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Abstract. In this work we look at the dynamics of HIV/AIDS model with discrete delay influenced by stochastic

perturbation. We prove the positivity of unique global solution of the underlying perturbed system. Furthermore,

we set a threshold value R̃d
e for the delay model with perturbation which is higher than basic reproduction rate

of underlying non-perturbed model. We derive the necessary condition for the disease’s eradication and we also

establish a threshold value R̃d
p which governs the presence of a unique stationary distribution. Our results demon-

strate that the time delay and stochastic perturbation serve as crucial for reducing disease spread. When the noise

is really high, the disease dies off and there are periodic outbreaks due to time delay. Numerical simulations

corroborated our analytical findings.
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1. INTRODUCTION

Everyone knows that the Human Immunodeficiency Virus (HIV) is a severe threat to hu-

man mortality. Without medication, an HIV infection may spread and progress to Acquired

Immunodeficiency Syndrome (AIDS) which is a condition where the body’s immunological or

defense system is so weakened that it cannot fight against other diseases, within a decade. The
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weakened immune system makes people with AIDS are more susceptible to diseases including

cancer and tuberculosis.

Researchers have developed different mathematical models to safeguard human life and hin-

der the spread of diseases that are transmissible. Following the essential work of Kermack and

Mckendrick [9], a Susceptible-Infected framework, the study of disease transmission has shown

to be an intriguing field of research. Since then, different models for describing various types of

epidemics have been developed, and the dynamics of these models have been researched. The

dynamical behavior of different HIV model and their numerous extensions is investigated by

several researchers [2, 3, 7, 16, 17].

Everyone acknowledges that biological processes do not occur instantly and that time is re-

quired for interaction between them. Delay differential equations (DDEs) have been widely

useful in control theory and more recently connected to biological and mathematical models.

The last four decades have seen an enormous amount of interest in the stability of systems with

time delays. The delayed epidemic models have been examined in numerous studies [10, 20, 23]

for various types of epidemics particularly for HIV/AIDS.

Persistent or severe symptoms of being infected with HIV can remain undetected for a decade

or longer in adults, and as well as within couple of years in young babies born with HIV infec-

tion. Every infected person experiences this asymptomatic infection duration in a completely

unique way. The disease can be controlled and its extinction may be assisted by the delay

tactics.

In this regard, Sharma et.al. [22] probed the influence of discrete delay in a HIV/AIDS model

described by the following DDEs.

(1)

dSh(t)
dt

= r0− (β1Il(t)+β2Ie(t))Sh(t)−µnSh(t)

dIl(t)
dt

= (β1Il(t)+β2Ie(t))Sh(t)+η(Il(t)+ Ie(t))−δ Il(t−ω)−µnIl(t)

dIe(t)
dt

= δ Il(t−ω)− (κ +σ +µn)Ie(t)

where, Sh(t), Il(t), Ie(t) denote susceptible population, infective population without symptoms,

infective population with symptoms respectively; ω is the limit superior of the time delay (10

- 11 years) which depicts the delay between the onset of the infection and the appearance of
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symptoms and other parameters are given in TABLE 1. The term δ Il(t−ω), the force of trans-

mission from Il(t) to Ie(t) at time t is greater than zero, when there is an association between

the classes Il(t) and Ie(t). It is assumed that the natural death rate is not less than the vertical

transmission rate, that is µn > η and (κ +σ +µn)(δ +µ−η)> δη , as in [22].

For ρ ∈ [−ω,0], DDE system (1) has the initial values

(2) Sh(ρ) = d1(ρ), Il(ρ) = d2(ρ), E(ρ) = d3(ρ).

We consider di(ρ)≥ 0 for all i = 1,2,3.

Fluctuating environmental conditions have a considerable influence on the population dynam-

ics of the natural environment. To some extent, the deterministic model can describe disease

spread, but in reality, infectious disease spread is also affected by many random elements. For

example, the unpredictable nature of interactions between individuals, which means that con-

tact between individuals is not always uniform. In terms of biology, random factors inevitably

influence the mechanism of disease transmission. The stochastic model outperforms the deter-

ministic model in this aspect.

The latest developments in stochastic differential equations facilitate many researchers to

incorporate randomness into deterministic models of phenomena as a way to explain the im-

pacts of environmental fluctuations, whether they are noise in differential equation system or

environmental variation in parameters [4, 5].

The investigation of the dynamics of various models of the HIV/AIDS with stochastic con-

sequences has grown rapidly during the past decades. To make the model (1) more realistic, we

intend to establish a delayed HIV/AIDS model with perturbation, focusing on how noise and

delay influence disease extinction and persistence.

We now extend the delay model described in (1) to include random environmental variations

on it. Transmission rate of any disease is a crucial metric and thus we add randomness into the

parameter β to see how changes in the environment affect the system (1).

The system (1) gets the transformation via stochastic delayed differential equations (SDDE)

as:

(3) dSh(t) = [r0− (β1Il(t)+β2Ie(t))Sh(t)−µnSh(t)]dt−λSh(t)Il(t)dB(t)
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dIl(t) = [(β1Il(t)+β2Ie(t))Sh(t)+η(Il(t)+ Ie(t))−δ Il(t−ω)−µnIl(t)]dt

+λSh(t)Il(t)dB(t)

dIe(t) = [δ Il(t−ω)− (κ +σ +µn)Ie(t)]dt

where λ is the intensity of white noise which represented by the derivative of Brownian motion

B(t). Equation (3) is often referred to as the delayed HIV/AIDS model with perturbation.

Many authors researched how environmental factors with time delays affect the survival and

the extinction of diseases. The long term behavior of delayed model with perturbation have

also been investigated [1, 14, 19, 21]. In 2016, Liu et.al. [11] introduced temporary immunity

as the time lag and investigated the disappearance and persistence of a disease. In [12], the

authors examined a HIV-1 infection model with delay influenced by stochastic perturbation

with non-linear incidence rate. In 2018, Hattaf et.al. [5] probed the delayed stochastic SIR

model by considering the time delay as temporary immunity duration and Liu et.al. [13] probed

the dynamics of stochastic delayed behavior of SVEIR model and obtain the criteria for the

persistence of the infection. Most recently, Zhang et.al. [24] examined the survival of the

disease for a delayed model with perturbation by considering the incidence rate in the form of

specific functional response.

The main objective of the present study is to examine the delayed stochastic HIV model (3)

in order to find thresholds under which we can identify the eradication of the disease, future

occurrence of the disease and furthermore, figure out how noise intensity and delay parameter

affect the behavior of the delayed HIV system (3) with perturbation.

This work follows the following structure. We investigate the presence of positive solution

which is unique and global for the system (3) in section 2. In section 3, we provide sufficient

conditions under which the disease dies off. In section 4, we prove that the system (3) is

ergodic under some conditions by using the appropriate Lyapunov function. In section 5, several

numerical examples are provided to illustrate the analytical results of our model. Section 6

outlines the conclusions of this paper.
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2. POSITIVITY OF UNIQUE GLOBAL SOLUTION

To be plausible, any disease model must be adequately posed in the sense that the number

of individuals in every compartment must remain non-negative. So far biological reasoning,

this section elucidates the positivity of solution of SDDE system (3).

Theorem 2.1. System (3) has a unique and positive solution (Sh(t), Il(t), Ie(t)) globally with

the initial value (Sh(ρ), Il(ρ), Ie(ρ)) for all t ≥ 0 and also (Sh(t), Il(t), Ie(t)) ∈ R3
+ for all t ≥ 0

almost surely.

Proof:

We notice that the right hand side of (3) is locally Lipschitz continuous. Thus there exists a

unique maximum solution (Sh(t), Il(t), Ie(t)) locally on t ∈ [0,υ f ) where υ f is the explosion

time. This solution becomes global, if υ f = ∞ almost surely.

If not, there is a finite period for which the solution (Sh(t), Il(t), Ie(t)) does not reach infinity.

Let p0 > 0 be sufficiently large such that, for each ρ ∈ [−ω,0], (Sh(ρ), I(ρ),E(ρ)) ∈

[
1
p0

,p0]
3.

For every integer p≥ p0, set the stopping time as

υp = inf{t ∈ [−ω,υ f )/Sh(t)∧ Il(t)∧ Ie(t)≤
1
p

or Sh(t)∨ Il(t)∨ Ie(t)≤ p}

It is clear that υp is increasing and υ∞ = lim
p→∞

υp ≤ υ f almost surely.

Now assume that υ f < ∞, then there exists ξ > 0 and 0 < ε ′ < 1

satisfying P(υ∞ ≤ ξ )≥ ε ′.

Thus there exists a p1 ∈ N such that p1 ≥ p0 and

(4) P(υp ≤ ξ )≥ ε
′ for all p≥ p1.

In the meanwhile, for t ≤ υp

d(Sh(t)+ Il(t)+ Ie(t)) = [r0−µnSh(t)−µnIl(t)+η(Il(t)+ηIe(t))− (δ +µn)Ie(t)] dt

≤ [r0− (µn−η)(Sh(t)+ Il(t)+ Ie(t))]dt
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with

Sh(t)+ Il(t)+ Ie(t)≤


r0

µn−η
, when Sh(0)+ Il(0)+ Ie(0)≤

r0

µn−η

Sh(0)+ Il(0)+ Ie(0), when Sh(0)+ Il(0)+ Ie(0)>
r0

µn−η

: K

Define V : R3
+→ R+ as a C2-function by

V (Sh(t), Il(t), Ie(t)) =(Sh(t)−1− lnSh(t))+(Il(t)−1− ln Il(t))+(Ie(t)−1− ln Ie(t))

+

t∫
t−ω

δ Il(u)du

In view of Itô’s formula,

(5)
dV (Sh(t), Il(t), Ie(t)) = LV (Sh(t), Il(t), Ie(t)) dt +λ (Il(t)(Sh(t)−1)

+Sh(t)(Il(t)−1))dB(t)

in which

LV (Sh(t), Il(t), Ie(t)) =

(
1− 1

Sh(t)

)
[r0− (β1Il(t)+β2Ie(t))Sh(t)−µnSh(t)]

+

(
1− 1

Il(t)

)
[(β1Il(t)+β2Ie(t))Sh(t)+η(Il(t)+ Ie(t))

−δ Il(t−ω)−µnIl(t)]+
(

1− 1
Ie(t)

)
[δ Il(t−ω)

−(κ +σ +µn)Ie(t)]+
λ 2

2
S2

h(t)+
λ 2

2
I2
l (t)+δ Il(t)−δ Il(t−ω)

≤ r0 +(β1 +β2 +η +δ )(Sh(t)+ Il(t)+ Ie(t))+(κ +σ +µn)

+
λ 2

2
(I2

l (t)+S2
h(t))

≤ r0 +(β1 +β2 +η +δ )K+(κ +σ +µn)+
λ 2

2
K2 := Ũ

This together with (5) yields

(6) dV (Sh(t), Il(t), Ie(t)) = Ũdt +λ (Il(t)(Sh(t)−1)+Sh(t)(Il(t)−1))dB(t)

The rest of the argument is excluded here as it follows that in [15].
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3. EXTINCTION OF THE DISEASE

Our objective herein is to set a sufficient criteria for the elimination of the disease in a

population. Let us first provide a few lemmas before we get to the main thrust of this section.

Define

R̃d
e =

(β1 +β2)
r0

µn
+

λ 2

2
µn−η

Lemma 3.1. Let (Sh(t), Il(t), Ie(t)) be the solution of (3) with any initial solution

(Sh(0), Il(0), Ie(0)) ∈ R3
+. Then

lim
t→∞

Sh(t)
t

= 0, lim
t→∞

Il(t)
t

= 0, lim
t→∞

Ie(t)
t

= 0 almost surely.

Moreover,

lim
t→∞

1
t

t∫
t−ω

δ Il(u)du = 0, lim
t→∞

1
t

t∫
0

δ Il(u−ω)du = 0 almost surely.

Proof:

Let J (t) = Sh(t)+ Il(t)+ Ie(t)+
t∫

t−ω

δ Il(u)du+δ

t∫
0

Il(u−ω)du.

Set Z(J (t)) = (1+J (t))ς and consequently dZ(J (t)) = L (Z(J (t)))dt

where

L (Z(J (t))) = ς(1+J (t))ς−1 [r0−µnSh(t)−µnIl(t)−µnIe(t)+η(Sh(t)+ Il(t)+ Ie(t))

−ηSh(t)− (κ +σ)Ie(t)+δ Il(t)]+ ς(ς −1)(1+J (t))ς−2
λ

2S2
h(t)I

2
l (t)

≤ ς(1+J (t))ς−1
[

r0

(
1+

µδ

µ−η

)

−(µn−η−δ )

Sh(t)+ Il(t)+ Ie(t)+
t∫

t−ω

δ Il(u)du+δ

t∫
0

Il(u−ω)du


+ς(ς −1)(1+J (t))ς−2

λ
2S2

h(t)I
2
l (t)

≤ ς(1+J (t))ς−2 [r∗+(r∗−a)J (t)− (µn−η−δ − (ς −1)λ 2)J 2(t)
]

where a= µn−η−δ and r∗ = r0

(
1+ µδ

µ−η

)
.

Choose ς > 0 such that µn−η−δ − (ς −1)λ 2 > 0.

Let b= µn−η−δ − (ς −1)λ 2.
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Thus

L (Z(J (t)))≤ ς(1+J (t))ς−2 [−bJ 2(t)+(r∗−a)J (t)+ r∗
]

which yields

(7) d(Z(J (t)))≤ ς(1+J (t))ς−2 [−bJ 2(t)+(r∗−a)J (t)+ r∗
]

dt

For any 0 < h< ςb, we can see that

(8) d(ehtZ(J (t))) = L (ehtZ(J (t)))dt

Consequently,

(9) E
[
ehtZ(J (t))

]
= Z(J (0))+E

t∫
0

L (ehuZ(J (u))) du

where

L (ehtZ(J (t))) ≤ hehtZ(J (t))+ ehtL (Z(J (t)))

≤ heht(1+J (t))ς + eht
ς(1+J (t))ς−2 [−bJ 2(t)+(r∗−a)J (t)+ r∗

]
= ςeht(1+J (t))ς−2

[
h(1+J (t))2

ς
+(−bJ 2(t)+(r∗−a)J (t)+ r∗)

]
= ςeht(1+J (t))ς−2

[
−(b− h

ς
)J 2(t)+(r∗−a+

2h
ς
)J (t)+(r∗+

h

ς
)

]
≤ ςehtM

where M := sup
J (t)∈R+

{
(1+J (t))ς−2

[
−(b− h

ς
)J 2(t)+(r∗−a+ 2h

ς
)J (t)+(r∗+ h

ς
)
]
+1
}

.

In view of (9),

E[ehtZ(J (t))] = E[eht(1+J (t))ς ] ≤ (1+J (0))ς +
ςeht

h
M

That is, E[(1+J (t))ς ] ≤ (1+J (0))ς

eht +
ςM
h

Taking limit superior on both sides,

(10) limsup
t→∞

E[(1+J (t))ς ]≤ ςM
h

:=M0.

This together with the continuity of J (t) gives that there exists M1 > 0 such that

E[(1+J (t))ς ]≤M1 for t ≥ 0.
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It follows from (7) that, we can obtain that for infinitesimal ν > 0, h ∈ N,

E

[
sup

hν≤t≤(h+1)ν
(1+J (t))ς

]
≤ E [(1+J (hν))ς ]+ l1

≤ M1 + l1(11)

where

l1 = E

 sup
hν≤t≤(h+1)ν

∣∣∣∣∣∣
t∫

hν

ς(1+J (u))ς−2 [−bJ 2(u)+(r0−a)J (u)+ r0
]

du

∣∣∣∣∣∣


≤ C1E

 sup
hν≤t≤(h+1)ν

∣∣∣∣∣∣
t∫

hν

(1+J (u))ς du

∣∣∣∣∣∣


≤ C1E

 (h+1)ν∫
hν

(1+J (u))ς du


≤ C1a1E

[
sup

hν≤t≤(h+1)ν
(1+J (u))ς

]
Equation (11) implies

(12) E

[
sup

hν≤t≤(h+1)ν
(1+J (t))ς

]
≤ E [(1+J (hν))ς ]+C1a1E

[
sup

hν≤t≤(h+1)ν
(1+J (u))ς

]

Particularly, choose a1 > 0 such that C1a1 ≤ 1
2 and so

(13) E

[
sup

hν≤t≤(h+1)ν
(1+J (t))ς

]
≤ E [(1+J (hν))ς ]+

1
2

E

[
sup

hν≤t≤(h+1)ν
(1+J (t))ς

]

That is, E

[
sup

hν≤t≤(h+1)ν
(1+J (t))ς

]
≤ 2E [(1+J (hν))ς ]≤ 2M1.

For an arbitrary κ > 0 Chebychev’s inequality yields

P

[
sup

hν≤t≤(h+1)ν
(1+J (t))ς > (hν)1+κ

]
≤

E

[
sup

hν≤t≤(h+1)ν
(1+J (t))ς

]
(hν)1+κ

≤ 2M1

(hν)1+κ for h ∈ N.

According to Borel-Cantelli lemma, for any τ ′ ∈Ω, sup
hν≤t≤(h+1)ν

(1+J (t))ς ≤ (hν)1+κ holds

for finitely many h.
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Therefore there is a K0(τ
′) such that the above holds for almost τ ′ ∈Ω whenever h≥ h0.

Consequently, for almost τ ′ ∈Ω if h≥ h0 and hν ≤ t ≤ (h+1)ν ,

ln(1+J (t))ς

ln t
≤ (1+κ) ln(hν)

ln(hν)
= 1+κ

∴ limsup
t→∞

ln(1+J (t))ς

ln t
≤ 1+κ almost surely.

Allowing κ→ 0, limsup
t→∞

ln(1+J (t))ς

ln t ≤ 1 almost surely.

For ς > 1,

(14) limsup
t→∞

lnJ (t)
ln t

≤ limsup
t→∞

ln(1+J (t))
ln t

≤ 1
ς

almost surely.

i.e. to say, for arbitrary small 0 < ϑ < 1− 1
ς

, there is a constant A = A (τ ′) and set Ω with

P(Ωϑ )≥ 1−ϑ

and for t ≥A , τ ′ ∈Ωϑ , lnJ (t)≤ ( 1
ς
+ϑ) ln t.

This leads to

limsup
t→∞

J (t)
t

= 0 almost surely.

This together with the fact that the solutions are positive implies

lim
t→∞

Sh(t)
t

= 0, lim
t→∞

Il(t)
t

= 0, lim
t→∞

Ie(t)
t

= 0,

lim
t→∞

t∫
t−ω

δ Il(u)du

t
= 0, lim

t→∞

t∫
0

δ Il(u−ω)du

t
= 0 almost surely.

Theorem 3.2. Assume that the system (3) possesses the solution (Sh(t), Il(t), Ie(t)) with any

given initial value (Sh(0), Il(0), Ie(0)) ∈R3
+, I(ρ)≥ 0, E(ρ)≥ 0 for all ρ ∈ [−ω,0]. If R̃d

e < 1,

then

limsup
t→∞

ln(Il(t)+ Ie(t))
t

≤−(1− R̃d
e )(µn−η)< 0 almost surely.

That is, the paths of infective populations will reach zero exponentially with probability one.

Proof: system (3) yields,

d
(

Sh(t)+ Il(t)+ Ie(t)+
t∫

t−ω

δ Il(u)du
)

= [r0−µnSh(t)− (µn−η−δ )Il(t)− (κ +σ +µn−η)Ie(t)−δ Il(t−ω)]dt
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which we can integrate immediately on (0, t) and divide by t to get

Sh(t)+ Il(t)+ Ie(t)+
t∫

t−ω

δ Il(u)du

t
−

Sh(0)+ I(0)+E(0)+δ

0∫
−ω

Il(u)du

t

= r0−
µn

t

t∫
0

Sh(u)du− µn−η−δ

t

t∫
0

Il(u)du

−κ +σ +µn−η

t

t∫
0

Ie(u)du− δ

t

t∫
0

Il(u−ω)du

= r0−µn〈Sh(t)〉− (µn−η−δ )〈Il(t)〉− (κ +σ +µn−η)〈Ie(t)〉

−δ

t

t∫
0

Il(u−ω)du

So,

(15) µn〈Sh(t)〉= r0−(µn−η−δ )〈Il(t)〉−(κ +σ +µn−η)〈Ie(t)〉−
δ

t

t∫
0

Il(u−ω)du−Θ(t)

where

(16) Θ(t) =
Sh(t)+ Il(t)+ Ie(t)+

t∫
t−ω

δ Il(u)du

t
−

Sh(0)+ I(0)+E(0)+δ

0∫
−ω

Il(u)du

t

In terms of Lemma 3.1, as t→ ∞, Θ(t)→ 0 almost surely.

In view of Itô’s formula, the third equation of system (3) renders,

Ie(t)− Ie(0)
t

=−δ

t

t∫
0

Il(u−ω)du− (κ +σ +µn)〈Ie(t)〉

which implies

(17) (κ +σ +µn)〈Ie(t)〉=
δ

t

t∫
0

Il(u−ω)du− Ie(t)−E(0)
t

Notice that lim
t→∞
〈Ie(t)〉= 0 almost surely.

Let V1(Il(t), Ie(t)) = ln(Il(t)+ Ie(t)).

In this regard, Itô’s formula yields,

dV1(Il(t), Ie(t)) =
1

Il(t)+ Ie(t)
[(β1Il(t)+β2Ie(t))S(t)+η(Il(t)+ Ie(t))−δ Il(t−ω)

−µnIl(t)+δ Il(t−ω)− (κ +σ +µn)Ie(t)]dt
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−1
2

1
(Il(t)+ Ie(t))2 λ

2I2
l (t)S

2
h(t)+λ Il(t)Sh(t)dB(t)

which implies

dV1(Il(t), Ie(t)) ≤
1

Il(t)+ Ie(t)
[(β1 +β2)(Il(t)+ Ie(t))S(t)− (µn−η)(Il(t)+ Ie(t))

−(κ +σ)Ie(t)]dt +
λ 2

2
dt +λ Il(t)Sh(t)dB(t)

≤
[
(β1 +β2)Sh(t)−

(
(µn−η)− λ 2

2

)]
dt +λ Il(t)Sh(t)dB(t)

Integrating on (0, t),

V1(Il(t), Ie(t))−V1(Il(0), Ie(0))≤ (β1 +β2)

t∫
0

Sh(u)du−
[
(µn−η)− λ 2

2

]
t

+

t∫
0

λ Il(u)Sh(u)dB(u)

Dividing by t,

(18)
V1(Il(t), Ie(t))−V1(Il(0), Ie(0))

t
≤ (β1 +β2)〈Sh(t)〉−

[
(µn−η)− λ 2

2

]
+

M1(t)
t

where M1(t) = λ

t∫
0

Il(u)Sh(u)dB(u), which is continuous and also local martingale with

M1(0) = 0 and obeys

〈M1,M1〉t =

t∫
0

I2
l (u)S

2
h(u)du

≤
t∫

0

(
r0

µn−η

)2

du≤
(

r0

µn−η

)2

t

Thus lim
t→∞

〈M1,M1〉t
t

< ∞ almost surely.

By the strong law of large numbers, lim
t→∞

M1(t)
t

= 0 almost surely.

This together with (18) renders

V1(Il(t), Ie(t))
t

≤ V1(Il(0), Ie(0))
t

+
β1 +β2

µn
[r0− (µn−η−δ )〈Il(t)〉

−(κ +σ +µn−η)〈Ie(t)〉−
1
t

t∫
0

δ Il(u−ω)du−Θ(t)


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−
[
(µn−η)− λ 2

2

]
+

M (t)
t

i.e.
V1(Il(t), Ie(t))

t
≤ V1(Il(0), Ie(0))

t
+(β1 +β2)

r0

µn
− 1

µnt

t∫
0

δ Il(u−ω)du− Θ(t)
µn

−
[
(µn−η)− λ 2

2

]
+

M (t)
t

which results in

limsup
t→∞

ln(Il(t)+ Ie(t))
t

≤ (β1 +β2)
r0

µn
− (µn−η)+

λ 2

2

≤ −

1−
(β1 +β2)

r0

µn
+

λ 2

2
µn−η

(µn−η)

≤ −(1− R̃d
e )(µn−η)< 0 almost surely.

This completes the proof.

Remark 3.3. As a result of Theorem 3.2, the infective populations extinct over time but, the

susceptible population Sh(t) is stable in distribution in the sense that it stabilized around the

mean value
r0

µn
(see Figure 2).

4. EXISTENCE OF STATIONARY DISTRIBUTION

Here we have examined the the existence of ergodic property, which indicates that the

system (3) has a stationary distribution in a unique way that predicts the future prevalence of

the disease under some criteria related to white noise intensity.

Lemma 4.1. [8] If there exists a bounded domain H ⊂Rq with regular boundary Ω∗ such that

A1: There exists a number A > 0 satisfying
q
∑

i, j=1
ai j(x)ψiψ j ≥A |ψ|2 for x ∈H , ψ ∈ Rq.

A2: There exists a non-negative C2 -function F with the property that L F ≤ 1 for all x ∈

Rq \H ,

then the Markov process X(t) has a unique ergodic stationary distribution ϖ(.), and

P

{
lim

t0→∞

1
t0

∫ t0

0
f (X(t))dt =

∫
Rq

f (x)ϖ(dx) = 1
}
,
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holds for all x ∈ Rq, where f (.) is an integrable function with respect to the measure ϖ .

Define

R̃d
p =

r0β2(
δ q̂+µn−η + λ̄

)
(q̂+κ +µn +σ)

(
µn + λ̄

)
where q̂ = 1+

r0

µn−η
and λ̄ =

λ 2

2

(
r0

µn−η

)2

Theorem 4.2. Assume that R̃d
p > 1. Then for any initial value (Sh(0), Il(0), Ie(0))∈R3

+, system

(3) admits a unique ergodic stationary distribution ϖ(.).

Proof: Based on Lemma 4.1, we will show that conditions (A1)and (A2) hold.

For the system (3) the diffusion matrix is

(19) B(Sh(t), Il(t), Ie(t)) =


λ 2I2

l (t)S
2
h(t) 0 0

0 λ 2I2
l (t)S

2
h(t) 0

0 0 0


For any bounded domain U in R3

+, there exists a constant

B0 = min
(S(t),Il(t),Ie(t))∈Ūσ

(λ 2I2
l (t)S

2
h(t),λ

2I2
l (t)S

2
h(t),0)> 0

such that

(20)
3

∑
i, j=1

ai j(Sh(t), Il(t), Ie(t))ψiψ j = λ
2I2

l (t)S
2
h(t)ψ

2
1 +λ

2I2
l (t)S

2
h(t)ψ

2
2 ≥B0|ψ|2,

for any (Sh(t), Il(t), Ie(t)) ∈ Ūσ ; ψ = (ψ1,ψ2,ψ3) ∈ R3
+.

Thus the condition (A1) of Lemma 4.1 is verified.

For (A2), we set a non-negative C2-function G : R3
+→ R+ by

G (Sh(t), Il(t), Ie(t)) = Q

− lnSh(t)− c1 ln Il(t)− c2 ln Ie(t)+ c1δ

t∫
t−ω

Il(u)du

− lnSh(t)

− ln Il(t)+
t∫

t−ω

δ Il(u)du+
1

m+1
(Sh(t)+ Il(t)+ Ie(t))m+1,

where c1 > 0and c2 > 0 are constants to be evaluated in this sequel.
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Denote

G1(Sh(t), Il(t), Ie(t)) = − lnSh(t)− c1 ln Il(t)− c2 ln Ie(t)+ c1δ

t∫
t−ω

Il(u)du

G2(Sh(t), Il(t), Ie(t)) = − lnSh(t)

G3(Sh(t), Il(t), Ie(t)) = − ln Il(t)+
t∫

t−ω

δ Il(u)du

G4(Sh(t), Il(t), Ie(t)) =
1

m+1
(Sh(t)+ Il(t)+ Ie(t))m+1

Noting that G (Sh(t), Il(t), Ie(t)) is continuous and approaches to ∞ since (Sh(t), Il(t), Ie(t))

reaches to the boundary of R3
+ and the Euclidean norm of (Sh(t), Il(t), Ie(t)) tends to ∞.

Therefore (Sh(0), I(0),E(0)) is a minimum point of G in the interior of R3
+.

Define Ḡ : R3
+→ R+ a C2-function as

Ḡ (Sh(t), Il(t), Ie(t)) = QG1(Sh(t), Il(t), Ie(t))+G2(Sh(t), Il(t), Ie(t))+G3(Sh(t), Il(t), Ie(t))

+G4(Sh(t), Il(t), Ie(t))−G (Sh(0), Il(0), Ie(0))(21)

where (Sh(t), Il(t), Ie(t)) ∈
(

1
n0

,n0

)3

and n0 is sufficiently large integer exceeds 1. Besides,

m> 1 is a constant such that µn−η−mλ̄ > 0.

It can be chosen that Q > 0, a constant is large enough that

(22) −Qψ +π ≤−2

where ψ =
r0β2(

δ q̂+µn + λ̄
)
(q̂+κ +µn +σ)

− (µn + λ̄ )> 0 since R̃d
p > 1,

π = sup
(S(t),Il(t),Ie(t))∈R3

+

{
−1

4
[µn−η−mλ̄ ]Im+1(t)+β1Il(t)+β2Ie(t)+µn +δ q̂+π0

}
Hence L Ḡ = Q L G 1 +L G 2 +L G 3 +L G 4.

In this regard, Itô’s formula yields,

L G 1 = − r0

Sh(t)
+β1Il(t)+β2Ie(t)+µn− c1β1Sh(t)− c1β2

Ie(t)Sh(t)
Il(t)

− c1η− c1η
Ie(t)
Il(t)

+c1
δ Il(t−ω)

Il(t)
+ c1µn− c2

δ Il(t−ω)

Ie(t)
+ c2(κ +σ +µn)+

λ 2

2
I2
l (t)+ c1

λ 2

2
S2

h(t)

= − r0

S(t)
+β1Il(t)+β2Ie(t)+µn− c1β1Sh(t)− c1β2

Ie(t)Sh(t)
Il(t)

− c1η− c1η
Ie(t)
Il(t)
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+c1δ + c1µn− c2
δ Il(t−ω)

Ie(t)
+ c2(κ +σ +µn)+

λ 2

2
I2
l (t)+ c1

λ 2

2
S2

h(t)

which results in

L G 1 = − r0

Sh(t)
+β1Il(t)+β2Ie(t)+µn− c1β1Sh(t)− c1β2

Ie(t)Sh(t)
Il(t)

− c1η− c1η
Ie(t)
Il(t)

+c1δ + c1µn + c2(κ +σ +µn)+
λ 2

2

(
r0

µn−η

)2

+ c1
λ 2

2

(
r0

µn−η

)2

+c2
r0

µn−η
− c2

Il(t)
Ie(t)

With the identity −(a+b+ c)≤−3 3
√

abc,

L G 1 ≤ −3 3
√

r0β2c1c2 +β1Il(t)+β2Ie(t)+µn + c1δ q̂+ c1(µn−η)+ c2(κ +σ +µn)

+λ̄ + c1λ̄ + c2q̂

≤ −3 3
√

r0β2c1c2 +β1Il(t)+β2Ie(t)+µn + λ̄ + c1
[
δ q̂+µn−η + λ̄

]
+c2 [q̂+κ +σ +µn]

Choose c1 and c2 such that

c1
[
δ q̂+µn−η + λ̄

]
=

r0β2(
δ q̂+µn−η + λ̄

)
(q̂+κ +σ +µn)

= c2 [q̂+κ +σ +µn]

which renders

c1 =
r0β2(

δ q̂+µn−η + λ̄
)2
(q̂+κ +µn +σ)

; c2 =
r0δβ2(

δ q̂+µn−η + λ̄
)
(q̂+κ +µn +σ)2

Thus

L G 1 ≤ −

[
r0β2(

δ q̂+µn−η + λ̄
)
(q̂+κ +σ +µn)

− (µn + λ̄ )

]
+β1Il(t)+β2Ie(t)

≤ −(µn + λ̄ )

[
r0β2(

δ q̂+µn−η + λ̄
)
(q̂+κ +σ +µn)(µn + λ̄ )

−1

]
+β1Il(t)+β2Ie(t)

≤ −ψ +β1Il(t)+β2Ie(t)(23)

From G2,

L G 2 = − 1
Sh(t)

[r0− (β1Il(t)+β2Ie(t))Sh(t)−µnSh(t)]+
1
2

λ
2I2

l (t)
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≤ − r0

Sh(t)
+β1Il(t)+β2Ie(t)+µn +

1
2

λ
2
(

r0

µn−η

)2

≤ − r0

Sh(t)
+β1Il(t)+β2Ie(t)+µn +

1
2

λ̄(24)

Applying Itó’s formula to G3,

L G 3 = −β1Sh(t)−β2
Ie(t)Sh(t)

Il(t)
−η−η

Ie(t)
Il(t)

+
δ Il(t−ω)

Il(t)
+µn +

1
2

λ
2S2

h(t)

+δ Il(t)−δ Il(t−ω)

≤ −β1Sh(t)−β2
Ie(t)Sh(t)

Il(t)
−η−η

Ie(t)
Il(t)

+δ
r0

µn−η
+µn +

λ 2

2

(
r0

µn−η

)2

≤ −β1Sh(t)−β2
Ie(t)Sh(t)

Il(t)
−η−η

Ie(t)
Il(t)

+δ q̂+µn + λ̄(25)

and

L G 4 = (Sh(t)+ Il(t)+ Ie(t))m{r0− (β1Il(t)+β2Ie(t))Sh(t)−µnSh(t)+(β1Il(t)

+β2Ie(t))Sh(t)+η(Il(t)+ Ie(t))−δ Il(t−ω)−µnIl(t)+δ Il(t−ω)

−(κ +σ +µn)Ie(t)}+
1
2
m(Sh(t)+ Il(t)+ Ie(t))m−1λ

2I2
l (t)S

2
h(t)

+
1
2
m(Sh(t)+ Il(t)+ Ie(t))m−1λ

2I2
l (t)S

2
h(t)

≤ (Sh(t)+ Il(t)+ Ie(t))m [r0−µnSh(t)+ηIl(t)+ηIe(t)−µnIl(t)− (κ +σ +µn)Ie(t)]

+m(S(t)+ Il(t)+ Ie(t))m−1λ
2I2

l (t)S
2
h(t)

≤ r0(Sh(t)+ Il(t)+ Ie(t))m− (µn−η)(Sh(t)+ Il(t)+ Ie(t))m+1

+m
λ 2

2

(
r0

µn−η

)2

(Sh(t)+ Il(t)+ Ie(t))m+1

= r0(Sh(t)+ Il(t)+ Ie(t))m− (Sh(t)+ Il(t)+ Ie(t))m+1 [(µn−η)−mλ̄
]

≤ π0−
1
2
[
(µn−η)−mλ̄

]
(Sh(t)+ Il(t)+ Ie(t))m+1

≤ π0−
1
2
[
(µn−η)−mλ̄

]
(Sm+1

h (t)+ Im+1
l (t)+ Im+1

e (t))(26)

where

(27)

π0 = sup
(S(t),Il(t),Ie(t))∈R3

+

{
r0(Sh(t)+ Il(t)+ Ie(t))m−

1
2
[µn−η−mλ̄ ](Sh(t)+ Il(t)+ Ie(t))m+1

}
< ∞
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In view of (23)-(27)

L Ḡ (Sh(t), Il(t), Ie(t))

= −Qψ +Q(β1Il(t)+β2Ie(t))−
r0

Sh(t)
+β1Il(t)+β2Ie(t)+µn + λ̄

−β1Sh(t)−β2
Ie(t)Sh(t)

Il(t)
−η−η

Ie(t)
Il(t)

+δ q̂+µn + λ̄

+π0−
1
2
[
(µn−η)−mλ̄

]
(Sm+1

h (t)+ Im+1
l (t)+ Im+1

e (t))

≤ −Qψ +Q(β1Il(t)+β2Ie(t))−
r0

Sh(t)
+β1Il(t)+β2Ie(t)

−β1Sh(t)−β2
Ie(t)Sh(t)

Il(t)
−η−η

Ie(t)
Il(t)

+δ q̂+2(µn + λ̄ )

+π0−
1
4
[
(µn−η)−mλ̄

]
(Sm+1

h (t)+ Im+1
l (t)+ Im+1

e (t))

−1
4
[
(µn−η)−mλ̄

]
(Im+1

l (t))

For ε > 0, we can define a set

(28) D =

{
(Sh(t), Il(t), Ie(t)) ∈ R3

+|ε ≤ Sh(t)≤
1
ε
, ε

2 ≤ Il(t)≤
1
ε2 , ε ≤ Ie(t)≤

1
ε

}
which is closed and bounded.

In the set R3
+ \D , we select ε sufficiently small satisfying

−r0

ε
+π1 ≤ −1

−Qψ +Qβ1ε +β1ε +π2 ≤ −1

Qβ1ε
2 +β1ε

2− 1
4
[
(µn−η)−mλ̄

]
ε
m+1 +π3 ≤ −1

−1
4
[
(µn−η)−mλ̄

] 1
εm+1 +π4 ≤ −1

−1
2
[
(µn−η)−mλ̄

] 1
ε2m+2 +π5 ≤ −1

−1
4
[
(µn−η)−mλ̄

] 1
εm+1 +π6 ≤ −1

where

π1 = −1
4
[µn−η−mλ̄ ]Im+1

l (t)+Q(β1Il(t)+β2Ie(t))+β1Il(t)+β2Ie(t)+2µn +2λ̄

+δ q̂+π0−
1
4
[µn−η−mλ̄ ](Sm+1

h (t)+ Im+1
l (t)+ Im+1

e (t))
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π2 = −1
4
[µn−η−mλ̄ ]Im+1

l (t)+Qβ2Ie(t)+β2Ie(t)+2µn +2λ̄ +δ q̂+π0

−1
4
[µn−η−mλ̄ ](Sm+1

h (t)+ Im+1
l (t)+ Im+1

e (t))

π3 = −1
4
[µn−η−mλ̄ ]Im+1

l (t)+Qβ2Ie(t)+β2Ie(t)+2µn +2λ̄

+δ q̂+π0−
1
4
[µn−η−mλ̄ ](Im+1

l (t)+ Im+1
e (t))

π4 = −1
4
[µn−η−mλ̄ ]Im+1

l (t)+Q(β1Il(t)+β2Ie(t))+β1Il(t)+β2Ie(t)+2µn +2λ̄

+δ q̂+π0−
1
4
[µn−η−mλ̄ ](Im+1

l (t)+ Im+1
e (t))

π5 = Q(β1Il(t)+β2Ie(t))+β1Il(t)+β2Ie(t)+2µn +2λ̄ +δ q̂+π0

−1
4
[µn−η−mλ̄ ](Sm+1

h (t)+ Im+1
e (t))

π6 = −1
4
[µn−η−mλ̄ ]Im+1

l (t)+Q(β1Il(t)+β2Ie(t))+β1Il(t)+β2Ie(t)+2µn +2λ̄

+δ q̂+π0−
1
4
[µn−η−mλ̄ ](Sm+1

h (t)+ Im+1
l (t))

In the set R3
+ \D , consider

D1 =
{
(Sh(t), Il(t), Ie(t)) ∈ R3

+|0 < Sh(t)< ε
}

D2 =
{
(Sh(t), Il(t), Ie(t)) ∈ R3

+|0 < Il(t)< ε
}

D3 =
{
(Sh(t), Il(t), Ie(t)) ∈ R3

+|Sh(t)≥ ε, 0 < Il(t)< ε2}
D4 =

{
(Sh(t), Il(t), Ie(t)) ∈ R3

+|Sh(t)>
1
ε

}
D5 =

{
(Sh(t), Il(t), Ie(t)) ∈ R3

+|Il(t)>
1
ε2

}
D6 =

{
(Sh(t), Il(t), Ie(t)) ∈ R3

+|Ie(t)>
1
ε

}
Obviously, R3

+ \D =
6⋃

i=1
Di.

We will prove that, L Ḡ (Sh(t), Il(t), Ie(t))≤−1 for any (Sh(t), Il(t), Ie(t)) ∈ R3
+ \D ,

which is equivalent to proving it on the above six domains.

Case (i): For any (Sh(t), Il(t), Ie(t)) ∈D1, we have

L Ḡ (S(t), Il(t), Ie(t))

≤ Q(β1Il(t)+β2Ie(t))−
r0

Sh(t)
+β1Il(t)+β2Ie(t)
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+δ q̂+2(µn + λ̄ )+π0−
1
4
[
µn−η−mλ̄

]
(Sm+1

h (t)+ Im+1
l (t)+ Im+1

e (t))

−1
4
[
µn−η−mλ̄

]
(Im+1

l (t))

≤ −r0

ε
+π1

≤ −1(29)

Case (ii): For any (Sh(t), Il(t), Ie(t)) ∈D2, we have

L Ḡ (Sh(t), Il(t), Ie(t)) ≤ −Qψ +Q(β1Il(t)+β2Ie(t))−
r0

Sh(t)
+β1Il(t)+β2Ie(t)

+δ q̂+2(µn + λ̄ )+π0

−1
4
[
(µn−η)−mλ̄

]
(Sm+1

h (t)+ Im+1
l (t)+ Im+1

e (t))

−1
4
[
(µn−η)−mλ̄

]
(Im+1

l (t))

≤ −Qψ +Qβ1ε +β1ε +π2

≤ −1(30)

Case (iii): For any (S(t), Il(t), Ie(t)) ∈D3, we obtain

L Ḡ (Sh(t), Il(t), Ie(t)) ≤ Qβ1Il(t)−
r0

Sh(t)
+β1Il(t)+β2Ie(t)

+δ q̂+2(µn + λ̄ )+π0−
1
4
[
(µn−η)−mλ̄

]
Sm+1

h (t)+Qβ2Ie(t)

−1
4
[
(µn−η)−mλ̄

]
(Im+1

l (t))

−1
4
[
(µn−η)−mλ̄

]
(Im+1

l (t)+ Im+1
e (t))

≤ Qβ1ε
2 +β1ε

2− 1
4
[
(µn−η)−mλ̄

]
ε
m+1 +π3

≤ −1(31)

Case (iv): For any (Sh(t), Il(t), Ie(t)) ∈D4, we obtain

L Ḡ (Sh(t), Il(t), Ie(t)) ≤ Qβ1Il(t)−
r0

Sh(t)
+β1Il(t)+β2Ie(t)

+δ q̂+2(µn + λ̄ )+π0−
1
4
[
(µn−η)−mλ̄

]
Sm+1

h (t)+Qβ2Ie(t)

−1
4
[
(µn−η)−mλ̄

]
(Im+1

l (t))
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−1
4
[
(µn−η)−mλ̄

]
(Im+1

l (t)+ Im+1
e (t))

≤ −1
4
[
(µn−η)−mλ̄

] 1
εm+1 +π4

≤ −1(32)

Case (v): For any (S(t), Il(t), Ie(t)) ∈D5, we obtain

L Ḡ (Sh(t), Il(t), Ie(t)) ≤ Qβ1Il(t)+Qβ2Ie(t)−
r0

Sh(t)
+β1Il(t)+β2Ie(t)

+δ q̂+2(µn + λ̄ )+π0−
1
4
[
(µn−η)−mλ̄

]
Im+1
l (t)

−1
4
[
(µn−η)−mλ̄

]
(Im+1

l (t))

−1
4
[
(µn−η)−mλ̄

]
(Sm+1

h (t)+ Im+1
e (t))

≤ −1
2
[
(µn−η)−mλ̄

] 1
ε2m+2 +π5

≤ −1(33)

Case (vi): For any (Sh(t), Il(t), Ie(t)) ∈D6, we have

L Ḡ (Sh(t), Il(t), Ie(t)) ≤ −Qψ +Qβ1Il(t)+Qβ2Ie(t)−
r0

Sh(t)
+β1Il(t)+β2Ie(t)

+δ q̂+2(µn + λ̄ )+π0−
1
4
[
(µn−η)−mλ̄

]
Im+1
e (t)

−1
4
[
(µn−η)−mλ̄

]
(Im+1

l (t))

−1
4
[
(µn−η)−mλ̄

]
(Sm+1

h (t)+ Im+1
l (t))

≤ −1
4
[
(µn−η)−mλ̄

] 1
εm+1 +π6

≤ −1(34)

Obviously from(29)-(34), we obtain that for sufficiently small ε , L Ḡ (Sh(t), Il(t), Ie(t)) ≤ −1

for any (Sh(t), Il(t), Ie(t)) ∈ R3
+ \D .

As a consequence, the condition (A2) of Lemma 4.1 holds. In an application of Lemma 4.1,

the solution of system (3) is ergodic and the system (3) admits a stationary distribution ϖ(.) in

a unique way, which completes the proof.
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Remark 4.3. In view of Theorem 4.2, it is proved that if R̃d
p > 1, the SDDE system (3) is

ergodic. We also determined that the persistence of the infective populations depend on the

stochastic fluctuation intensity of the noise λ , from of the expression of R̃d
p.

TABLE 1. Description of Parameters

Parameter Description Value Data Source

r0 Recruitment rate 0.55/year [7]

β1 Horizontal transmission rate of Il(t) variable

β2 Horizontal transmission rate of Ie(t) variable

η Rate of vertical transmission 0.05/year [7]

δ Progression rate from Il(t) to Ie(t) variable

κ Proportion of Ie(t) who enter into T (t) 0.35/year [7]

σ Progression rate of A(t) from Ie(t) 0.15/year [7]

µn Natural death rate variable

5. NUMERICAL SIMULATIONS

Numerical simulations are required to study the behavior of systems which cannot able to

solve analytically.

In this section, we provide the numerical simulations to support the theoretical predictions

through Euler Maruyama method [6] for SDDE system (3) for which the discretization is

xm+1 = xm +[r0− (β1ym +β2zm)xm−µnxm]h−λxmym
√

h ξ1,m

ym+1 = ym +[(β1ym +β2zm)xm +η(ym + zm)−δym− j−µnym]h+λxmym
√

h ξ1,m

zm+1 = zm +[δym− j− (κ +σ +µn)zm]h

where (x,y,z) = (Sh(t), Il(t), Ie(t)), ξ1,m represents the Gaussian random variable which follows

the standard normal distribution, ω = jh, j ∈ Z and h = 0.1. The parameter values are as Table

1.
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(a) (b)

(c) (d)

FIGURE 1. The dynamical behavior of DDE model (1) and SDDE model (3)

with the phase plane portrait. The parameter values are β1 = 0.0001; β2 =

0.006; δ = 0.002; with ω = 11 and λ = 0.2. In both DDE and SDDE models

the solutions approaches the disease free equilibrium E0 = (2.75,0,0).

If we choose β1 = 0.0001; β2 = 0.006; δ = 0.002; µ = 0.2; ω = 11;λ = 0.2, R̃d
e = 0.2452<

1. This shows that the hypothesis in Theorem 3.2 are hold. Figure 1 illustrates the analogy be-

tween the DDE model (1) and the SDDE model (3), as demonstrated by the conclusion reached

in Theorem (3.2), i.e., the disease disappears with probability 1. In both cases, the sample paths

of solutions are converge to the infection-free equilibrium E0 = (2.75,0,0) of deterministic
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model [22]. If we set β1 = 0.0001; β2 = 0.006; δ = 0.002; µ = 0.2; ω = 11;λ = 0.1. The

eradication of the infection is revealed in Figure 2. Direct calculation yields R̃d
e = 0.1452 < 1.

Thus the parameter values fulfilled the hypothesis prescribed in Theorem 3.2 which leads to the

conclusion that the disease dies out exponentially. To show the impact of white noise on SDDE

model (3), we increase the intensity of the noise to λ = 0.2. We can see that the infection goes

to zero exponentially very fast when the intensity is small.

(a) (b)

(c) (d)

FIGURE 2. Plots of solutions of SDDE model (3) for different noise intensities

λ = 0.1 and λ = 0.2 with ω = 11, β1 = 0.0001;β2 = 0.006; δ = 0.002.
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Next, let us choose β1 = 0.25; β2 = 2.3; δ = 0.2; µ = 0.2; ω = 11, λ = 0.01. We obtain

R̃d
p = 1.0809 > 1. Thus the hypothesis of Theorem 4.2 holds and thus we can conclude that

the infection remains in the population and so the system (3) is ergodic (see Figure 3). If we

increase the noise intensity to λ = 0.02, then R̃d
p = 1.0605> 1. This implies that still the SDDE

model (3) has a stationary distribution however the magnitude of fluctuations increase. Further,

it can be noted that the solution of SDDE model (3) swing around the solution of DDE Model

(1) (see Figure 4). The density functions of the state variables of the model (3) are presented in

Figure 4.

(a) (b)

(c) (d)

FIGURE 3. Plots of solution of SDDE model(3) with λ = 0.01 and λ = 0.02.

When R̃d
p > 1, the disease remains and the model admits a stationary distribu-

tion. Notice that the magnitude of the oscillations become stronger when the

noise intensity increases.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4. Existence of stationary distribution for β1 = 0.25; β2 = 2.3; δ =

0.2; ω = 11, λ = 0.02 with R̃d
p > 1.
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6. CONCLUSION

In this paper, we have developed a delayed HIV/AIDS model with stochastic perturbation

to examine the threshold behavior. We showed that the existence and uniqueness of positive

global solution of the system (3) and the ergodic stationary distribution are responsible for

how long the disease lasts.. In our study, We incorporate the stochastic perturbation into the

horizontal transmission parameter β1 from Sh(t) to Il(t) to investigate the dynamics of HIV

infection. With regard to the threshold value R̃d
e , we set up certain necessary criteria that ensure

the extinction of the disease. It is proved that if R̃d
e < 1 then the population no longer suffers

from the disease. We demonstrated that ergodic stationary distribution exists in a unique way

for the system (3) under the threshold value R̃d
p > 1 by using suitable Lyapunov functions. The

dynamics of SDDE model (3) are significantly impacted by the accumulation of environmental

perturbations and time-based delay. This also affects how long the disease may last and if it will

eventually become extinct.
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