, we obtain the results shown in Figure 10.

These results assume equal field ’gains’ on both the nodes and paranodes. By setting the gains

to be equal, we treated the nodes and the paranodes on an equal footing, in field-contribution

terms.

6The paper is titled, ‘Conduction velocity and stenosis.’
7The gain is a variable in the MATLAB program which can be given a non-negative real value. This value

controls the influence of electric field effects. When it is zero, no field contribution is taken into account, and if

it is given a positive value, the value is used as a multiplicative factor to enhance the electric field contribution (at

unity it permits the actual contribution to have effect). Its operation is illustrated in the context of Equation (1) with

I f ields
k replaced by gain · I f ields

k . Its primary function is to easily switch between the case of field-based and purely

current-based coupling in the same program; it is thus an investigative tool. It is biologically justified by theory

and partly by experiment - theory indicates that field-effects can have an impact on coupling [20], and, at least in

the synaptic context, experimental literature supports this impact [21].
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FIGURE 10. Focal demyelination in the presence of electric fields, with equal

field gains of 5e− 13 for the nodes and paranodes is here simulated. There

were three paranodes 84, 86 and 88 and a nodal spacing of 40, yielding nodes

at positions 20, 60, 100, 140, 180, 220, 260. Conduction block is clearly ob-

served. Also note that there are three more action potentials after the paranodes

are crossed. Further note that the conduction block happens synchronously on

the three axons. The x-axis is time in seconds and the y-axis is voltage in volts.

3.4. Catch and Re-inject Simulations of Tortuous Tracts. Tortuous tracts were introduced

in [11] along with their governing equation. The equation is reproduced here for a self-contained

treatment.

(10) cm,k(x)
∂Vk

∂ t
= Gaxoplasm

k cos2
θk(z)

[
∂ 2Vk

∂ z2 −
N

∑
p=1

Wkp(z)Kp(z)
∂ 2Vp

∂ z2

]
−Gm,kVk + Iin jected

k

The key difference between Equations (1) and (10) is in the introduction of a z-dependence in

the latter. This dependence occurs in the inclinations as well as in the inter-axonal distances.

The z-dependence of the inclinations further leads to a z-dependence in the term Kp(z). Figure

11 shows a schematic of a tortuous tract with two segments. The first segment has axonal

inclinations of a degrees and the second one of b degrees, imparting a tortuous nature to the

overall tract.
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FIGURE 11. Schematic of tortuosity. a and b are the inclinations of the axons in

segments 1 (lower) and 2 (upper) respectively. The interaxonal distances at the

lower segment are also indicated and are clearly shorter than those for the upper

segment. The coordinate z increases from the bottom upwards.

We use a catch and re-inject method in order to simulate the impulse propagation in a tortuous

tract whose three successive segments have axons inclined at 50, 55 and 60 degrees respectively.

In this method, we make short segments of the first inclination. Upon injecting this segment,

the output action potentials are ’caught.’ These are then used to determine the stimulation on

the next segment. This is known as ’re-injection.’ These segments are stacked together back-to-

back in order to form the tortuous tract.

It can be inferred from Figures 12 and 13 that the action potential train slows down as a

consequence of the tortuosity8. To illustrate the slowing down, the next two figures, Figure 14

8One of the limitations of our work is that we do not provide an exact mathematical justification for the slowing

down of action potential trains due to tract tortuosity, though it is likely a result of the current exchange in the

tortuous case taking place over a wider extracellular space as compared to the linear case. Additionally, it can

be seen as a part of slower synchronization than the linear case, and this is discussed at the end of the present

subsection in the context of Equation (9).
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and Figure 15, show a non-tortuous tract of the same number of segments and inclinations: 50,

50 and 50 degrees each. When we compare the aforementioned four figures, we find that in the

presence of tortuosity there are fewer action potentials on successive nodes per unit of time than

in the absence of tortuosity9. These observations have consequences for our understanding of

why tortuosity is prevalent in the higher brain regions, but not as pronounced in the peripheral

nervous system.

FIGURE 12. The initial segment of a tortuous tract. Note that the action po-

tentials are about three per subplot. This tract segment has axons inclined at 50

degrees to the tract axis. The x-axis is time in seconds and the y-axis is voltage

in volts, in every sub-plot. All four axons were injected with the stimulating cur-

rent. Ephaptic effects interact with the geometry, leading to varying propagation

speeds. The successive nodes that fire are indicated on each axon.

9Action potential propagation speed is inferred from the time taken for the AP to propagate to successive nodes.
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FIGURE 13. Final segment of the tortuous tract shown in Figure 12. Note that

roughly two (or fewer) action potentials are visible per sub-plot, indicating a

relative slowing down of the impulse train as compared to the linear case shown

in the next two figures. This tract segment has axons inclined at 60 degrees to

the tract axis. The x-axis is time in seconds and the y-axis is voltage in volts,

in every sub-plot. Current re-injection has been indicated as also the successive

nodes that fire.
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FIGURE 14. The initial segment of a tract with equal inclinations in each seg-

ment. In this segment, the inclination is 50 degrees to the tract axis, just as in

Figure 12. The x-axis is time in seconds and the y-axis is voltage in volts, in

every sub-plot.
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FIGURE 15. Final segment of a linear tract with axonal inclinations of 50 de-

grees in each segment. It is clear that conduction velocity in the third segment is

higher for the linear tract, as compared with the tortuous tract of Figure 13. The

x-axis is time in seconds and the y-axis is voltage in volts, in every sub-plot.

In the context of Subsection 2.3, we note that as the axonal inclination angles increase from

50 degrees per axon to 55 degrees each and finally to 60 degrees each, segment-by-segment in

the tortuous tract, their cosine-squared decreases. Thus, the geometrical vector of the tortuous

tract has a smaller average contribution to the inner product in Equation (9), as compared to the

linear case. This implies that the time rate of evolution (specified by the LHS of Equation (9))

of the tortuous transmembrane voltage of each of the four axons in the tortuous tract, is smaller

than the linear case and therefore synchronization will happen later than in the linear case. This

is supported by Figures 12 through 15 which show that the tortuous voltages are farther from

synchrony than the linear case.
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4. DISCUSSION AND CONCLUSION

Studying the conduction velocity in axons is clearly important from both mathematical and

clinical viewpoints. As discussed in our forthcoming paper10, the most relevant way of de-

ducing the conduction velocity from computer simulations is to find its value by determining

the inter-spike interval, and using it in conjunction with the inter-nodal spacing. We used this

methodology in our study of focal demyelination. First, we looked at the case where the axons

in an axon tract are current-coupled. We found that focal demyelination could induce either

a conduction block (failure) or lead to a changed post-demyelinated zone conduction veloc-

ity. Next we looked at demyelination in the presence of electric field mediated-coupling (in

addition to current mediated-coupling). We found conduction block to occur again, but nearly

synchronously on all the axons. This is consistent with the previously observed impact of elec-

tric fields on synchronization - they aid in rapid synchronization. We next discuss the functional

purpose of rapid synchronization, placing our study in a broader neuroscientific context.

Why would we need rapid synchronization? This issue must be addressed if we are to take

seriously the possibility that electric fields play an important role in axon-axon coupling. From

the perspective of information processing, provided we are sure that synchronization aids infor-

mation processing (see [22]), it is certainly beneficial (in some respect) to have the information

processed rapidly. For instance, we can imagine signals that need to be at their destination ’on

time.’ In a fight-or-flight scenario, such a consideration might be relevant. However, there may

also be reason for slow processing to take place - in fact, multiple timescales of information

processing could be occurring simultaneously, some maintaining the slow diurnal clock for in-

stance, and others processing faster events. Thus synchronization of all rates might be needed

by the brain. A wide range of possible rates would afford ’comfortable’ information process-

ing across the spectrum of possible organismal needs. Thus some sort of mechanism could

be searched for, or posited, which would allow a ’weighted use’ of electric fields and electric

currents - rapid and slow, as per the demands of the organism for a specific information trans-

mission speed. We have not explored this question deeply in this paper, but what we can see is

the different rates of synchronization in the presence of conduction block when fields were also

10The paper is titled, ‘Conduction velocity and stenosis.’
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included into the picture. This might have implications for the recovery and relapse periods of

multiple sclerosis.

This study has enhanced our overall understanding of demyelination in the presence of cur-

rent and field based axon-axon interaction, going significantly beyond Waxman [6] and Koch

[23], and combining them in a sense. In future work we intend to travel down two additional

directions. The first will look at randomly placed zones of demyelination in a tract. The second

will introduce channel capacity measurements as a quantifier of the demyelination, similar to

the work done on measuring channel capacity under various geometries for healthy axon tracts

in [11]. Furthermore, our justification of the use of the W matrix in [13] is potentially quite

significant when considering field-based interaction. Currents and fields are closely related and

so we expect that in future work we will be able to provide a justification for the W matrix in the

current-based interaction setting as well. With this, the mathematical model being developed

since the publication of [13], is supported further. Our geometric picture of synchronization

illuminates the mechanism of the synchronization process and is reminiscent of machine learn-

ing, especially unsupervised learning, as is discussed in the first appendix. Many concepts from

machine learning may thus be relatable to the axon tract under coupling conditions. Finally, in

the second appendix we make a brief note on how this geometry can also be viewed information

theoretically - potentially providing a new paradigm in the study of diseased conditions. Over-

all, these innovations provide new insights into axon tracts: the complexity of their function is

aided by their geometric structure.



26 AMAN CHAWLA, SALVATORE DOMENIC MORGERA

APPENDIX 1: THE TRACT AS A LEARNING MACHINE?

In this appendix, we present the ephaptic equation of [13] as an artificial neural network

(ANN) with feedback with the aim of showing that an axon tract can learn in the sense of

machine learning. As per [24], a neuron, labeled k, may be described by writing the pair of

equations:

(11) uk =
m

∑
j=1

wk jx j

and

(12) yk = ϕ(uk +bk)

where x1,x2,x3, . . . ,xm are the input signals; wk1,wk2,wk3, . . . ,wkm are the respective synaptic

weights of neuron k; uk is the linear combiner output due to the input signals; bk is the bias; ϕ()

is the activation function; and yk is the output signal of the neuron. [24] further says that the

bias bk is an external parameter of neuron k; and we can reformulate the model of neuron k by

doing two things:

(1) adding a new input signal fixed at +1, and

(2) adding a new synaptic weight equal to the bias bk, resulting in a total of m+1 synaptic

weights instead of the m original ones before.

Recall the central equation from [13] as being given by (Equation (1)):

(13) Cm,k
∂Vk

∂ t
= Gaxoplasm

k cos2
θk(z)[

∂ 2Vk

∂ z2 −
N

∑
p=1

Wkp(z)Kp(z)
∂ 2Vp

∂ z2 ]−Gm,kVk + Iin jected
k

where k = 1, . . . ,N. We focus on the nodal equation and expand the parentheses on the right

hand side (RHS) to obtain:

(14)

Cm,k
∂Vk

∂ t
= Gaxoplasm

k cos2
θk(z)

∂ 2Vk

∂ z2 −Gaxoplasm
k cos2

θk(z)
N

∑
p=1

Wk p(z)Kp(z)
∂ 2Vp

∂ z2 + Iin jected
k

where k = 1, . . . ,N. Next we specialize to the k = 2 case and obtain:

(15)

Cm,2
∂V2

∂ t
= Gaxoplasm

2 cos2
θ2(z)

∂ 2V2

∂ z2 −Gaxoplasm
2 cos2

θ2(z)
N

∑
p=1

W2p(z)Kp(z)
∂ 2Vp

∂ z2 + Iin jected
2 .
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We group all the explicit V2 terms on the right hand side together (ignoring the injected current

for the moment) to obtain:

(16) Cm,2
∂V2

∂ t
= [Gaxoplasm

2 cos2
θ2(z)(1−W22(z)K2(z))](

∂ 2V2

∂ z2 )− ...

(17) Gaxoplasm
2 cos2

θ2(z)
N

∑
p=1,p6=2

W2p(z)Kp(z)
∂ 2Vp

∂ z2 + Iin jected
2 (V2)

Since the derivative of a sum of functions distributes over the functions, we take the derivative

out of the summation on the right hand side to obtain:

(18) Cm,2
∂V2

∂ t
= [Gaxoplasm

2 cos2
θ2(z)(1−W22(z)K2(z))](

∂ 2V2

∂ z2 )− ...

(19) Gaxoplasm
2 cos2

θ2(z)
∂ 2

∂ z2 (
N

∑
p=1,p 6=2

W2p(z)Kp(z)Vp)+ Iin jected
2 (V2)

Next, we look at the injected current term which we previously ignored. Using the Fundamental

Theorem of Calculus [25], we can rewrite the last term on the right hand side as

(20)
∂

∂x

ˆ x

r=b

∂

∂ r

ˆ r

s=a
Iin jected
2 (V2,s, t)dsdr.

The conditions when we can write functions as second partials of double integrals (see Theorem

9.42 in [26]) need to be further examined in future work. Nevertheless, if we continue along the

lines presented in the last three equations above, we will end up with a formulation like Equation

(12), with weights and bias terms on the right hand side and the voltage of the k-th axon on the

left hand side - having defined a suitable activation function. Interpreting the formulation as

suggesting a perceptron with feedback, we might be able to infer that an axon tract can learn.

APPENDIX 2: A NOTE ON AN ALGEBRA FOR W-MATRICES

In this appendix we discuss how two interacting nerve tracts may be represented by their W

matrices [13] each, and how their interaction can be captured succinctly in an algebra for those

W matrices. Once the tract has been represented as a learning machine [24] (see also Section 4),

we have a unique matrix corresponding to the tract such that the tract ‘output’ (which is really

fed back to the input) is this matrix times the input, if we ignore the bias.
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Clearly, the W -matrix (along with the axonal inclinations) WT1(z) influences how the axons

within a tract T1 would interact via currents and/or fields. Might there be non-interacting sub-

spaces in WT1(z)? Note that here interaction refers to the ephaptic interaction which is current-

mediated. Motivated by quantum mechanical decoherence-free subspaces [27], yet distinct

from them, these non-interacting subspaces could be places in the tract where information would

flow down the tract unimpeded by interaction. Hence if these subspaces SW i
T1
(z) are found to

be present even during advanced stage multiple sclerosis (MS), it would offer some hope to the

patient’s clinician. If the tract is tortuous, the W -matrix is changing along the tract as indicated

by the z-dependence. Thus these subspaces may pop in and out of existence with distance z

along the tract. If we can find a connecting thread, with minimal interaction, linking the sub-

spaces, then information could flow down this thread even in advanced MS. Any implantable

medical neuro-device that we could design, should take advantage of this thread’s relative state

of ‘protection’ from the disease. We may denote this thread as a disease-free information pipe

(DIP). If two axon tracts or axon bundles WT1(z) and WT2(z) are juxtaposed, there may be no

current-mediated interaction, but there could be field-mediated cross-talk that would couple the

W -matrices. These W -matrices would then be thought of as sub-matrices of a larger F-matrix,

within which we could again do an analysis similar to the one discussed earlier in the paragraph,

but taking note of the difference – that the coupling is only field-mediated.

There may therefore be posited two types of operations, one type when considering sub-

matrices within a given W matrix, denote this as o, and a second type when considering inter-

actions between W matrices, or sub-matrices within a given F-matrix, denote this as s. Note

that the operations are here said to be between sub-matrices or W -matrices. However, what we

indicate by this is that they are between the transmembrane voltages of the axons in the tracts

represented by these sub-matrices or W -matrices. Now, since each axon in WT1(z) would inter-

act with every other axon in WT2(z), F might have a tensor product structure, i.e. s would be the

tensor product operation. So finding DIPs in F would be more complicated than the procedure

described in this appendix for the W -matrix.
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