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Abstract. While the current state of lung disease detection using AI relies heavily on specific data types, limiting its 

real-world applicability, this work explores leveraging Transfer Learning (TL) with VicReg for improved performance. 

By using a public Chest X-ray dataset, the proposed model employs a ResNet50 model archi tecture that seamlessly 

integrates transfer learning and fine-tuned self-supervised Convolutional Neural Networks (CNNs). Can Artificial 

Intelligence (AI) for lung disease detection be improved to work across different types of medical images? This study 

addresses this challenge by proposing DOCTOR, a reusable AI model that leverages transfer learning and fine-tuned 

CNNs. DOCTOR is trained on chest X-rays but designed to be adaptable to other radiology images like CT scans. 

The results obtained from this proposed model are remarkable, achieving an impressive accuracy rate of 97.37%, 

sensitivity of 96.30, specificity of 97.30% each, and precision of 96.30%. These exceptional performance metrics 

demonstrate the proposed model’s exceptional competence and efficacy in accurately detecting lung dis- eases. The 

trained CNN model utilized a ResNet50 backbone pre-trained using VicReg for robust lung disease detection across 

various modalities, which is referred to in this paper as DOCTOR. 

Keywords: lung disease; artificial intelligence; transfer learning; data augmentation; deep learning. 

2020 AMS Subject Classification: 68T07, 68T10. 



2 

TANUBRATA, ELWIREHARDJA, PARDAMEAN 

1. INTRODUCTION 

The timely identification of pulmonary ailments is imperative for efficient intervention and 

reducing the impact of the disease. Early diagnosis of Chronic Obstructive Pulmonary Disease 

(COPD), for instance, can slow lung function decline by up to 50%, while early intervention in 

pulmonary fibrosis can improve quality of life and extend lifespan by several years. Nev- ertheless, 

achieving precise and prompt diagnosis frequently proves to be a hurdle, especially in locations 

with limited resources [1]. Chest radiographs, which are easily accessible and cost-effective, play 

a crucial part in the preliminary diagnosis. However, the interpretation of minor abnormalities 

within these images necessitates substantial proficiency and is susceptible to human fallibility. 

While current strategies for detecting lung diseases, such as the utilization of chest X-rays, play 

a pivotal role, they are hindered by inherent limitations. Specifically, their precision dimin- ishes 

during the initial stages, resulting in the misinterpretation of harmless shadows as malig- nancies. 

Additionally, these strategies heavily rely on subjective human interpretation, which introduces 

inconsistency and disparities among healthcare professionals. Moreover, radiolo- gists are 

burdened with an immense workload, which may potentially impact the promptness and accuracy 

of their diagnoses. These limitations underscore the pressing necessity for more dependable and 

objective approaches to detect lung diseases, particularly in their early phases. Even so, Artificial 

Intelligence (AI) has emerged as a formidable instrument in tackling the aforementioned 

challenges. Notably, deep learning methodologies, specifically Convolutional Neural Networks 

(CNNs), have exhibited noteworthy aptitudes in the realm of medical image analysis. The capacity 

of CNNs to discern intricate characteristics and discriminate subtle pat- terns presents a compelling 

prospect for enhancing the precision and efficiency of lung disease detection. 

Moreover, acquiring high quantities of labeled chest X-rays to train AI models can present 

certain difficulties; however, the utilization of Self-Supervised Learning (SSL) uncovers a mul- 

titude of possibilities. Due to its robustness in handling data imbalance, SSL is often utilized for 

Transfer-Learning (TL) [3]. The motivation behind the creation of the proposed model, in this case, 

DOCTOR, is to leverage the complementary information gleaned from multimodal data for more 

accurate disease identification and improved decision-making. Additionally, it serves as a platform 

for testing and advancing the boundaries of current knowledge in Artificial Intel- ligence (AI) 

within the healthcare domain. By effectively scrutinizing the immense abundance of unlabeled 

images, SSL algorithms can progressively enhance their capabilities, even in the absence of 
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explicit labels [3]. This presents opportunities for extraordinary advancements, such as enhancing 

the accuracy of diagnostic procedures for lung diseases in their early stages, en- riching the 

capabilities of existing AI tools employed in chest X-ray analysis, and even paving the way for 

innovative applications like the monitoring of disease progression and the provi- sion of 

personalized medicine. By harnessing the knowledge embedded within unlabeled data, SSL 

provides a future for the improvement of lung disease diagnosis and, ultimately, the care provided 

to patients. 

 

FIGURE 1. Eight Common Thoracic Diseases [2] 

 

2. RELATED WORKS 

Recent advancements in Artificial Intelligence (AI) have brought about a new era in the di- 

agnosis and prognosis of pulmonary diseases. In the early studies, Wang et al [2] conducted a 

significant study that employed a CNN to categorize chest X-rays into three distinct groups (see 

Figure 1): normal pneumonia, and tuberculosis where its model achieved an accuracy of 92.6% 

based on a dataset comprising 1,387 chest X-rays. In the domain of tuberculosis, recent 

advancements in deep learning for tuberculosis screening, as reviewed by Santosh et al [4], have 

demonstrated significant progress in the automated analysis of chest X-ray images, leading to 

enhanced precision in disease detection. Likewise, Chen et al [5] proved the capability of deep 

learning models, particularly TransUNet, which incorporates channel attention mechanism, 

thereby enhancing the diagnostic process for lung cancer. In the context of advanced diagnostic 

methods, Serte and Demirel [6] introduced an innovative AI system designed to enhance the 
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accuracy of COVID-19 detection through the analysis of 3D CT Scan images. This trend extends 

to Chronic Obstructive Pulmonary Disease (COPD), where Kumar et al [7] developed a novel 

multimodal framework that integrates CT scan images and lung sound samples for early diagnosis 

and accurate prediction of COPD. As the role of AI in pulmonary medicine continues to grow, 

Jalaber et al [8] highlight the essential role of chest CT examinations in COVID-19 patient triage 

and underscore the potential of AI in assisting radiologists with diagnosis and prognosis evaluation. 

Collectively, these endeavors demonstrate the immense potential of AI in revolutionizing the 

management of pulmonary diseases, spanning for early detection and precise diagnosis to 

personalized risk assessment and targeted interventions. 

AI is rapidly revolutionizing the field of lung disease diagnosis, as evidenced by the remark- able 

findings of Wang et al [2] in their study, where they achieved an exceptional F1 score of 92.5% in 

the detection of pneumonia. Similarly, recent advancements in deep learning for tuberculosis 

screening have shown significant progress, with studies utilizing CNNs to analyze chest X-ray 

images, leading to promising methods and challenges in the accurate detection of TB-related 

abnormalities. Furthermore, Chen et al [4] demonstrated the effectiveness of AI in segmenting 

lung nodules for the early detection of lung cancer, with TransUNet achieving a DICE index of up 

to 0.887, indicating a high level of accuracy in the analysis. These studies collectively highlight 

the tremendous potential of AI in classifying chest X-rays, detecting early-stage lung cancer, and 

guiding personalized treatment. The integration of AI into the field of lung disease diagnosis holds 

great promise for expediting the diagnostic process, enhancing the detection of abnormalities, and 

ultimately improving patient outcomes. This trend encompasses a wide range of lung diseases, 

including pneumonia, tuberculosis, lung cancer, and COVID-19. 

The ongoing exploration of deep learning frameworks, explainable AI techniques, and the 

integration of multimodal data underscores the immense promise of AI in revolutionizing lung 

disease diagnosis and enhancing patient outcomes. Additionally, the usage of DL models trained 

using SSL for TL purposes can bring out significantly better results in cases where the used 

dataset is small or imbalanced [3]. Observing this wave of innovation, the authors feel compelled 

to contribute to this burgeoning field by developing a unique model. The di- verse challenges and 

ever-evolving nature of AI in lung disease detection necessitate ongoing creativity and 

determination. 
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3. METHODOLOGY 

3.1. Dataset Discussion. This study utilized two publicly accessible datasets of chest X-ray 

images, namely the NIH Chest X-ray dataset (CXR-8) [9] and the Open-i dataset [10] (as detailed 

in Table 1). The CXR-8 dataset encompasses an extensive collection of more than 112,000 chest 

X-ray images derived from over 30,000 distinct patients, exhibiting a diverse range of lung diseases 

and abnor- malities. Similarly, the Open-i dataset comprises nearly 2,000 chest X-ray images from 

unique patients. Both datasets are meticulously annotated to encompass various clinical 

observations, encompassing the presence, type, and severity of lung diseases. For training, a 

portion of the CXR-8 dataset was carefully chosen for the purpose of training, with the distribution 

of 80% for training, 10% for validation, and 10% for testing. On the other hand, the Open-i dataset 

was employed as the validation dataset. The training dataset was meticulously curated and balanced 

to ensure its representativeness of the real-world population as well as to guarantee an adequate 

number of images for each lung disease and abnormality. 

 

TABLE 1. Data distribution for each class in the Open-i (Testing Dataset) [9] and CXR-8 Dataset 

(Training Dataset) [10] 

 

Directory Open-i CXR-8 

Atelectasis 315 5,834 

Cardiomegaly 345 9,298 

Effusion 153 7,820 

Infiltration 60 16,047 

Mass 15 12,492 

Nodule 106 25,259 

Pneumonia 40 28,697 

Pneumothorax 22 1,933 

Normal 1,379 34,436 
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3.2. DOCTOR. The capacity of DOCTOR to analyze various types of data and excel in the 

detection of lung diseases is rooted in its innovative integration of state-of-the-art artificial in- 

telligence techniques. At the core of this integration lies a pre-trained ResNet50 architecture. This 

modified ResNet backbone serves as the fundamental basis for extracting meaningful rep- 

resentations from a wide range of data modalities. To further enhance the learning process of 

DOCTOR, the incorporation of the VicReg algorithm plays a crucial role. VicReg leverages a 

regularization approach based on variance, invariance, and covariance, which guides the model 

towards the discovery of robust and informative features [11]. This approach facilitates a com- 

prehensive understanding of patterns in lung scans, thereby enabling DOCTOR to discern subtle 

variations associated with different lung diseases. The combined strength of pre-trained feature 

extraction and the regularization provided by VicReg enables DOCTOR to surpass the limita- tions 

of models that rely on a single modality, resulting in superior accuracy and generalizability in the 

detection of lung diseases. 

3.3. Training Configurations. The configuration of the model underwent a series of iterative 

experiments to optimize its performance. Initially, the trials focused on selectively freezing certain 

layers for transfer learning. However, in the final configuration, all layers within the architecture 

are unfrozen, allowing for a thorough fine-tuning process with a learning rate of 

0.001 and momentum of 0.9 for the task of lung disease detection. In Addition, a total of 100 

epochs were implemented in DOCTOR for its training and testing setup. DOCTOR also utilizes 

the VicReg algorithm, which is a self-supervised learning approach that promotes the development 

of robust feature representations by imposing constraints on variance, invariance, and covariance 

on the learned embeddings. From a mathematical perspective, VicReg mini- mizes a loss function 

that consists of a contrastive term for aligning positive pairs, as well as two regularization terms: 

one that ensures each embedding dimension has a variance above 0.1 and another that decorrelated 

embedding pairs to reduce redundancy [11] (as shown in Figure 2 and Figure 3). The combination 

of comprehensive fine-tuning and the regularization strategies employed by VicReg facilitates the 

extraction of informative and discriminative features to classify lung diseases. 

 



7 

SELF-SUPERVISED PRE-TRAINING IN LUNG DISEASE CLASSIFICATION  

— × 

 

FIGURE 2. VicReg Algorithm: Variance-Invariance-Covariance Regularization for Self-

Supervised Learning [11] 

 

FIGURE 3. VicReg Algorithm Formula [11] 

4. RESULTS 

4.1. Model Evaluation. The performance of the fine-tuned models were evaluated on the 

testing set, and metrics such as precision (P), recall (R), and F1-Score (F) were employed. These 

metrics can be calculated by leveraging the quantities of True Positive (TP), False Positive (FP), and 

False Negative (FN), as illustrated in the following equation: 

 

(1) Accuracy = 
TP + TN

 
        TP + TN + FP + FN 

(2) Sensitivity(Recall) = 
TP

 
       TP + FN 

(3) Speci f icity = 
TN

 
TN + FP 

(4) Precision = 
TP

 
TP + FP 

(5) 
F1 Score = 2 

Precision × Recall 

Precision + Recall 
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The evaluation of the distinct capabilities possessed by each class was conducted through the 

utilization of a Confusion Matrix, which is a statistical tool that quantifies the accuracy of a 

classification model. This matrix provides a comprehensive summary of the model’s per- 

formance by comparing the actual and predicted class labels. The Confusion Matrix offers valuable 

insights into the true positives, true negatives, false positives, and false negatives, al- lowing for a 

thorough analysis of the model’s performance. Furthermore, the assessment of the model’s 

performance is also facilitated by the Receiver Operating Characteristics (ROC) curve. This 

graphical representation showcases the trade-off between the true positive rate and the false 

positive rate at various classification thresholds. The ROC curve provides a visual interpretation 

of the model’s performance and helps in determining the optimal threshold for classification. In 

this study, the Confusion Matrix can be observed in Figure 5, while Figure 6 depicts the 

presentation of the ROC curve, which serves as an important tool for evaluating the performance of 

the DOCTOR model. 

 

FIGURE 4. The Confusion Matrix of DOCTOR on the testing set using the Open-i Dataset [9] 

As seen above in Figure 4, The depiction of the confusion matrix denotes the efficacy of 

DOCTOR in identifying various ailments of the lungs. DOCTOR exhibits a consistently high level 

of precision, as the majority of diseases showcase a precision value exceeding 0.9. The most 
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noteworthy precision value is observed for the category labeled as “Normal” at 0.979, closely 

followed by “Atelectasis” at 0.978 and “Cardiomegaly” at 0.991. Conversely, the cat- egory 

labeled “Mass” exhibits the lowest precision value at 0.667 meaning it is still not able to 

confidently diagnose the mass disease. The overall accuracy of the model is quantified as 0.9737. 

 

FIGURE 5. DOCTOR’s ROC performance on Open-i Dataset with Pre-trained Customized CNN 

On the other hand, DOCTOR’s ROC Curve in Figure 5 indicates the performance of DOC- TOR 

at all classification thresholds. It plots the True Positive Rate (TPR) on the y-axis and the False 

Positive Rate (FPR) on the x-axis. The TPR is the proportion of positive cases that are correctly 

classified, and the FPR is the proportion of negative cases that are incorrectly classi- fied as positive. 

The area under the ROC curve (AUC) is a measure of the overall performance of a model. An AUC 

of 1 represents perfect classification, while an AUC of 0.5 represents random guessing [12]. The 

AUC of DOCTOR attains a desirable value of 0.98, signifying its exceptional performance in 

correctly discerning between lung disease cases and normal cases. This remarkable AUC value is 

a result of DOCTOR’s ability to identify 6 out of 8 diseases (Atelectasis, Cardiomegaly, Effusion, 

Infiltrate, Pneumonia, Pneumothorax) with greater preci- sion. Such an achievement underscores 

the proficiency of DOCTOR in differentiating between various pathological conditions in the lungs 

and cases that are considered normal, thereby con- solidating its reputation as an effective 
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diagnostic tool. 

 

4.2. Loss Plots. Loss Plots serve as a valuable tool for researchers, enabling them to compare 

and analyze the loss landscapes of multiple models. Moreover, these plots also allow for the 

comparison of different loss landscape projections, providing a comprehensive understanding of 

the various models under consideration. By utilizing Loss Plots, researchers can effectively 

construct more accurate loss projections, thereby enhancing their ability to gain valuable in- sights 

into the impact of training parameters and architectural choices on these projections [13]. 

 

FIGURE 6. The training and validation loss plots of the three models: (A) loss plots that belong to 

three different types of models (ResNet50, DOCTOR, and VGG16) with no layers frozen and 

(B) loss plots belonging to three models but with all layers frozen. 
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This particular section of the research paper delves into a comprehensive and thorough anal- ysis 

of the loss plots of three different models (ResNet50, VGG16, and DOCTOR) that can be observed 

within these loss plots. These trajectories, in turn, offer invaluable insights and pro- vide a deeper 

understanding of the training process employed by the three models. In the initial configuration, the 

models are allowed to adapt to all the layers, leading to a gradual decrease in both training and 

validation losses. This gradual decrease in losses demonstrates a consistent training and steady 

learning process. Furthermore, it is worth noting that the two model losses (ResNet50 and the 

VGG16) eventually stabilize at a relatively low value at around 0.7, while DOCTOR stabilizes 

below 0.5. This indicates that DOCTOR’s trend of stabilization at a low loss value indicates 

successful learning, as it suggests that the model has not been subject to overfitting during the 

training process. This finding highlights the efficacy and effectiveness of the training process for 

the three models. The meticulous analysis of these loss plots con- tributes significantly to the 

understanding of the training process and its impact on the model’s performance. 

On the contrary, the second configuration encompasses the act of freezing every layer of the 

three models. At the beginning stage, the configuration’s loss values exhibit a consistent de- crease. 

Nevertheless, the validation loss swiftly deviates from this consistent trend, insinuating that the 

layers that have been frozen cannot effectively adjust to the training data. 

TABLE 2. Comparison Table of DOCTOR, Pre-trained ResNet50, and the VGG16’s result on 

the Open-i Testing Dataset [9] and the CXR-8 Dataset[10] 

Method DOCTOR Pre-trained ResNet50 Pre-trained VGG16 

Image Dataset CXR-8 Open-i CXR-8 Open-i CXR-8 Open-i 

Accuracy % 96.30 97.37 96.40 96.70 95.10 95.30 

Sensitivity % 95.30 96.30 96.20 96.20 95.50 95.50 

Specificity % 95.30 97.30 95.60 96.10 95.50 96.40 

Precision % 94.60 96.30 95.70 95.80 95.10 95.35 

F1 Score % 94.80 98.80 96.00 96.00 93.35 95.15 

 

In Table 2, it can be seen that DOCTOR outperformed the pre-trained ResNet-50 and VGG16 

model on all metrics on the Open-i testing dataset where configurations of each model with no 

layers frozen, with the highest accuracy of 97.37% indicating DOCTOR’s ability to correctly 

classify most classes, Sensitivity of 96.30% where it correctly identified a very high true posi- tive 

cases which is crucial for avoiding missed diagnoses, Specificity 97.30% where it demon- strates 
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the effectiveness in correctly identifying true negatives to minimize false alarms, Preci- sion 96.30% 

to ensure high confidence in positive diagnoses, and F1-Score 98.8% reflecting a strong balance 

between precision and recall to signify the overall reliability of DOCTOR. The results in the table 

imply DOCTOR is a promising tool for medical image classification tasks within the domain of 

the Open-i dataset. DOCTOR’s strong performance stems from its archi- tecture, where it builds 

upon the strong feature extraction capabilities of a pre-trained ResNet50 and an added customized 

block tailored to the Open-i dataset. This block constraints additional convolutional layers carefully 

tuned to extract even more nuanced and domain-relevant features from the images. This allows 

DOCTOR to better discriminate between healthy and diseased cases, ultimately leading to its 

superior accuracy, sensitivity, and overall reliability. 

4.3. DOCTOR Visualizations. To further assess the model’s performance, gradCAM was also 

used to verify whether the model focused on the correct regions of the image. In the present study, 

DOCTOR produces highly informative visual representations of the thorax and pulmonary region. 

Within Figure 7, a detailed and all-encompassing examination is presented, which serves to 

highlight and present various aspects. 

GradCAM is a methodology that can be effectively employed in order to gain insight into the 

specific aspects of attention that a deep neural network is focusing on during the decision- making 

process. In the present scenario, the utilization of GradCAM visualizations serves the purpose of 

showcasing the specific regions of the Chest X-ray DOCTOR that are being utilized to determine 

the presence or absence of a lung disease [14]. 

 

 

FIGURE 7. 4 GradCam to visualize DOCTOR’s output on Lung Disease Detection. Visualization 

(7A), (7B), and (7C) show a possibility of lung anomaly by DOCTOR, whereas Visualization 

(7D) indicates a healthy and normal lung. 
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Visualizations (7A), (7B), and (7C) exhibit regions of the pulmonary system that have been 

accentuated by the GradCAM, thereby signifying that the medical professional directs its atten- tion 

towards these specific regions in order to ascertain the presence or absence of a pulmonary ailment. 

In these instances, the medical professional has accurately detected anomalies within the 

pulmonary system. The visualization denoted as (7D) portrays a radiographic image of the thoracic 

cavity that does not display any regions that have been accentuated by the GradCAM. This 

observation implies that the medical professional does not allocate its attention to any par- ticular 

segment of the pulmonary system when making a determination regarding the presence or absence 

of a pulmonary ailment. In this specific case, the medical professional ascertained the absence of 

any pulmonary ailment. The absence of the GradCAM-highlighted regions, which are observable 

on the pulmonary system in Visualization (7D), indeed suggests that the model did not detect any 

irregularities within these particular areas. This corroborates the notion that the medical 

professional can accurately identify the absence of pulmonary ailments. 

4.4. Discussion. While DOCTOR attains a remarkably commendable area under the curve 

(AUC) value, it is important to note that there are still possibilities for further optimizations. 

Specifically, in the case of disease classifications such as Mass and Nodule, there exists room for 

improvement where DOCTOR could enhance its performance. By addressing these limitations, it is 

plausible to envision a scenario where DOCTOR’s AUC value could be elevated to a higher level. 

The realization of such advancements would not only serve to consolidate the already impressive 

performance of DOCTOR but also open up avenues for the development of even more precise and 

robust solutions in future studies. 

Through the evaluation conducted by the medical professional, it has been observed that the 

utilization of transfer learning has experienced a substantial augmentation in its level of ac- 

ceptance within the realm of medical imaging, specifically in the domain of identifying lung 

ailments [15]. Transfer learning encompasses the utilization of a model that has undergone ex- 

tensive training with a vast dataset consisting of images to address specific tasks. This particular 

approach has proven to be highly efficacious as it not only saves a considerable amount of time but 

also mitigates the effort that would otherwise be required to train models from scratch [16]. Overall, 

the training procedure of both the VGG and ResNet models was executed with re- markable 

smoothness, owing to their well-established and pre-trained nature. These models displayed an 

impressive capacity to acquire the distinctive characteristics observed in lung im- ages, resulting in 
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commendable levels of accuracy when tested on the training dataset. On the contrary, the training 

process of the DOCTOR model encountered more obstacles, primarily due to its customized 

nature. The successful training of this model necessitated the exploration of various code and 

hyperparameter configurations, as well as the need to rectify numerous errors that were 

encountered along the way. A notable hurdle in training DOCTOR was its heightened 

susceptibility to overfitting. Overfitting is a problem that occurs when a machine learning model 

learns the training data too well, and as a result, it is unable to generalize to new data [17]. To 

address this issue, Several trials of different approaches were done such as: 

• Regularization: This technique penalizes complex models, discouraging them from memorizing 

the training data and promoting simpler, more generalizable models [18]. A technique called Early 

Stopping terminates training before the model memorizes the training data. Monitoring validation 

errors during training can indicate the optimal stop- ping point [19]. 

• Data Augmentation: This artificially increases the diversity of the training data, re- ducing the 

dependence on the specific examples presented during training. Geometric transformations were 

used to randomly rotate, crop, or flip images to create new training samples without requiring 

additional data collection [20]. 

• Ensemble Methods: Combining predictions from multiple, diverse models often leads to more 

robust and generalizable results compared to a single model [21]. 

During DOCTOR’s training, the medical practitioner encountered an additional obstacle. 

Specifically, a frequent occurrence of errors transpired wherein the image analysis software 

misinterpreted the anatomical structure of the shoulder as that of the lung within chest images. The 

rationale behind this misinterpretation was attributable to the similarities in texture and shape 

exhibited by both the shoulder and lung within certain images. Some measures taken to address 

these issues include: 

• Increasing the size and diversity of the training dataset: This phenomenon may be at-tributed to 

the reduced overfitting caused by the inclusion of larger and more diverse training samples [17]. 

In other words, the huge amount of images exposed the model to identify and extract the key 

features that distinguish these structures. 

• Adjusting the hyperparameters of the model: Adjusted the hyperparameters of the model, such 

as the learning rate and the optimizer [22]. Using a lower learning rate and a more robust optimizer 

helped improve the model’s ability to distinguish between shoulder and lung. 
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• Added penalties on the model’s output for misclassifying: Added a penalty to the model’s 

output for misclassifying shoulders as lungs. This helps to encourage the model to focus on learning 

the features that are specific to the lung. 

Current AI models that are currently being used to detect lung diseases often face a consid- erable 

predicament in their inclination to rely heavily on a sole modality, which can be either Chest X-

rays or CT scans. This reliance on a single modality inevitably imposes limitations on the accuracy 

and generalizability of these models, thereby hindering their ability to effectively detect and 

diagnose lung diseases. 

 

TABLE 3. Comparison Table between result methods from other journals and DOCTOR 

Method Accuracy % Sensitivity 

(Recall) % 

Specificity % Precision % 

A.S. et al. [23] 98.60 98.40 98.50 98.60 

Ucar et al. [24] 98.60 - 99.10 - 

Nour et al. [25] 98.97 89.39 99.75 - 

Wang et al. [26] 93.40 93.30 95.76 - 

Roy, and Das. [27] 97.80 - - - 

Zahid et al. [28] 97.22 96.87 99.12 95.54 

DOCTOR (Proposed Method) 97.37 96.30 97.30 96.30 

 

In Table 3, It can be analyzed that DOCTOR achieves a competitive accuracy of 97.37%, 

comparable to other recent works in the literature. Notably, Zahid et al. [28] achieves the high- est 

sensitivity of 99.12% but at the cost of lower accuracy (97.22%). Conversely, Nour et al. [25] 

has the highest accuracy of 98.97% but suffers from lower sensitivity (89.39%). DOC- TOR’s 

balanced performance across all metrics suggests it’s a promising approach. However, some 

methods lack data for certain metrics, making direct comparisons difficult. To solidify these initial 

findings, further investigation into missing values and the methods’ performance on specific 

datasets is warranted. 
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5. CONCLUSION 

While several cutting-edge methodologies claim to possess a high degree of accuracy, these 

methods often demonstrate a compromise between sensitivity and specificity or lack critical 

evaluation metrics. However, the proposed model, known as DOCTOR, successfully overcomes 

these limitations and achieves a comparable outcome akin to the methodologies put forth by Za- hid 

et al. [28] and Roy, and Das. [27]. It is worth noting that DOCTOR consistently maintains an 

exceptional level of precision, surpassing the performance of established competitors as pro- posed 

by Zahid et al. [28]. It can be inferred that one major advantage of DOCTOR is its correct Rol 

identification as visualized by the GradCAM, also its very strong results on its F1- score at 98.80% 

support the claim that DOCTOR is highly reliable in detecting lung anomalies. This well-balanced 

performance opens up avenues for earlier diagnoses, improved treatment planning, and the 

potential for wider applicability across various lung diseases. Additionally, computer-based 

diagnostic systems can achieve high accuracy and consistency, which further emphasizes the need 

for robust solutions like DOCTOR. Consequently, there arises a strong desire for a dedicated 

system that can aid radiologists in managing their workload, particularly the one that leverages the 

advanced capabilities of deep learning models [29,30]. In the upcoming investigation, despite the 

success of the dual dataset technique, a more sophisticated deep learn- ing technique will be 

introduced for the identification of lung diseases, in which a larger number of datasets will be 

gathered to enhance effectiveness. The extent of deep learning achievement is significantly 

impacted by the abundance of available data [31,32]. 
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