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Abstract: This study will address a prey and predator model, incorporating a fear coefficient within the prey 

population. The predator category comprises two distinct types: active predators and scavengers. An assessment will 

be conducted to examine the influence of refuges on the predator dynamics and the broader system dynamics within 

the food web. Due to the importance of scavengers for environmental sustainability in waste management, this 

research was interested in studying the dynamic behavior of the ecosystem consisting of prey-predator-scavengers. 

Fear of predation, refugees, and harvesting are the biological factors included in the mathematical model to understand 

their influence on the dynamic behavior of the proposed model. The study comprises a thorough examination of the 

limitations of solutions, followed by the calculation of equilibrium points. The local and global stability of all points 

of equilibrium are studied. All the sufficient conditions for the occurrence of local bifurcation are identified. The 

conditions for the persistence of the model are created. Finally, the numerical solution is utilized to validate our 

theoretical results and understand the effect of changing parameter values on dynamic behavior. All numerical results 

were calculated using the Mathematica program. Visual aids, such as diagrams, were employed to enhance clarity in 

depicting their effects on both predators and the overarching system. 

Keywords: prey-predator model; cooperation; refuge; fear; scavenger; bifurction; ecology; food web. 

2020 AMS Subject Classification: 34D20, 92D40,34C23. 



2 

HUSSEIN SABAH ABDULLAH, DAHLIA KHALED BAHLOOL 

1. INTRODUCTION 

Due to its generality and importance, the interaction between predators and their prey has long 

been and is going on to be one of the major threats in ecology and its mathematical formulation 

[1]. A prey-predator model is a mathematical depiction that explains the dynamics between the 

predator and prey populations that interact within an ecosystem. These models are usually 

composed of a system of differential equations that characterize the time-dependent changes in 

populations as a result of their interactions. The Lotka-Volterra model, which describes the link 

between a predator and prey, is the framework of the system. Because of their intricate dynamics 

and significant effects on ecosystems, prey-predator interactions have long piqued the interest of 

ecologists and biologists. In mathematical biology, several dynamical behavior models among 

predators and their prey have been checked [2-9]. Many studies to understand the dynamics of 

trigeneric food chains have been completed [10-15]. Most of them focused on the presence and 

extinction of living organisms in them [16-20]. On the other hand, previous studies have dealt with 

understanding the dynamics of trigeneric diets [21-25].  

The idea of predator dependency emerges from these interactions as a key factor influencing 

how ecological groups balance out. The degree to which a prey species relies on predation pressure 

to control its population dynamics, habitat distribution, and behavioral characteristics is known as 

predator dependency [26]. Predator dependency is important, but it goes much beyond simple 

survival tactics; it includes intricate evolutionary adaptations and feedback loops in ecosystems. 

Predators adapt in response to prey species' evolution of defense systems so they can preserve their 

food supply. Co-evolution is a complex dance that frequently produces ecological systems that are 

highly tuned and in which even little disturbances may have far-reaching effects. Predator 

dependency comes in various forms in reality. The fear generated by the predation process is 

inherently dependent on the ferocity and number of predators, which leads the prey to adapt its 

diet and reproduction as a result of hiding out of fear. In addition, the shelters in which the prey 

refuges from predation depend on the predators and their danger [27-28]. Many researchers have 

recently taken up the study of the dynamics of the prey-predator model when fear is present [29-
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37]. Those studies have expanded to include the effect of fear on the dynamic behavior of both 

food chains and food webs [39-42]. However, Ahmed and Bahlool [38] proposed and studied a 

mathematical model of a Holling type-II food web comprising prey-predator-scavenger in the case 

of the existence of fear and quadratic harvesting. They obtained that the solution appears to 

approach either the asymptotic stable point or a Hopf-bifurcation. Furthermore, both fear and 

harvesting have a stabilizing effect on the system's behavior up to a certain point, and then 

extinction occurs. 

Research has expanded to explore the effect of the fear factor on the dynamic behavior of food 

chains and food webs. Some researchers also studied the effect of the presence of a refuge in the 

prey on the dynamic behavior of predatory prey models, as we see in [43-45]. After that, studies 

were prepared that directed researchers to study the effect of the factors of fear and refuge on 

behavior. The system is as in [46].  In addition to the above, due to the importance of scavengers, 

they contribute to the sustainability of the environment through waste management and the 

identification and classification of organic and inorganic waste. Therefore, some researchers have 

recently taken up the study of ecosystems in the presence of scavengers to understand the dynamic 

behavior of food chains and preserve the environment through the preservation of these organisms. 

Satar and Naji [47–48] proposed and studied mathematical models that describe the interaction 

between prey-predator-scavenger in cases of the existence and non-existence of toxicants. In 

contrast to the above, this paper combines fear, refuge, harvesting, and scavengers in a single food 

web model to bring it closer to reality than the models addressed by the above-mentioned studies. 

This paper is concerned with proposing and studying the dynamic behavior of the prey-predator-

scavenger food web and the extent of the impact of fear and shelter dependent on the predator in 

it.  

2.  MODEL DESCRIPTION 

The prey-predator-scavenger model of a three-species ecological system is examined in this 

work. According to the model, a linear form of the Holling Type-I functional response is used by 

the first species (prey) to be consumed by the second species (predator) and the third species 
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(scavenger). When their only source of food is gone, the number of predators decreases 

dramatically. The carcasses of predators are another source of food for scavengers. Without food, 

they decay at an exponential rate. Because of the fear impact, the predation process reduces the 

prey's growth. Due to this, the prey uses the refuge, which is dependent on the number of predators, 

to protect themselves. Lastly, a quadratic harvesting process affects the predator and scavenger. 

These hypotheses allow the following set of nonlinear ordinary differential equations to accurately 

describe the population dynamics of this ecological model: 

      
𝑑𝑋

𝑑𝑇
=

𝑟𝑋

1+𝑓(𝑌+𝑍)
− 𝑏𝑋2 − 𝑎1(1 − 𝑐𝑌)𝑋𝑌 − 𝑎2(1 − 𝑐𝑍)𝑋𝑍, 

      
𝑑𝑌

𝑑𝑇
= 𝑒1𝑎1(1 − 𝑐𝑌)𝑋𝑌 − 𝑑1𝑌 − 𝑞1𝐸1𝑌

2 ,                                  (1) 

      
𝑑𝑍

𝑑𝑇
= 𝑒2𝑎2(1 − 𝑐𝑍)𝑋𝑍 + 𝑎3𝑌𝑍 − 𝑑2𝑍 − 𝑞2𝐸2𝑍

2.           

The populations of prey, predator, and scavenger are denoted as 𝑋(𝑇), 𝑌(𝑇) 𝑎𝑛𝑑 𝑍(𝑇) 

respectively in the given equation. All the parameters in the system (1) are required to be non-

negative. 

Table 1. Biological significance of each parameter. 

 

Parameter Description 

r Growth rate of the prey. 

f The fear levels. 

𝑏 The intraspecific competition of prey species 

𝑎1 , 𝑎2 Attack rates of predator and scavenger, respectively. 

𝑎3 The conversion rate of the predator’s carcass biomass to scavenger. 

(1 − 𝑐𝑌) , (1 − 𝑐𝑍) Predator-dependent refuge rates, where 𝑐 denotes the coefficient of 

prey refuge in (0, 1) with 𝑌 <
1

𝑐
 and 𝑍 <

1

𝑐
 , respectively. 

𝑒1 , 𝑒2 The conversion rates of prey biomass to predator and 

scavenger, respectively, which belong to (0, 1). 

𝑑1 , 𝑑2 The mortality rates of predator and scavenger, respectively. 

𝑞1 , 𝑞2 The catchability constant of predator and scavenger, respectively. 

𝐸1 , 𝐸2 The harvesting efforts of predator and scavenger, respectively. 
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3. DIMENSIONLESS FORM OF THE MODEL 

The transformation of a model into a dimensionless form involves expressing the system using 

dimensionless quantities. This approach offers several advantages. Firstly, it minimizes the number 

of parameters, simplifying the analysis process. Secondly, it enables better comparison of 

parameters in terms of their magnitudes, allowing for deeper insights into the system. Additionally, 

it facilitates comparisons between different systems. Thus, the equation (1) can be reformulated as 

follows: 

      

𝑑𝑥

𝑑𝑡
= 𝑥𝑓1(𝑥, 𝑦, 𝑧),

𝑑𝑦

𝑑𝑡
= 𝑦𝑓2(𝑥, 𝑦, 𝑧),

𝑑𝑧

𝑑𝑡
= 𝑧𝑓3(𝑥, 𝑦, 𝑧).

                                               (2) 

where 

       𝑓1(𝑥, 𝑦, 𝑧) =
1

1+𝑤0(𝑦+𝑧)
− 𝑥 − 𝑤1(1 − 𝑦)𝑦 − 𝑤2(1 − 𝑧)𝑧, 

       𝑓2(𝑥, 𝑦, 𝑧) = 𝑤3(1 − 𝑦)𝑥 − 𝑤4 − 𝑤5𝑦, 

       𝑓3(𝑥, 𝑦, 𝑧) = 𝑤6(1 − 𝑧)𝑥 + 𝑤7𝑦 − 𝑤8 − 𝑤9𝑧. 

with the dimensionless variables and parameters given by: 

      𝑡 = 𝑟𝑇 , 𝑥 =
𝑏

𝑟
𝑋 , 𝑦 = 𝑐𝑌 , 𝑧 = 𝑐𝑍, 

  𝑤0 =
𝑓

𝑐
 , 𝑤1 =

𝑎1

𝑟𝑐
 , 𝑤2 =

𝑎2

𝑟𝑐
 , 𝑤3 =

𝑒1𝑎1

𝑏
 ,  𝑤4 =

𝑑1

𝑟
 , 

     𝑤5 =
𝑞1𝐸1

𝑟𝑐
, 𝑤6 =

𝑒2𝑎2

𝑏
 , 𝑤7 =

𝑎3

𝑟𝑐
 , 𝑤8 =

𝑑2

𝑟
 , 𝑤9 =

𝑞2𝐸2

𝑟𝑐
 . 

Theorem 1. The solutions of the system (2) are uniformly bounded for all the initial conditions 

𝑥(0), 𝑦(0), 𝑧(0) > 0.  

Proof. From the first equation of system (2) 

      
𝑑𝑥

𝑑𝑡
= 𝑥 [

1

1+𝑤0(𝑦+𝑧)
− 𝑥 − 𝑤1(1 − 𝑦)𝑦 − 𝑤2(1 − 𝑧)𝑧], 

      
𝑑𝑥

𝑑𝑡
≤ 𝑥 [

1

1+𝑤0(𝑦+𝑧)
− 𝑥] ≤ 𝑥(1 − 𝑥). 

Then solving the above differential inequality gives that 𝑥(𝑡) ≤ 1 as 𝑡 → ∞.  

Now, define the function: 𝐻1(𝑡) = 𝑥(𝑡) +
𝑤1

𝑤3
𝑦(𝑡). 
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After performing some algebraic calculations, we obtain the following result: 

      
𝑑𝐻1

𝑑𝑡
≤ 𝑥 −

𝑤1𝑤4

𝑤3
𝑦 ≤ 𝑥(1 + 𝑤4) − 𝑤4 (𝑥 +

𝑤1

𝑤3
𝑦).  

Then by using the bound of 𝑥, it is obtained that: 

      
𝑑𝐻1

𝑑𝑡
+ 𝑤4𝐻1 ≤ (1 + 𝑤4).  

By solving this differential inequality, we obtain that 𝐻1 ≤
(1+𝑤4)

𝑤4
,  

for 𝑡 → ∞, and this leads to 𝑦 ≤
𝑤3(1+𝑤4)

𝑤1𝑤4
= 𝛽1, 

Now, we define 𝐻2(𝑡) = 𝑥(𝑡) +
𝑤1

𝑤3
𝑦(𝑡) +

𝑤2

𝑤6
𝑧(𝑡) , then 

      
𝑑𝐻2

𝑑𝑡
≤ 2𝑥 − 𝑥 −

𝑤1𝑤4

𝑤3
𝑦 − [

𝑤2𝑤8−𝑤2𝑤7𝛽1

𝑤6
] 𝑧, 

          ≤ 2 − 𝜇 [𝑥 +
𝑤1

𝑤3
𝑦 +

𝑤2

𝑤6
𝑧]. 

where 𝜇 = min {1, 𝑤4, 𝑤8 − 𝑤7𝛽1}.  This implies that:  

      
𝑑𝐻2

𝑑𝑡
+ 𝜇𝐻2 ≤ 2  

Again, solving the last differential inequality, gives 𝐻2 ≤
2

𝜇
, for  𝑡 → ∞. 

Hence, our system is uniformly bounded and that guarantees their validity.  

 

4. THE EQUILIBRIUM POINTS 

By setting all the equations in the system (2) equal to zero and solving for the variables 

𝑥(𝑡), 𝑦(𝑡), 𝑎𝑛𝑑 𝑧(𝑡), we can determine the equilibrium points.  

      

𝑥𝑓1(𝑥, 𝑦, 𝑧) = 0

𝑦𝑓2(𝑥, 𝑦, 𝑧) = 0

𝑧𝑓3(𝑥, 𝑦, 𝑧) = 0

                                               (3) 

Consequently, the following solutions (equilibrium points) are obtained: 

The evanescence equilibrium point, 𝑄0 = (0,0,0), always exists.  

The axial equilibrium point, 𝑄1 = (1,0,0), always exists. 

The scavenger-free equilibrium point, 𝑄𝑥𝑦 = (�̂�, �̂�, 0), where: 

   �̂� =
𝑤4+𝑤5�̂�

𝑤3(1−�̂�)
                                                         (4)  
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while �̂�  is a positive root of the 4𝑡ℎ order equation. 

      𝜍1𝑦
4 + 𝜍2𝑦

3 + 𝜍3𝑦
2 + 𝜍4𝑦 + 𝜍5 = 0, 

where: 

      𝜍1 = −𝑤0𝑤1𝑤3, 

      𝜍2 = 2𝑤0𝑤1𝑤3 − 𝑤1𝑤3, 

      𝜍3 = 2𝑤1𝑤3 − 𝑤0𝑤1𝑤3 − 𝑤0𝑤5, 

      𝜍4 = −𝑤3 − 𝑤5 − 𝑤0𝑤4 − 𝑤1𝑤3, 

      𝜍5 = 𝑤3 − 𝑤4. 

Direct computation shows that the positive root exists uniquely, and hence there is a unique point, 

say 𝑄𝑥𝑦 within the interior of the first quadrant of the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒, if the following sufficient 

conditions are satisfied 

       1 > �̂�,                                                      (5a)     

       𝑤3 > 𝑤4,                                                  (5b)                                          

2𝑤1𝑤3

𝑤1𝑤3+𝑤5
< 𝑤0 <

1

2
.                                              (5c) 

The predator-free equilibrium point, 𝑄𝑥𝑧 = (�̅�, 0, 𝑧̅), where 

       �̅� =
𝑤8+𝑤9�̅�

𝑤6(1−�̅�)
.                                             (6)     

while 𝑧̅  is a positive root of the 4𝑡ℎ order equation. 

       𝛼1𝑧
4 + 𝛼2𝑧

3 + 𝛼3𝑧
2 + 𝛼4𝑧 + 𝛼5 = 0. 

where 

      𝛼1 = −𝑤0𝑤2𝑤6, 

      𝛼2 = 2𝑤0𝑤2𝑤6 − 𝑤2𝑤6, 

      𝛼3 = 2𝑤2𝑤6 − 𝑤0𝑤2𝑤6 − 𝑤0𝑤9, 

      𝛼4 = −𝑤6 − 𝑤9 − 𝑤0𝑤8 − 𝑤2𝑤6, 

      𝛼5 = 𝑤6 − 𝑤8. 

Direct computation shows that the positive root exists uniquely, and hence there is a unique point, 

namely 𝑄𝑥𝑧 within the interior of the first quadrant of the 𝑥𝑧 − 𝑝𝑙𝑎𝑛𝑒, if the following sufficient 

conditions are satisfied: 
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      1 > 𝑧̅,                                                          (7a)    

      𝑤6 > 𝑤8,                                                   (7b) 

      
2𝑤2𝑤6

𝑤2𝑤6+𝑤9
< 𝑤0 <

1

2
.                                            (7c) 

The coexistence (positive) equilibrium point, 𝑄𝑥𝑦𝑧 = (𝑥∗, 𝑦∗, 𝑧∗), where 

      
𝑥∗=

w4+w5𝑦∗

w3(1−𝑦∗)
,                       

𝑧∗=
𝑤3(𝑤7𝑦∗−𝑤8)(𝑦∗−1)−𝑤5𝑤6𝑦∗−𝑤4𝑤6

𝑤3𝑤9(𝑦∗−1)−𝑤6(𝑤5𝑦∗+𝑤4)
.
                                      (8a) 

while 𝑦∗ is a positive root of the 7𝑡ℎ order equation: 

      𝜇1𝑦
7 + 𝜇2𝑦

6 + 𝜇3𝑦
5 + 𝜇4𝑦

4 + 𝜇5𝑦
3 + 𝜇6𝑦

2 + 𝜇7𝑦 + 𝜇8 = 0.           (8b) 

where the coefficients 𝜇𝑖 , 𝑖 = 1,2, … ,8 are determined using Mathematica program, and because 

of their huge and complicated forms it will not be given here. Direct computation shows that the 

positive equilibrium point 𝑄𝑥𝑦𝑧 exists uniquely, in the interior of first octant, if there is a unique 

positive root for the equation (8b) that satisfies the following conditions: 

      𝑦∗ < 1,                                       (9a) 

      𝑤3(𝑤7𝑦
∗ − 𝑤8)(𝑦

∗ − 1) − 𝑤5𝑤6𝑦
∗ − 𝑤4𝑤6 < 0,                 (9b) 

      

𝜇1 < 0, 𝜇8 > 0
𝑜𝑟

 

𝜇1 > 0, 𝜇8 < 0
}.                               (9c) 

 

5. LOCAL STABILITY ANALYSIS 

We examine the local stability of every equilibrium point by utilizing the Jacobian matrix and 

determining the eigenvalues near each point. The Jacobian matrix  𝐻  for three-dimensional 

systems can be determined by: 

      𝐻(𝑥, 𝑦, 𝑧) =

[
 
 
 
 𝑓1 + 𝑥

𝜕𝑓1

𝜕𝑥
𝑥

𝜕𝑓1

𝜕𝑦
𝑥

𝜕𝑓1

𝜕𝑧

𝑦
𝜕𝑓2

𝜕𝑥
𝑓2 + 𝑦

𝜕𝑓2

𝜕𝑦
𝑦

𝜕𝑓2

𝜕𝑧

𝑧
𝜕𝑓3

𝜕𝑥
𝑧

𝜕𝑓3

𝜕𝑦
𝑓3 + 𝑧

𝜕𝑓3

𝜕𝑧 ]
 
 
 
 

.                       (10) 

where 

     
𝜕𝑓1

𝜕𝑥
= −1, 

𝜕𝑓1

𝜕𝑦
= −w1(1 − 𝑦) + w1𝑦 −

w0

(1+w0(𝑦+𝑧))2
, 
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𝜕𝑓1

𝜕𝑧
= −w2(1 − 𝑧) + w2𝑧 −

w0

(1+w0(𝑦+𝑧))2
, 

      
𝜕𝑓2

𝜕𝑥
= 𝑤3 − 𝑤3𝑦, 

𝜕𝑓2

𝜕𝑦
= −w5 − w3𝑥, 

𝜕𝑓2

𝜕𝑧
= 0, 

      
𝜕𝑓3

𝜕𝑥
= w6(1 − 𝑧), 

𝜕𝑓3

𝜕𝑦
= w7, 

𝜕𝑓3

𝜕𝑧
= −w9 − w6𝑥. 

By replacing the equilibrium points mentioned above individually in the Jacobian matrix 

𝐻(𝑥, 𝑦, 𝑧) and subsequently calculating their eigenvalues, it can be noted that: 

The eigenvalues of the Jacobian matrix (10) at the evanescence equilibrium point (𝑄0) are (1, −𝑤4, 

−𝑤8), which indicates that 𝑄0  represents a saddle point. 

The eigenvalues of the Jacobian matrix (10) at the axial equilibrium point (𝑄1) are computed as: 

      𝜆11 = −1, 𝜆12 = 𝑤3 − 𝑤4, 𝜆13 = 𝑤6 − 𝑤8.                           (11)  

Therefore, 𝑄1  exhibits local asymptotic stability if and only if the following conditions are 

satisfied: 

      𝑤3 < 𝑤4.                                                  (12a) 

      𝑤6 < 𝑤8.                                                    (12b) 

The Jacobian matrix can be expressed in terms of the equilibrium point where scavengers are 

absent: 

      𝐻(𝑄𝑥𝑦) = [

−�̂� �̂� (2𝑤1�̂� − 𝑤1 −
𝑤0

(1+𝑤0�̂�)2
) �̂� (−𝑤2 −

𝑤0

(1+𝑤0�̂�)2
)

�̂�(𝑤3 − 𝑤3�̂�) −w5�̂� − w3�̂��̂� 0
0 0 𝑤6�̂� + 𝑤7�̂� − 𝑤8

]. (13) 

The equation that describes the characteristics equation of 𝐻(𝑄𝑥𝑦)  can be represented in the 

following form: 

       (𝜆2 − 𝑇𝑥𝑦𝜆 + 𝐷𝑥𝑦)(𝑤6�̂� + 𝑤7�̂� − 𝑤8 − 𝜆) = 0.                        (14) 

where: 

      𝑇𝑥𝑦 = −𝑤5�̂� − 𝑤3�̂��̂� − �̂�, 

      𝐷𝑥𝑦 = −𝑤3�̂��̂�(1 − �̂�) (2𝑤1�̂� − 𝑤1 −
𝑤0

(1+𝑤0�̂�)2
) + �̂��̂�(𝑤5 + 𝑤3�̂�). 

Consequently, the eigenvalues of the matrix 𝐻(𝑄𝑥𝑦)  are identified as 𝜆2𝑖 =
𝑇𝑥𝑦

2
±
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1

2
√𝑇𝑥𝑦

2 − 4𝐷𝑥𝑦, for 𝑖 = 1,2 and 𝜆23 = 𝑤6�̂� + 𝑤7�̂� − 𝑤8. Hence, if the following conditions are 

met, all eigenvalues will possess negative real parts, indicating that 𝑄𝑥𝑦 is locally asymptotically 

stable. 

      𝑤6�̂� + 𝑤7�̂� < 𝑤8,                                      (15a) 

      �̂� <
1

2
+

𝑤0

2𝑤1(1+𝑤0�̂�)2
.                                   (15b) 

The Jacobian matrix can be expressed as follows when considering the equilibrium point without 

predators: 

      𝐻(𝑄𝑥𝑧) = [

−�̅� −�̅� (𝑤1 +
𝑤0

(1+𝑤0�̅�)2
) �̅� (2𝑤2𝑧̅ − 𝑤2 −

𝑤0

(1+𝑤0�̅�)2
)

0 −w4 + w3�̅� 0

𝑤6𝑧̅ − 𝑤6𝑧̅
2 𝑤7𝑧̅ −𝑤9𝑧̅ − 𝑤6�̅�𝑧̅

].   (16) 

The expression for the characteristic equation of 𝐻(𝑄𝑥𝑧)  can be formulated in the following 

manner. 

      [𝜆2 − 𝑇𝑥𝑧𝜆 + 𝐷𝑥𝑧][−𝑤4 + 𝑤3�̅�] = 0,                                     (17) 

where: 

      𝑇𝑥𝑧 = −�̅� − 𝑤9𝑧̅ − 𝑤6�̅�𝑧̅, 

      𝐷𝑥𝑧 = −𝑤6�̅�𝑧̅(1 − 𝑧̅) (2𝑤2𝑧̅ − 𝑤2 −
𝑤0

(1+𝑤0�̅�)2
) + �̅�𝑧̅(𝑤9 + 𝑤6�̅�). 

Consequently, the eigenvalues of the matrix 𝐻(𝑄𝑥𝑧)   are identified as                    

𝜆3𝑖 =
𝑇𝑥𝑧

2
±

1

2
√𝑇𝑥𝑧

2 − 4𝐷𝑥𝑧 , for 𝑖 = 1,3  and 𝜆32 = −w4 + w3�̅� . Hence, if the following 

conditions are met, all eigenvalues will possess negative real parts, indicating that 𝑄𝑥𝑧 is locally 

asymptotically stable. 

      �̅� <
𝑤4

𝑤3
,                                                                       (18a) 

      𝑧̅ <
1

2
+

𝑤0

2𝑤2(1+𝑤0�̅�)2
.                                       (18b) 

Theorem 2. The coexistence equilibrium point of system (2) will be locally asymptotically stable 

if the conditions listed below are satisfied. 

      2𝑤1𝑦
∗ < 𝑤1 +

𝑤0

(1+𝑤0(𝑦∗+𝑧∗))
2,                                       (19a)                  
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      2𝑤2𝑧
∗ < 𝑤2 +

𝑤0

(1+𝑤0(𝑦∗+𝑧∗))
2,                               (19b)     

      𝑦∗ < 1,                                         (19c) 

      𝑧∗ < 1,                                         (19d) 

      𝑎11𝑎22𝑎33 − 𝑎13𝑎21𝑎32 < 0.                                       (19e)     

where 𝑎𝑖𝑗  for all 𝑖, 𝑗 = 1,2,3  represent the Jacobian matrix elements at 𝑄𝑥𝑦𝑧  and it will be 

given in the proof. 

Proof. The Jacobian matrix of the system (2) at 𝑄𝑥𝑦𝑧 = (𝑥∗, 𝑦∗, 𝑧∗), can be written as: 

      𝐻(𝑄𝑥𝑦𝑧) = [𝑎𝑖𝑗]3×3
.                                           (20) 

where: 

      𝑎11 = −𝑥∗, 𝑎12 = 𝑥∗ (2𝑤1𝑦
∗ − 𝑤1 −

𝑤0

(1+𝑤0(𝑦∗+𝑧∗))
2),  

      𝑎13 = 𝑥∗ (2𝑤2𝑧
∗ − 𝑤2 −

𝑤0

(1+𝑤0(𝑦∗+𝑧∗))
2),  

      𝑎21 = 𝑤3𝑦
∗ − 𝑤3𝑦

∗2
,  𝑎22 = −𝑤5𝑦

∗ − 𝑤3𝑥
∗𝑦∗,  𝑎23 = 0, 

      𝑎31 = 𝑤6𝑧
∗ − 𝑤6𝑧

∗2
,  𝑎32 = 𝑤7𝑧

∗,  𝑎33 = −𝑤9𝑧
∗ − 𝑤6𝑥

∗𝑧∗. 

Hence, the characteristic equation of 𝐻(𝑄𝑥𝑦𝑧) can be expressed as: 

      𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0.                                          (21) 

where 

      𝐴 = −(𝑎11 + 𝑎22 + 𝑎33), 

      𝐵 = 𝑎11𝑎22 − 𝑎12𝑎21 + 𝑎11𝑎33 − 𝑎13𝑎31 + 𝑎22𝑎33, 

      𝐶 = −(𝑎11𝑎22𝑎33 + 𝑎13𝑎21𝑎32 − 𝑎13𝑎22𝑎31 − 𝑎12𝑎21𝑎33). 

With 

      ∆= 𝐴𝐵 − 𝐶 = −(𝑎11+𝑎22)(𝑎11𝑎22 − 𝑎12𝑎21) − 𝑎11𝑎22𝑎33 + 𝑎13𝑎21𝑎32 

               −(𝑎11+𝑎33)(𝑎11𝑎33 − 𝑎13𝑎31) − (𝑎22𝑎33)(𝑎11+𝑎22+𝑎33). 

  

It should be noted that applying the Routh-Hurwitz criterion requires satisfying the conditions 𝐴 >

0, 𝐶 > 0,  and ∆> 0,  which guarantees that all the roots of equation (21) have negative real 

parts. By performing direct calculations, it can be shown that the conditions (19a), (19b), (19c), 
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(19d) and (19e) are sufficient to fulfill all the requirements of the Routh-Hurwitz criterion. 

Consequently, 𝑄𝑥𝑦𝑧 achieves local asymptotic stability.                        □                

                          

6. GLOBAL STABILITY 

In this section, the method of the Lyapunov function is employed to determine the basin of 

attraction associated with each locally asymptotically stable point in the domain ℝ+
3 . If the basin 

of attraction for an equilibrium point encompasses the whole domain ℝ+
3 , it is considered globally 

asymptotically stable. As given in the following theorems. 

Theorem 3. The local asymptotic stability of 𝑄1  implies its global asymptotic stability if the 

conditions outlined below are satisfied. 

      
𝑤1𝑤4

 𝑤3
> 𝑤0 + 𝑤1.                                                  (22a) 

      
𝑤2𝑤8

 𝑤6
> (𝑤0 + 𝑤2) +

𝑤2𝑤7

 𝑤6
 𝛽1 ,                                       (22b) 

Proof. The real-valued function  W1 = k1 ∫
𝑢−�̆�

𝑢
𝑑𝑢

𝑥

�̆�
+ k2𝑦 + k3𝑧 , is defined with �̆� = 1 . By 

performing direct calculations, it can be shown that W1:𝑀1 → ℝ ,  when 𝑀1 = {(𝑥, 𝑦, 𝑧) ∈

ℝ+
3 : 𝑥 > 0, 𝑦 ≥ 0, 𝑧 ≥ 0}. 

Consequently, this implies W1(𝑄1) = 0 , and  W1(𝑥, 𝑦, 𝑧) > 0 , for every (𝑥, 𝑦, 𝑧) ∈ 𝑀1 − 𝑄1 . 

Furthermore, simple calculations yield that: 

      
𝑑W1

𝑑𝑡
= k1

𝑑𝑥 

𝑑𝑡
(
𝑥−�̆�

𝑥
) + k2

𝑑𝑦 

𝑑𝑡
+ k3

𝑑𝑧 

𝑑𝑡
, 

       
𝑑W1

𝑑𝑡
≤ −𝑘1(𝑥 − �̆�)2 + 𝑘1

𝑤0 �̆�𝑦

1+𝑤0(𝑦+𝑧)
+ 𝑘1

𝑤0�̆�𝑧

1+𝑤0(𝑦+𝑧)
 

            −(𝑘1𝑤1 − 𝑘2𝑤3)(1 − 𝑦)𝑥𝑦 − (𝑘1𝑤2 − 𝑘3𝑤6)(1 − 𝑧)𝑥𝑧 

         +𝑘1𝑤1�̆�𝑦 + 𝑘1𝑤2�̆�𝑧 − 𝑘2𝑤4𝑦 + 𝑘3𝑤7𝑦𝑧 − 𝑘3𝑤8𝑧. 

By choosing positive constant values as k1 = 1, k2 = 
w1

 𝑤3
 , and k3 =

w2

 𝑤6
 ,  and applying the 

concept of maximization with an upper bound constant 𝛽1, the following results are obtained: 

      
𝑑W1

𝑑𝑡
≤ −(

𝑤1𝑤4

 𝑤3
− 𝑤0 − 𝑤1) 𝑦 − (

𝑤2𝑤8

 𝑤6
−

𝑤2𝑤7

 𝑤6
𝛽1 − (𝑤0 + 𝑤2)) 𝑧 − (𝑥 − 1)2. 

Therefore, conditions (22a) and (22b) imply that  
𝑑W1

𝑑𝑡
< 0 . As a result, 𝑄1  exhibits global 
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asymptotic stability.                                                            □                                                               

Theorem 4. The local asymptotic stability of 𝑄𝑥𝑦 implies its global asymptotic stability if the 

conditions outlined below are satisfied. 

      [
𝑤0

[1+𝑤0(𝑦+𝑧)](1+𝑤0�̂�)
− w1�̂�]

2

< 4
 𝑤1

 𝑤3
(𝑤3�̂� + 𝑤5),                   (23a) 

      
𝑤0�̂�

(1+𝑤0�̂�)
+ w2�̂� + w2 +

𝑤2𝑤7

 𝑤6
𝛽1 <

𝑤2𝑤8

 𝑤6
.                             (23b) 

Proof. The real-valued function W2 = 𝑚 ∫
𝑢−�̂�

𝑢

𝑥

�̂�
𝑑𝑢 + m2 ∫

𝑣−�̂�

𝑣

𝑦

�̂�
𝑑𝑣 + m3𝑧 , is defined. By 

performing direct calculations, it can be shown that W2:𝑀2 → ℝ , when 𝑀2 = {(𝑥, 𝑦, 𝑧) ∈

ℝ+
3 : 𝑥 > 0, 𝑦 > 0, 𝑧 ≥ 0} . Consequently, this implies W2(𝑄𝑥𝑦) = 0 , and W2(𝑥, 𝑦, 𝑧) > 0  for 

every (𝑥, 𝑦, 𝑧) ∈ 𝑀2 − 𝑄𝑥𝑦. Furthermore, simple calculations yield that: 

      
𝑑W2

𝑑𝑡
= m1 (

𝑥−�̂�

𝑥
)

𝑑𝑥 

𝑑𝑡
+ m2 (

𝑦−�̂�

𝑦
)

𝑑𝑦 

𝑑𝑡
+ m3

𝑑𝑧 

𝑑𝑡
. 

By employing direct computation incorporating the principle of maximizing, and using the upper 

bound constant of the variables 𝑥 and 𝑦 leads to the following outcome: 

      
𝑑𝑊2

𝑑𝑡
≤ −𝑚1(𝑥 − �̂�)2 − 𝑚2(𝑤3�̂� + 𝑤5)(𝑦 − �̂�)2 − (𝑚3𝑤6 − 𝑚1𝑤2) 𝑥𝑧2 

    −(
𝑚1𝑤0

[1+𝑤0(𝑦+𝑧)](1+𝑤0�̂�)
+ 𝑚1𝑤1 − 𝑚1𝑤1�̂� − 𝑚2𝑤3) (𝑥 − �̂�)(𝑦 − �̂�) 

           −(𝑚2𝑤3 − 𝑚1𝑤1)(𝑥 − �̂�)(𝑦 − �̂�)𝑦 

 −(𝑚3𝑤8 −
𝑚1𝑤0�̂�

(1+𝑤0�̂�)
− 𝑚1𝑤2�̂� − 𝑚3𝑤6 − 𝑚3𝑤7𝛽1) 𝑧. 

  

Now, by choosing positive constant values as 𝑚 = 1,m2 = 
 𝑤1

 𝑤3
,  and m3 =

w2

 𝑤6
 , the following 

results are obtained  

       

𝑑𝑊2

𝑑𝑡
≤ −(𝑥 − �̂�)2 −

 𝑤1

 𝑤3
(𝑤3�̂� + 𝑤5)(𝑦 − �̂�)2                

− (
𝑤0

[1+𝑤0(𝑦+𝑧)](1+𝑤0�̂�)
− 𝑤1�̂�) (𝑥 − �̂�)(𝑦 − �̂�)    

− (
𝑤2𝑤8

𝑤6
−

𝑤0�̂�

(1+𝑤0�̂�)
− 𝑤2�̂� − 𝑤2 −

𝑤2𝑤7

𝑤6
𝛽1) 𝑧.     

 

Using the conditions (23a) and (23b) it is obtained that: 
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𝑑𝑊2

𝑑𝑡
≤ −[(𝑥 − �̂�) + √

 𝑤1

 𝑤3
(𝑤3�̂� + 𝑤5)(𝑦 − �̂�)]

2

         

− (
𝑤2𝑤8

𝑤6
−

𝑤0�̂�

(1+𝑤0�̂�)
− 𝑤2�̂� − 𝑤2 −

𝑤2𝑤7

𝑤6
𝛽1) 𝑧.

 

Note that, 
𝑑𝑊2

𝑑𝑡
 is a negative definite function, and hence the proof is complete.              □                                                                         

Theorem 5. If the conditions outlined below are satisfied, the local asymptotic stability of 𝑄𝑥𝑧 

implies its global asymptotic stability. 

      [
𝑤0

(1+𝑤0�̅�)
− w2𝑧̅]

2

< 4
 𝑤2

 𝑤6
(𝑤6�̅� + 𝑤9),                          (24a) 

      
𝑤0�̅�

(1+𝑤0�̅�)
+ w1�̅� + w1 +

2𝑤7

 𝜇
<

𝑤1𝑤4

 𝑤3
+

𝑤2𝑤7

 𝑤6
𝑧̅.                          (24b) 

where 
2

 𝜇
 is the upper bound that is given in the theorem 1. 

Proof. The real-valued function W3 = p1 ∫
𝑢−�̅�

𝑢

𝑥

�̅�
𝑑𝑢 + p2𝑦 + p3 ∫

𝑐−�̅�

𝑐

𝑧

�̅�
𝑑𝑐 , is defined. By 

performing direct calculations, it can be shown that W3:𝑀3 → ℝ , when 𝑀3 = {(𝑥, 𝑦, 𝑧) ∈

ℝ+
3 : 𝑥 > 0, 𝑦 ≥ 0, 𝑧 > 0}.  

Consequently, this implies W3(𝑄𝑥𝑧) = 0, and  W3(𝑥, 𝑦, 𝑧) > 0, for every (𝑥, 𝑦, 𝑧) ∈ 𝑀3 − 𝑄𝑥𝑧. 

Furthermore, simple calculations yield that: 

      
𝑑W3

𝑑𝑡
= p1 (

𝑥−�̅�

𝑥
)

𝑑𝑥 

𝑑𝑡
+ p2

𝑑𝑦 

𝑑𝑡
+ p3 (

𝑧−�̅�

𝑧
)

𝑑𝑧 

𝑑𝑡
. 

Likewise, employing the concept of maximizing allows for a direct calculation that results in: 

      
𝑑𝑊3

𝑑𝑡
≤ −𝑝1(𝑥 − �̅�)2 − 𝑝3(𝑤6�̅� + 𝑤9)(𝑧 − 𝑧̅)2 − [𝑝2𝑤3 − 𝑝1𝑤1] 𝑥𝑦2 

        −(
𝑝1𝑤0

(1+𝑤0(𝑦+𝑧)(1+𝑤0�̅�)
+ 𝑝1𝑤2 − 𝑝1𝑤2𝑧̅ − 𝑝3𝑤6) (𝑥 − �̅�)(𝑧 − 𝑧̅) 

               −(𝑝3𝑤6 − 𝑝1𝑤2)𝑧(𝑥 − �̅�)(𝑧 − 𝑧̅) 

        −[𝑝2𝑤4 + 𝑝3𝑤7𝑧̅ −
𝑃1𝑤0�̅�

[1+𝑤0(𝑦+𝑧)](1+𝑤0�̅�)
− 𝑝1𝑤1�̅� − 𝑝2𝑤3 − 𝑝3𝑤7𝑧] 𝑦.  

By choosing positive constant values as 𝑝1 = 1, p2 = 
 𝑤1

 𝑤3
,  and p3 =

w2

 𝑤6
 , the following results 

are obtained: 

       
𝑑𝑊3

𝑑𝑡
≤ −(𝑥 − �̅�)2 −

w2

 𝑤6
(𝑤6�̅� + 𝑤9)(𝑧 − 𝑧̅)2 
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         −(
𝑤0

(1+𝑤0(𝑦+𝑧)(1+𝑤0�̅�)
− 𝑤2𝑧̅) (𝑥 − �̅�)(𝑧 − 𝑧̅) 

         −[
 𝑤1𝑤4

 𝑤3
+

w2𝑤7�̅�

 𝑤6
−

𝑃1𝑤0�̅�

(1+𝑤0�̅�)
− 𝑤1(�̅� + 1) −

2𝑤7

 μ
 ] 𝑦.    

Applying the given conditions (24a) - (24b) leads to the conclusion that: 

          

𝑑W3

𝑑𝑡
≤ −[(𝑥 − �̅�) + √

w2

 𝑤6
(𝑤6�̅� + 𝑤9)(𝑧 − 𝑧̅)]

2

                

− [
 𝑤1𝑤4

 𝑤3
+

w2𝑤7�̅�

 𝑤6
−

𝑃1𝑤0�̅�

(1+𝑤0�̅�)
− 𝑤1(�̅� + 1) −

2𝑤7

 μ
 ] 𝑦.  

 

Therefore, conditions (24a) and (24b) imply that 
𝑑W3

𝑑𝑡
< 0 . As a result, 𝑄𝑥𝑧  exhibits global 

asymptotic stability.                                                            □                                                            

Theorem 6. If the conditions outlined below are satisfied, the local asymptotic stability of 𝑄𝑥𝑦𝑧 

implies its global asymptotic stability.  

      [
𝑤0

[1+𝑤0(𝑦∗+𝑧∗)]
− w1𝑦

∗]
2

<
 𝑤1

 𝑤3
(𝑤3𝑥

∗ + 𝑤5)                       (25a)                

    [
𝑤0

[1+𝑤0(𝑦∗+𝑧∗)]
− w2𝑧

∗]
2

<
 𝑤2

 𝑤6
(𝑤6𝑥

∗ + 𝑤9)                           (25b)                   

    [
𝑤2w7

w6
]
2

<
 𝑤1

 𝑤3

 𝑤2

 𝑤6
(𝑤3𝑥

∗ + 𝑤5)(𝑤6𝑥
∗ + 𝑤9)                                       (25c) 

Proof. The real-valued function  W4 = q1 ∫
𝑢−𝑥∗

𝑢

𝑥

𝑥∗ 𝑑𝑢 + q2 ∫
𝑣−𝑦∗

𝑣

𝑦

𝑦∗ 𝑑𝑣 + q3 ∫
𝑐−𝑧∗

𝑐

𝑧

𝑧∗ 𝑑𝑐 , is 

defined. By performing direct calculations, it can be shown that W4: 𝑀4 → ℝ , when 𝑀4 =

{(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 > 0, 𝑦 > 0, 𝑧 > 0}, holds true. Consequently, this implies W4(𝑄𝑥𝑦𝑧) = 0, and  

W4(𝑥, 𝑦, 𝑧) > 0, for every (𝑥, 𝑦, 𝑧) ∈ 𝑀4 − 𝑄𝑥𝑦𝑧. Furthermore, simple calculations yield that: 

      
𝑑𝑊4

𝑑𝑡
= q1 (

𝑥−𝑥∗

𝑥
)

𝑑𝑥 

𝑑𝑡
+ q2(

𝑦−𝑦∗

𝑦
)

𝑑𝑦 

𝑑𝑡
+ q3 (

𝑧−𝑧∗

𝑧
)

𝑑𝑧 

𝑑𝑡
. 

Likewise, employing the concept of maximizing allows for a direct calculation that results in: 

      
𝑑𝑊4

𝑑𝑡
= −𝑞1(𝑥 − 𝑥∗)2 − 𝑞2[𝑤3𝑥

∗ + 𝑤5](𝑦 − 𝑦∗)2 

        −𝑞3[𝑤6𝑥
∗ + 𝑤9](𝑧 − 𝑧∗)2 

        −[
𝑞1𝑤0

[1+𝑤0(𝑦+𝑧)][1+𝑤0(𝑦∗+𝑧∗)]
+ 𝑞1𝑤1 − 𝑞1𝑤1(𝑦 + 𝑦∗) 

            −𝑞2𝑤3(1 − 𝑦)](𝑥 − 𝑥∗)(𝑦 − 𝑦∗) 

            −[
𝑞1𝑤0

[1+𝑤0(𝑦+𝑧)][1+𝑤0(𝑦∗+𝑧∗)]
+ 𝑞1𝑤2 − 𝑞1𝑤2(𝑧 + 𝑧∗) 
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            −𝑞3𝑤6(1 − 𝑧)](𝑥 − 𝑥∗)(𝑧 − 𝑧∗) + 𝑞3𝑤7(𝑦 − 𝑦∗)(𝑧 − 𝑧∗). 

By choosing positive constant values as 𝑞1 = 1, q2 = 
 𝑤1

 𝑤3
,  and q3 =

w2

 𝑤6
 , the following results 

are obtained: 

       
𝑑𝑊4

𝑑𝑡
= −(𝑥 − 𝑥∗)2 −

 𝑤1

 𝑤3
[𝑤3𝑥

∗ + 𝑤5](𝑦 − 𝑦∗)2 

             −
w2

 𝑤6
[𝑤6𝑥

∗ + 𝑤9](𝑧 − 𝑧∗)2 +
w2𝑤7

 𝑤6
(𝑦 − 𝑦∗)(𝑧 − 𝑧∗) 

             −[
𝑤0

[1+𝑤0(𝑦+𝑧)][1+𝑤0(𝑦∗+𝑧∗)]
− 𝑤1𝑦

∗] (𝑥 − 𝑥∗)(𝑦 − 𝑦∗) 

             −[
𝑤0

[1+𝑤0(𝑦+𝑧)][1+𝑤0(𝑦∗+𝑧∗)]
− 𝑤2𝑧

∗] (𝑥 − 𝑥∗)(𝑧 − 𝑧∗).                      

Applying the given conditions (25a), (25b) and (25c( leads to the conclusion that: 

       
𝑑𝑊4

𝑑𝑡
= −

1

2
[(𝑥 − 𝑥∗) + √

 𝑤1

 𝑤3
[𝑤3𝑥∗ + 𝑤5](𝑦 − 𝑦∗)]

2

 

            −
1

2
[(𝑥 − 𝑥∗) + √

w2

 𝑤6
[𝑤6𝑥∗ + 𝑤9](𝑧 − 𝑧∗)]

2

 

            −
1

2
[√

 𝑤1

 𝑤3
[𝑤3𝑥∗ + 𝑤5](𝑦 − 𝑦∗) − √

w2

 𝑤6
[𝑤6𝑥∗ + 𝑤9](𝑧 − 𝑧∗)]

2

. 

  

Note that the derivative 
𝑑𝑊4

𝑑𝑡
 is a negative definite and hence the proof is complete.          □           

 

7. LOCAL BIFURCATION 

System (2) can be reformulated using Sotomayor's theorem to examine the local bifurcation 

that may arise near the non-hyperbolic equilibrium point. The objective is to comprehend the 

impact of parameter variations on the dynamic behavior of the system as the parameter traverses 

the value that shifts the equilibrium from hyperbolic to non-hyperbolic. Now, let's rephrase system 

(2) in the following manner. 

To rewrite System (2), it is necessary to express it as the derivative of ℋ concerning 𝑡, denoted 

as 
dℋ

dt
, which is equal to the function 𝐺(ℋ). Here, ℋ is a column vector (𝑥, 𝑦, 𝑧)𝑇, and 𝐺(ℋ) 



17 

EFFECTS OF FEAR AND REFUGE STRATEGY DEPENDENT ON PREDATOR 

represents the column vector (𝑥𝑓1, 𝑦𝑓2, 𝑧𝑓3)
𝑇. Consequently, the second directional derivative of 

the overall Jacobian matrix can be represented in the following manner with the following generic 

vector   𝑆 = (𝑠1, 𝑠2, 𝑠3)
𝑇: 

         𝐷2𝐺(ℋ). (𝑆, 𝑆) = [𝑒𝑖1]3×1                               (26) 

where: 

       𝑒11 = −2𝑣1
2 − [

2𝑤0

(1+(𝑦+𝑧)𝑤0)2
+ 𝑤1 + (1 − 𝑦)𝑤1 − 3𝑦𝑤1] 𝑣1𝑣2 

            −[
2𝑤0

(1+(𝑦+𝑧)𝑤0)2
+ 𝑤2 + (1 − 𝑧)𝑤2 − 3𝑧𝑤2] 𝑣1𝑣3 

            +2 [
𝑤0

2

(1+(𝑦+𝑧)𝑤0)3
𝑥 + 𝑤1𝑥] 𝑣2

2 + 4 [
𝑤0

2

(1+(𝑦+𝑧)𝑤0)3
𝑥] 𝑣2𝑣3 

            +2 [
𝑤0

2

(1+(𝑦+𝑧)𝑤0)3
+ 𝑤2] 𝑣3

2.  

       𝑒21 = −2[𝑤3𝑥 + 𝑤5]𝑣2
2 − 2[𝑦𝑤3 − (1 − 𝑦)𝑤3]𝑣1𝑣2 

       𝑒31 = −2[𝑥𝑤6 + 𝑤9]𝑣3
2 − 2[𝑧𝑤6 − (1 − 𝑧)𝑤6]𝑣1𝑣3 + 2𝑤7𝑣2𝑣3 

Theorem 7. If the condition (12a) is satisfied, the system (2) will demonstrate a Transcritical 

bifurcation near the equilibrium point 𝑄1 = (1,0,0) if the parameter 𝑤8 passes the value 𝑤6 =

�̃�8. 

Proof. The form of the Jacobian matrix for system (2) at 𝑄1, when 𝑤8 is equal to �̃�8, can be 

represented as: 

      𝐻(𝑄1, �̃�8) = (
−1 −𝑤1 − 𝑤0 −𝑤2 − 𝑤0

0 𝑤3 − 𝑤4 0
0 0 0

) = (𝑑𝑖𝑗). 

Therefore, the eigenvalues of 𝐻(𝑄1, �̃�8) , can be expressed as 𝜆11 = −1 , 𝜆12 = 𝑤3 − 𝑤4 < 0 

subject to condition (12a), and �̃�13 = 0. 

If we consider �̃� = (𝑠11, 𝑠12, 𝑠13)
𝑇 as the eigenvector of 𝐻(𝑄1, �̃�8) corresponding to �̃�13 = 0, 

we can derive that �̃� = (𝛿1𝑠13, 0, 𝑠13)
𝑇, where 𝑠13 ≠ 0, 𝑠13 ∈ ℝ,  

and 𝛿1 = −
𝑑13

𝑑11
= −(𝑤2 + 𝑤0) < 0. 

If we consider �̃� = (𝛹11, 𝛹12, 𝛹13)
𝑇 , to be the eigenvector of 𝐻(𝑄1, �̃�8) 

𝑇   associated with 

�̃�13 = 0, we can deduce that �̃� = (0,0, 𝛹13), is obtained, where 𝛹13 ≠ 0 and 𝛹13 ∈ ℝ. 
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Furthermore, by calculating 
𝜕𝐺

𝜕𝑤8
= 𝐺𝑤8

= (0,0, −𝑧)𝑇 , we find that it results in 𝐺𝑤8
(𝑄1, �̃�8) =

(0,0,0)𝑇. Consequently, when evaluating �̃�𝑇[𝐺𝑤8
(𝑄1, �̃�8)] = 0. Additionally, direct computation 

demonstrates that: 

      𝐷𝐺𝑤8
(𝑄1, �̃�8) = (

0 0 0
0 0 0
0 0 −1

) ⟹  𝐷𝐺𝑤8
(𝑄𝑥, �̃�8)�̃� = (0,0, −𝑠13)

𝑇, 

Subsequently �̀�𝑇[ 𝐷𝐺𝑤8
(𝑄1, �̃�8)�̃�] = −𝛹13𝑠13 ≠ 0. 

Upon examining equation (26), it can be noted that 

      [𝐷2𝐺(𝑄1, �̃�8)( �̃�, �̃�)] = (
𝑠13[−2𝛿1

2 − 2𝛿1𝑤0 + 2𝑤0
2 + 2𝑤2 − 2𝛿1𝑤2]

0
𝑠13[−2𝑤6 + 2𝛿1𝑤6 − 2𝑤9]

). 

thus: 

      Ψ̃𝑇[𝐷2𝐺(𝑄1, �̃�8)( �̃�, �̃�)] = 𝛹13𝑠13(−2𝑤6 + 2𝛿1𝑤6 − 2𝑤9) ≠ 0, 

Therefore, it can be concluded that a Transcritical bifurcation takes place as per Sotomayor's 

theorem, and the proof is done.                                                    □                                                             

Theorem 8. If the condition (15b) is satisfied, the system (2) will demonstrate a Transcritical 

bifurcation near the equilibrium point 𝑄𝑥𝑦 = (�̂�, �̂�, 0) , if the parameter 𝑤8  passes the value 

𝑤6�̂� + 𝑤7�̂� =: �̂�8. 

Proof. The form of the Jacobian matrix for system (2) at 𝑄𝑥𝑦, when 𝑤8 = �̂�8, can be represented 

as: 

      𝐻(𝑄𝑥𝑦, �̂�8) = [
−�̂� �̂� (2𝑤1�̂� − 𝑤1 −

𝑤0

(1+𝑤0�̂�)2
) −�̂� (𝑤2 +

𝑤0

(1+𝑤0�̂�)2
)

𝑤3�̂�(1 − �̂�) −(w5 + w3�̂�)�̂� 0
0 0 0

]. 

Therefore, the eigenvalues of 𝐻(𝑄𝑥𝑦, �̂�8),  can be expressed as  𝜆2𝑖 =
𝑇𝑥𝑦

2
±

1

2
√𝑇𝑥𝑦

2 − 4𝐷𝑥𝑦, 

for 𝑖 = 1,2, here 𝜆2𝑖 have negative real parts under condition (15b), and �̂�23 = 0. 

If we consider �̂� = (𝑠21, 𝑠22, 𝑠23)
𝑇 as the eigenvector of 𝐻(𝑄𝑥𝑦, �̂�8) corresponding to �̂�23 = 0, 

we can derive that �̂� = (𝛿2𝑠23, 𝛿3𝑠23, 𝑠23)
𝑇 , where 𝑠23 ≠ 0 , 𝑠23 ∈ ℝ , and 𝛿2 =
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−
𝑏13𝑏22

𝑏11𝑏22−𝑏12𝑏21
< 0, 𝛿3 =

𝑏13𝑏21

𝑏11𝑏22−𝑏12𝑏21
< 0, where 𝑏𝑖𝑗 are the elements of 𝐻(𝑄𝑥𝑦, �̂�8). 

If we consider �̂� = (𝛹21, 𝛹22, 𝛹23)
𝑇, to be the eigenvector of 𝐻(𝑄𝑥𝑦, �̂�8) 

𝑇  associated with 

�̂�23 = 0, we can deduce that �̂� = (0,0, 𝛹23), is obtained, where 𝛹23 ≠ 0 and 𝛹23 ∈ ℝ. 

Furthermore, by calculating 
𝜕𝐺

𝜕𝑤8
= 𝐺𝑤8

= (0,0, −𝑧)𝑇 , we find that it results in 𝐺𝑤8
(𝑄𝑥𝑦, �̂�8) =

(0,0,0)𝑇.Consequently, when evaluating �̂�𝑇[𝐺𝑤8
(𝑄𝑥, �̂�8)] = 0. Additionally, direct computation 

demonstrates that: 

      𝐷𝐺𝑤8
(𝑄𝑥𝑦, �̂�8) = (

0 0 0
0 0 0
0 0 −1

) ⟹  𝐷𝐺𝑤8
(𝑄𝑥𝑦, �̂�8) �̂� = (0,0, −𝑠23)

𝑇, 

Subsequently, �̂�𝑇[ 𝐷𝐺𝑤8
(𝑄𝑥𝑦, �̂�8) �̂�] = −𝛹23𝑠23 ≠ 0. 

Upon examining equation (26), it can be noted that 

          [𝐷2𝐺(𝑄𝑥𝑦, �̂�8)( �̂�, �̂�)] = [�̂�𝑖1]3×1 , 

where 

      �̂�11 = −2𝛿2
2𝑠23

2 − [
2𝑤0

(1+�̂�𝑤0)2
+ 𝑤1 + (1 − �̂�)𝑤1 − 3�̂�𝑤1] 𝛿2𝛿3𝑠23

2 

                 −[
2𝑤0

(1+�̂�𝑤0)2
+ 𝑤2 + 𝑤2] 𝛿2𝑠23

2 + 2 [
𝑤0

2

(1+�̂�𝑤0)3
�̂� + 𝑤1�̂�] 𝛿3

2𝑠23
2 

               +4 [
𝑤0

2

(1+�̂�𝑤0)3
�̂�] 𝛿3𝑠23

2 + 2 [
𝑤0

2

(1+�̂�𝑤0)3
+ 𝑤2] 𝑠23

2 

      �̂�21 = −2[𝑤3�̂� + 𝑤5]𝛿3
2𝑠23

2 − 2[�̂�𝑤3 − (1 − �̂�)𝑤3]𝛿2𝛿3𝑠23
2 

      �̂�31 = −2[�̂�𝑤6 + 𝑤9]𝑠23
2 + 2𝑤6𝛿2𝑠23

2 + 2𝑤7𝛿3𝑠23
2 . 

Thus: 

         �̂�𝑇[𝐷2𝐺(𝑄𝑥𝑦, �̂�8)( �̂�, �̂�)] = 

      𝛹13(−2(�̂�𝑤6 + 𝑤9)𝑠23
2 + 2𝑤6𝛿2𝑠23

2 + 2𝑤7𝛿3𝑠23
2) ≠ 0, 

 It can be concluded that a Transcritical bifurcation occurs near 𝑄𝑥𝑦 when 𝑤8 = �̂�8.       □ 

Theorem 9. If the condition (18b) is satisfied, the system (2) will demonstrate a Transcritical 

bifurcation near the equilibrium point 𝑄𝑥𝑧 = (�̅�, 0, 𝑧̅), when the parameter 𝑤4 passes the value 

w3�̅� =: �̅�4 provided that the following condition holds: 
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      −2�̅�𝑤3 − 2𝑤5 + 2𝑤3𝛿5 ≠ 0.                                 (27) 

Proof. The form of the Jacobian matrix for system (2) at 𝑄𝑥𝑧, when �̅�4 = 𝑤3�̅�, can be represented 

as: 

      𝐻(𝑄𝑥𝑧, �̅�4) = [
−�̅� −�̅� (𝑤1 +

𝑤0

(1+𝑤0�̅�)2
) �̅� (2𝑤2𝑧̅ − 𝑤2 −

𝑤0

(1+𝑤0�̅�)2
)

0 0 0
𝑤6𝑧̅ − 𝑤6𝑧̅

2 𝑤7𝑧̅ −𝑤9𝑧̅ − 𝑤6�̅�𝑧̅

]. 

Therefore, the eigenvalues of 𝐻(𝑄𝑥𝑧, �̅�4),  can be expressed as 𝜆3𝑖 =
𝑇𝑥𝑧

2
±

1

2
√𝑇𝑥𝑧

2 − 4𝐷𝑥𝑧, for 

𝑖 = 1,3 which have negative real parts provided that condition (18b) holds, and �̅�32 = 0. 

If we consider 𝑆̅ = (𝑠31, 𝑠32, 𝑠33)
𝑇 as the eigenvector of 𝐻(𝑄𝑥𝑧, �̅�4) corresponding to�̅�32 = 0, 

we can derive that 𝑆̅ = (𝛿5𝑠32, 𝑠32, 𝛿4𝑠32)
𝑇 , where 𝑠32 ≠ 0 , 𝑠32 ∈ ℝ , and 𝛿4 =

𝑐13𝑐32−𝑐33𝑐12

𝑐11𝑐33−𝑐13𝑐31
 , 

and 𝛿5 =
𝑐12𝑐31−𝑐11𝑐32

𝑐11𝑐33−𝑐13𝑐31
> 0, where 𝑐𝑖𝑗 are the elements of 𝐻(𝑄𝑥𝑧, �̅�4). 

If we consider �̅� = (𝛹31, 𝛹32, 𝛹33)
𝑇 , to be the eigenvector of 𝐻(𝑄𝑥𝑧, �̅�4) 

𝑇   associated with 

�̅�32 = 0, we can deduce that �̅� = (0, 𝛹32, 0), is obtained, where 𝛹32 ≠ 0 and 𝛹32 ∈ ℝ. 

Furthermore, by calculating 
𝜕𝐺

𝜕𝑤4
= 𝐺𝑤4

= (0,−𝑦, 0)𝑇 , we find that it results in 𝐺𝑤4
(𝑄𝑥𝑧, �̅�4) =

(0,0,0)𝑇 . Consequently, when evaluating �̅�𝑇[𝐺𝑤4
(𝑄𝑥𝑧, �̅�4)] = 0 . Additionally, direct 

computation demonstrates that: 

      𝐷𝐺𝑤4
(𝑄𝑥𝑧, �̅�4) = (

0 0 0
0 −1 0
0 0 0

) ⟹  𝐷𝐻𝑤4
(𝑄𝑥𝑧, �̅�4) 𝑆̅ = (0, −𝑠32, 0)𝑇. 

Subsequently �̅�𝑇[ 𝐷𝐺𝑤4
(𝑄𝑥𝑧, �̅�4)𝑆̅] = −𝛹32𝑠32 ≠ 0. 

Upon examining equation (26), it can be noted that 

          [𝐷2𝐺(𝑄𝑥𝑧, �̅�4)( 𝑆̅, 𝑆̅)] = [�̅�𝑖1]3×1 , where: 

       �̅�11 = 𝑠32
2 (

2�̅�𝑤0
2

(1+�̅�𝑤0)3
+ 2𝑥𝑤1 +

4�̅�𝑤0
2𝛿4

(1+�̅�𝑤0)3
+

2�̅�𝑤0
2𝛿4

2

(1+�̅�𝑤0)3
+ 2�̅�𝑤2𝛿4

2 −
2𝑤0𝛿5

(1+�̅�𝑤0)2
 

            − 2𝑤1𝛿5 −
2𝑤0𝛿4𝛿5

(1+�̅�𝑤0)2
− 𝑤2𝛿4𝛿5 + (−1 + 𝑧̅)𝑤2𝛿4𝛿5 + 3𝑧𝑤2𝛿4𝛿5 − 2𝛿5

2), 

       �̅�21 = 𝑠32
2 (−2�̅�𝑤3 − 2𝑤5 + 2𝑤3𝛿5), 

     �̅�31 = 𝑠32
2 (2𝑤7𝛿4 − 2�̅�𝑤6𝛿4

2 − 2𝑤9𝛿4
2 + 2(1 − 𝑧̅)𝑤6𝛿4𝛿5 − 2𝑧̅𝑤6𝛿4𝛿5).             
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thus: 

     �̅�𝑇[𝐷2𝐺(𝑄𝑥𝑧, �̅�4)( 𝑆̅, 𝑆̅)] = 𝛹32𝑠32
2 (−2�̅�𝑤3 − 2𝑤5 + 2𝑤3𝛿5), 

Therefore, due to condition (27), it can be concluded that a Transcritical bifurcation occurs near 

𝑄𝑥𝑧 when �̅�4 = 𝑤3�̅� .                                                         □ 

Theorem 10. If the conditions (18a)-(18d) are met, the transition of the parameter w5 from a 

positive value 𝑤5
∗  causes the system (2) to experience a saddle-node bifurcation near the 

coexistence equilibrium point 𝑄𝑥𝑦𝑧 if the following condition holds. 

      𝛿7𝑒
∗
11 + 𝛿8𝑒

∗
21 + 𝑒∗

31 ≠ 0,                              (28) 

where all the new symbols are defined in the proof, while 𝑤5
∗ is given by. 

      𝑤5
∗ =

𝑎13𝑎21𝑎32−𝑎12𝑎21𝑎33

𝑦∗(𝑎11𝑎33−𝑎13𝑎31)
− 𝑤3𝑥

∗.                             (29) 

Proof. The form of the Jacobian matrix for system (2) at 𝑄𝑥𝑦𝑧, when 𝑤5 = 𝑤5
∗, can be represented 

as: 

      𝐻5 = 𝐻(𝑄𝑥𝑦𝑧, 𝑤5
∗) = [𝑎𝑖𝑗], 

where 𝑎𝑖𝑗 for all 𝑖, 𝑗 = 1,2,3 are given in eqution (20) with 𝑎22(𝑤5
∗) = −(𝑤5

∗ + 𝑤3𝑥
∗)𝑦∗. 

Therefore, direct computation shows that the coefficient 𝐶 = 0 in the characteristic equation (21). 

Thus, equation (21) has a zero root represented by 𝜆43
∗ = 0 , and two other eigenvalues have 

negative real parts under the conditions (18a)-(18b).  

Consider now 𝑆∗ = (𝑠41, 𝑠42, 𝑠43)
𝑇 as the eigenvector of 𝐻5 corresponding to 𝜆43

∗ = 0, we can 

derive that 𝑆∗ = (𝛿5𝑠43, 𝛿6𝑠43, 𝑠42)
𝑇, where 𝑠43 ≠ 0, 𝑠43 ∈ ℝ,  

with 𝛿5 = −
𝑎13𝑎22

𝑎11𝑎22−𝑎12𝑎21
  and 𝛿6 =

𝑎13𝑎21

𝑎11𝑎22−𝑎12𝑎21
 

Moreover, consider 𝛹∗ = (𝛹41, 𝛹42, 𝛹43)
𝑇 , to be the eigenvector of 𝐻5 

𝑇   associated with 

𝜆43
∗ = 0, we can deduce that 𝛹∗ = (𝛿7𝛹43, 𝛿8𝛹43, 𝛹43), where 𝛹43 ≠ 0 and 𝛹43 ∈ ℝ  with        

𝛿7 =
𝑎21𝑎32−𝑎22𝑎31

𝑎11𝑎22−𝑎12𝑎21
  and 𝛿8 =

𝑎12𝑎31−𝑎11𝑎32

𝑎11𝑎22−𝑎12𝑎21
 

Furthermore, by calculating 
𝜕𝐺

𝜕𝑤5
= 𝐺𝑤5

= (0,−𝑦2, 0)𝑇 ,  we find that it results in 
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𝐺𝑤5
(𝑄𝑥𝑦𝑧, 𝑤5

∗) = (0,−(𝑦∗)2, 0)𝑇.  

Consequently, when evaluating 𝛹∗𝑇[𝐺𝑤5
(𝑄𝑥𝑧, 𝑤5

∗)] = −𝛿8𝛹43(𝑦
∗)2 ≠ 0. Thus the first condition 

of the occurrence of a SNB is satisfied. Additionally, direct computation demonstrates that.Upon 

examining equation (26), it can be noted that 

      [𝐷2𝐺(𝑄𝑥𝑦𝑧, 𝑤5
∗)( 𝑆∗, 𝑆∗)] = [𝑒𝑖1

∗ ]3×1 , 

where: 

    𝑒11
∗ = −2(𝛿5𝑠43)

2 − [
2𝑤0

(1+𝑤0(𝑦∗+𝑧∗))
2 + 2𝑤1(1 − 2𝑦∗)] 𝛿5𝛿6𝑠43

2 

         −[
2𝑤0

(1+𝑤0(𝑦∗+𝑧∗))
2 + 2𝑤2(1 − 2𝑧∗)] 𝛿5𝑠43

2 + 4 [
𝑤0

2𝑥∗

(1+𝑤0(𝑦∗+𝑧∗))
3] 𝛿6𝑠43

2 

         +2𝑥∗ [
𝑤0

2

(1+𝑤0(𝑦∗+𝑧∗))
3 + 𝑤1] (𝛿6𝑠43)

2 + 2 [
𝑤0

2

(1+𝑤0(𝑦∗+𝑧∗))3
+ 𝑤2] 𝑠43

2,              

      𝑒21
∗ = −2[𝑤3𝑥

∗ + 𝑤5](𝛿6𝑠43)
2 − 2𝑤3[2𝑦∗ − 1]𝛿5𝛿6𝑠43

2, 

      𝑒31
∗ = −2[𝑤6𝑥

∗ + 𝑤9]𝑠43
2 − 2𝑤6[2𝑧∗ − 1]𝑣1𝑣3 + 2𝑤7𝛿6𝑠43

2 . 

Thus, due to condition (28), it is obtained that: 

      𝛹∗𝑇[𝐷2𝐺(𝑄𝑥𝑦𝑧, 𝑤5
∗)( 𝑆∗, 𝑆∗)] = [𝛿7𝑒

∗
11 + 𝛿8𝑒

∗
21 + 𝑒∗

31]𝛹43 ≠ 0,  

Therefore, it can be concluded that a saddle-node bifurcation occurs near 𝑄𝑥𝑦𝑧.              □ 

 

8. PERSISTENCE 

In this division, we delve into the examination of the persistence of the system (2). 

Acknowledging that the system is considered to persist only if and only if none of its species 

becomes extinct is crucial. This implies that system (2) persists if the trajectory of the system, 

starting from a positive initial point, does not approach the boundary planes of its domain as its 

omega limit set. 

System (2) consists of two subsystems positioned within the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒  and 𝑥𝑧 − 𝑝𝑙𝑎𝑛𝑒, 

respectively. The representation of these subsystems is as follows for each plane. 

      
𝑑𝑥

𝑑𝑡
= 𝑥 [

1

1+𝑤0𝑦
− 𝑥 − 𝑤1(1 − 𝑦)𝑦] = 𝑡1(𝑥, 𝑦),                         (30) 
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𝑑𝑦

𝑑𝑡
= 𝑦[𝑤3(1 − 𝑦)𝑥 − 𝑤4 − 𝑤5𝑦] = 𝑡2(𝑥, 𝑦),     

And 

      
𝑑𝑥

𝑑𝑡
= 𝑥 [

1

1+𝑤0𝑧
− 𝑥 − 𝑤2(1 − 𝑧)𝑧] = 𝑡3(𝑥, 𝑧),                              (31)                                              

      
𝑑𝑧

𝑑𝑡
= 𝑧[𝑤6(1 − 𝑧)𝑥 − 𝑤8 − 𝑤9𝑧] = 𝑡4(𝑥, 𝑧), 

To explore the presence of periodic dynamics in the 𝐼𝑛𝑡. ℝ+
2  of the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒, we can establish 

the Dulac function as 𝑞1(𝑥, 𝑦) =
1

𝑥𝑦
 which fulfills the criteria outlined by the 𝑞1(𝑥, 𝑦) > 0 and  

𝐶1 functions. Consequently, we can deduce that 

      𝑞1𝑡1 =
1

𝑦
[

1

1+𝑤0𝑧
− 𝑥 − 𝑤2(1 − 𝑧)𝑧], 

And 

      𝑞1𝑡2 =
1

𝑥
[𝑤3(1 − 𝑦)𝑥 − 𝑤4 − 𝑤5𝑦] 

Therefore, it can be concluded that: 

      ∆(𝑥, 𝑦) =
𝜕( 𝑞1𝑡1)

𝜕𝑥
+

𝜕(𝑞1𝑡2)

𝜕𝑦
= −(𝑤3 +

1

𝑦
+

𝑤5

𝑥
) 

Because the value of ∆(𝑥, 𝑦) is not consistently zero and does not exhibit a change in sign within 

𝐼𝑛𝑡. ℝ+
2  of the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒, the Dulac-Bendixon criterion indicates that the system (30) lacks any 

periodic solution that exists exclusively within the interior of the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒. 

Likewise, it is straightforward to confirm that the system (31) does not exhibit any periodic 

solution that exists exclusively within the interior of the 𝑥𝑧 − 𝑝𝑙𝑎𝑛𝑒 by employing the Dulac 

function 𝑞2(𝑥, 𝑧) =
1

𝑥𝑧
 for verification.  

Theorem 11. If there are no recurring patterns in the boundary planes, the system (2) will exhibit 

uniform persistence as long as the following conditions are satisfied. 

       𝑤3 > 𝑤4,                                             (32a) 

       𝑤6 > 𝑤8,                                      (32b) 

       �̂� >
𝑤8−𝑤7�̂�

𝑤6
,                                              (32c) 

       �̅� >
𝑤4

𝑤3
.                                                     (32d) 
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Proof. Define the function 𝜎(𝑥, 𝑦, 𝑧) = 𝑥𝜂1 𝑦𝜂2 𝑧𝜂3 ,  using the average Lyapunov function 

approach, where 𝜂𝑖 , ∀𝑖 = 1,2,3, represents positive constants.  

Consequently, 𝜎(𝑥, 𝑦, 𝑧) > 0, holds for all (𝑥, 𝑦, 𝑧) ∈ 𝑖𝑛𝑡. ℝ+
3  and 𝜎(𝑥, 𝑦, 𝑧) → 0, when any of 

their variables approaches zero. Consequently, it can be concluded that 

       Ω(𝑥, 𝑦, 𝑧) =
𝜎′(𝑥,𝑦,𝑧)

𝜎(𝑥,𝑦,𝑧)
= 𝜂1 [

1

1+𝑤0(𝑦+𝑧)
− 𝑥 − 𝑤1(1 − 𝑦)𝑦 − 𝑤2(1 − 𝑧)𝑧] 

          +𝜂2[𝑤3(1 − 𝑦)𝑥 − 𝑤4 − 𝑤5𝑦] + 𝜂3[𝑤6(1 − 𝑧)𝑥 + 𝑤7𝑦 − 𝑤8 − 𝑤9𝑧]. 

Based on the average Lyapunov function, the proof is completed when Ω(𝑄) > 0 holds for any 

attractor point 𝑄 on the boundary planes, given an appropriate choice of constants 𝜂𝑖 > 0, 𝑗 =

1,2,3. Since 

      Ω(𝑄0) = 𝜂1 − 𝜂2𝑤4 − 𝜂3𝑤8,    

      Ω(𝑄𝑥) = 𝜂2(𝑤3 − 𝑤4) + 𝜂3(𝑤6 − 𝑤8), 

      Ω(𝑄𝑥𝑦) = 𝜂3[𝑤6�̂� + 𝑤7�̂� − 𝑤8]. 

      Ω(𝑄𝑥𝑧) = 𝜂2[𝑤3�̅� − 𝑤4].    

By choosing a suitably large value for 𝜂1, Ω(𝑄0) > 0 can be achieved. However, Ω(𝑄1) > 0, 

Ω(𝑄𝑥𝑦) > 0, and Ω(𝑄𝑥𝑧) > 0, are only possible if conditions (32a), (32b), (32c), and (32d) are 

satisfied. Therefore, the proof is concluded.                                          □  

 

9. NUMERICAL SIMULATION  

In this section, we use methods to explore the behavior of system (2) and confirm the analytical 

findings. We also determine the control parameters that're appropriate, for the system by solving 

it with a hypothetical set of values. By representing the resulting trajectories through time series 

plots and phase portrait we can thoroughly analyze how the system behaves. This analysis helps 

us validate our results and identify values, for the control parameters. 

Table 2. Data of parameter values. 

𝑤0 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9 

0.6 0.5 0.6 0.49 0.28 0.3 0.4 0.4 0.2 0.3 
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The analysis of the given table (2) reveals that system (2) possesses a globally asymptotically 

stable positive equilibrium point at coordinates 𝑄𝑥𝑦𝑧  =  (0.71, 0.1, 0.21).  This finding is 

visually depicted in Figure 1-2, confirming the stability of the equilibrium point. 

                 

 

              

Figure 1. The trajectories of the system (2) by utilizing table (2) and starting from different initial points. (a) The 

trajectories showcase the motion exhibited by the prey versus time.  (b) The trajectories showcase the motion 

exhibited by a predator versus time. (c) The trajectories showcase the motion exhibited by scavengers versus time. (d) 

Time series for the trajectories prey, predator, and scavenger of the system (2). (e) 3D-Phase portrait of the system (2). 
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Figure 2. (a) 3D-Phase portrait of the system (2). (b)The time series exhibits the trajectories of the system (2) by 

utilizing table (2), the trajectories of three species demonstrate an asymptotic positive convergence towards 𝑄𝑥𝑦𝑧  =

 (0.71, 0.1, 0.21).  

To explore the influence of parameter variations on the dynamics of the system (2), numerical 

solutions are obtained by systematically varying one parameter at a time. The resulting trajectories 

are then analyzed to identify the attractors, which are depicted in Figures (3–9) for visual reference. 

This approach allows for a comprehensive understanding of how changes in parameter values 

affect the behavior of the system. Upon examination of the given table (2) and considering the 

value of 12 ≤ 𝑤0 < 25 , it is apparent that the trajectory of the system (2) demonstrates an 

asymptotic convergence towards a predator-free equilibrium point, see Figure (3). Conversely, in 

all other cases for 0 < 𝑤0 < 12, the trajectory asymptotically approaches a positive equilibrium 

point. 
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Figure 3. The trajectories of the system (2) by utilizing table (2) with values of 𝑤0.  (a) 3D-Phase portrait when 

𝑤0 = 2. (b) Time series for the trajectories when 𝑤0 = 2. (c) 3D-Phase portrait when 𝑤0 = 12 . (d) Time series for 

the trajectories when 𝑤0 = 12. 

 

When the value of  𝑤1  increases, the impact it has on the predator becomes evident. This is 

observed when 𝑤1 = 1.9 . In such instances, a decline in the predator population is noticed 

compared to the previous value, see Figure (4). 
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Figure 4. The trajectories of the system (2) by utilizing table (2) with different values of 𝑤1. (a) 3D-Phase portrait 

when 𝑤1 = 0.1. (b) Time series for the trajectories when 𝑤1 = 0.1.  (c) 3D-Phase portrait when 𝑤1 = 1.9. (d) Time 

series for the trajectories when 𝑤1 = 1.9. 

However, when the value of 𝑤2 increases, the impact it has on the scavenger becomes evident. 

This is observed when 𝑤2 = 1.9 . In such instances, a decline in the scavenger population is 

noticed compared to the previous value, see Figure (5). 
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Figure 5. The trajectories of the system (2) by utilizing table (2) with different values of 𝑤2. (a) 3D-Phase portrait 

when 𝑤2 = 0.2. (b) The time series of the trajectories when 𝑤2 = 0.2.    (c) 3D-Phase portrait when 𝑤2 = 1.9. (d) 

The time series of the trajectories when 𝑤2 = 1.9. 

Alternatively, in the case of table (2) with 0 < 𝑤3 ≤ 0.34, the solution of system (2) gradually 

converges asymptotically 𝑄𝑥𝑧 = (�̅�, 0, 𝑧̅) as depicted in the Figures (6). Conversely, for 0.34 <

𝑤3 < 1 the system maintains a globally asymptotically stable positive equilibrium point. 
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Figure 6. The trajectories of the system (2) by utilizing table (2) with different values of 𝑤3. (a) 3D-Phase portrait 

when 𝑤3 = 0.93 . (b) The time series of the trajectories when 𝑤3 = 0.93. (c) 3D-Phase portrait when 𝑤3 = 0.34 . 

(d) The time series of the trajectories when 𝑤3 = 0.34. 

In the case of the parameters table (2) with 0.4 ≤ 𝑤4 < 1 , the trajectory of the system (2) 

demonstrates asymptotic convergence towards 𝑄𝑥𝑧 = (�̅�, 0, 𝑧̅)  as illustrated in Figure (7). 

However, for 0 < 𝑤4 < 0.4  the system maintains a globally asymptotically stable positive point. 
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Figure 7. The trajectories of the system (2) by utilizing table (2) with different values of 𝑤4. (a) 3D-Phase portrait 

when 𝑤4 = 0.03 . (b) The time series of the trajectories when 𝑤4 = 0.03. (c) 3D-Phase portrait when 𝑤4 = 0.4 . 

(d) The time series of the trajectories when 𝑤4 = 0.4. 

Furthermore, it is noted that when the parameter 𝑤5  is varied while keeping the rest of the 

parameters as table (2), it has a quantitative impact on the dynamics of the system (2). The solution 

of the system continues to converge towards a positive equilibrium point, which is dependent on 

the value of 𝑤5. Now, considering the specific parameter values provided by table (2) with 0 <

𝑤6 ≤ 0.153 , the trajectory of the system (2) asymptotically approaches 𝑄𝑥𝑦 = (�̂�, �̂�, 0) . This 

behavior is depicted in Figure (8). Conversely, for 0.153 < 𝑤6 < 1 the system remains stable at 

a positive equilibrium point. 

 

 



32 

HUSSEIN SABAH ABDULLAH, DAHLIA KHALED BAHLOOL 

      

 

      

 

Figure 8. The trajectories of the system (2) by utilizing table (2) with different values of 𝑤6. (a) 3D-Phase portrait 

when 𝑤6 = 0.26 . (b) The time series of the trajectories when 𝑤6 = 0.26.  (c) 3D-Phase portrait when 𝑤6 = 0.15. 

(d) The time series of the trajectories when 𝑤6 = 0.15. 

Finally, it is noted that when the parameter 𝑤7 (similary as 𝑤9) is varied while keeping the rest 

of the parameters as table (2) , it has a quantitative impact on the dynamics of the system (2). The 

solution of the system continues to converge towards a positive equilibrium point, which is 

dependent on the value of 𝑤7. Now, considering the specific parameter values provided by table 

(2) with 0.41 ≤ 𝑤8 < 1 , the trajectory of the system (2) asymptotically approaches 𝑄𝑥𝑦 =

(�̂�, �̂�, 0) . This behavior is depicted in Figure (9). Conversely, for 0 < 𝑤8 < 0.41  the system 

remains stable at a positive equilibrium point. 
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Figure 9. The trajectories of the system (2) by utilizing table (2) with different values of 𝑤8. (a) 3D-Phase portrait 

when 𝑤8 = 0.3. (b) The time series of the trajectories when 𝑤8 = 0.3.  (c) 3D-Phase portrait when 𝑤8 = 0.41. (d) 

The time series of the trajectories when 𝑤8 = 0.41.  

 

10.  CONCLUSIONS 

A mathematical structure of an ecological system with a prey-predator-scavenger dynamic in 

the presence of fear and predator-dependent refuge has been made. We go over every property of 

the solution. The local stability of the equilibrium points is examined. The requirements for 

persistence have been determined. The Sotomayor theorem is used to study all potential local 

bifurcations. Several Lyapunov functions are proposed to investigate the system's global stability. 

Finally, numerical simulation has been utilized using a proposed hypothetical set of biologically 

feasible data given by table (2) to validate our findings. The Mathematica program was used to 
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obtain all of the numerical findings, which are all described below.   

The system (2) approaches asymptotically to the coexistence equilibrium point, starting from 

different initial points, indicating the possibility of global stability at this point. The investigation 

of the influence of altering the parameter's value indicates that the parameters are divided into 

three compartments depending on the table (2). The parameters in the first compartment work as 

a stabilizing set and those are given by the growth rates of the predator and scavenger, respectively, 

due to the feeding on the prey. The parameters in the second compartment work as a destabilizing 

set of parameters, causing extinction in either predator or scavenger, that consist of the fear level 

and the death rates of the predator and scavenger, respectively. All other parameters, including the 

feeding rate of the scavenger on the predator’s carcass and those parameters related to the 

harvesting, belong to the third compartment and have quantitative effects on the position of the 

coexistence point. 
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