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Abstract. In this paper, we describe the transmission dynamics of a fractional order of an SVEIR epidemic model

with reaction–diffusion and Beddington-DeAngelis incidence rate. The basic reproduction number R0 is obtained

according to the next generation matrix. The local stability of the disease free equilibrium is discussed. Further,

utilizing the Lyapunov function method, it has been demonstrated that the global stability of each equilibrium:

free equilibrium and endemic equilibrium, is mainly based on the fundamental reproduction number R0. Finally,

numerical simulations were executed to justify the theoretical findings.
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1. INTRODUCTION

The use of mathematical analysis and modelling is essential in the study of various infectious

diseases, as it helps to gain a deeper understanding of their transmission dynamics and enables

the evaluation of control strategies. In epidemiology, there are typically three main categories

that describe infectious diseases: susceptible, infected, and removed (recovered) individuals,
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which allow for basic descriptions of the disease. In the literature there is a number of mathe-

matical numbers such as SIS [2], SIR [17, 19, 37], SEIR [18, 9], SVEIR [13], SIRS [31], and

many more have been proposed to control the spread of disease.

Many traditional models primarily focus on the temporal variable ′t ′ [31, 2, 17, 19, 37, 18, 9].

However, it’s important to note that infection propagation is influenced by more than just time.

So, in this paper, we take into account the spatial structure since it is considered as an important

factor that affects the spatial spreading of disease due to the carrier hosts of infectious sources

randomly moving in space. Therefore, several authors also incorporate the spatial variable ′x′

into their analyses and study the influence of the spatial aspect and mobility of host populations

on the dynamics of diseases [26, 33, 34, 35, 29, 32].

Vaccination is one of the effective control measures to prevent and weaken the transmission

of infectious diseases. Currently, various modeling studies have been made to explain the effect

of vaccination on the spread of diseases [32, 22, 24, 12, 30, 13].

On the other hand, incidence rate is a crucial component in simulating the dynamics of epi-

demic systems. Nonetheless, standard incidence or bilinear incidence functions are used in a lot

of disease models. So, since applying varied incidence rates has the ability to change the sys-

tem’s behavior, in our work we take the incidence rate as Beddington-DeAngelis type: βSI
1+aS+bI .

Here β is the transmission rate, a is a measure of inhibition effect, such as preventive measure

taken by susceptible individuals, and b is a measure of inhibition effect such as treatment with

respect to infectives. This incidence rate includes the three forms: The first one is the bilinear

incidence βSI [11, 39]. The second one is the saturated incidence rate of the form βSI
1+aS [1, 38].

The third one is the saturated incidence rate of the form βSI
1+bI [15, 3, 31].

Classical differentiation and integration are generalized to any order using fractional differ-

entiation. This is very pertinent to modeling the spread of epidemics because the time-fractional

derivative serves as a non-local operator, introducing memory effects where a system’s response

becomes dependent on its recent history. This non-integer differentiation is crucial for capturing

the memory and hereditary properties, offering a more realistic approach to epidemic models.

The inclusion of fractional-order derivatives, with their inherent memory effects, allows for
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the integration of all past information, enhancing the accuracy of predicting and modeling epi-

demics. As a result, many authors [7, 16, 20, 23, 36, 5] have begun to study epidemic models

using fractional differential equations.

In 2018, Gao and Huang [10] conducted a study on the model described below:

(1)



dS
dt

= Λ− βSI
1+aS+bI

− (η +µ)S+ωV,

dV
dt

= ηS− (ω +µ)V,

dE
dt

=
βSI

1+aS+bI
− (δ +µ)E,

dI
dt

= δE− (γ +d +µ)I,

dR
dt

= γI−µR.

All the parameters in model (1) are positive. The variables S,E, I,R, and V represent the respec-

tive counts of susceptible, exposed, infectious, recovered, and vaccinated individuals at time t.

Table 1 provides the biological interpretations of the remaining parameters.

The model’s stability results show that if R0 < 1, the disease-free equilibrium is globally

asymptotically stable and if R0 > 1, model (1) has an endemic equilibrium (S∗,E∗, I∗,R∗,V ∗)

which is globally asymptotically stable.

In the real world and during an epidemic, a variety of variables may influence the disease

outbreak and are not included in the model formulation. Examples include the population’s fear

of infection and weather patterns. As it is utilized to comprehend many real-world situations,

this phenomenon can be modeled by substituting a fractional differential derivative for the or-

dinary differential derivative. For the model (1), the state at any time t does not depend on the

previous history. Moreover, since the spatial structure influence the spreading of disease and

describe the reality well as the fractional derivative, so motivated by the work of [10] in this pa-

per we consider a fractional SV EIR epidemic model with diffusion and Beddington-DeAngelis

type incidence rate. The spreading dynamic of the epidemic is then governed by the following

fractional system
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(2)



CDα
t S(t,x) = dS∆S(t,x)+Λ− βSI

1+aS+bI
− (η +µ)S(t,x)+ωV (t,x),

CDα
t V (t,x) = dV ∆V (t,x)+ηS(t,x)− (ω +µ)V (t,x),

CDα
t E(t,x) = dE∆E(t,x)+

βSI
1+aS+bI

− (δ +µ)E(t,x),

CDα
t I(t,x) = dI∆ I(t,x)+δE(t,x)− (γ +d +µ)I(t,x),

CDα
t R(t,x) = dR∆R(t,x)+ γI(t,x)−µR(t,x),

CDα
t is the Caputo fractional-order derivative with 0 < α ≤ 1 and ∆ denotes the Laplacian

operator. We consider system (2) with initial conditions:

S(0,x) = ψ1(x)≥ 0, V (0,x) = ψ2(x)≥ 0, E(0,x) = ψ3(x)≥ 0,(3)

I(0,x) = ψ4(x)≥ 0, R(0,x) = ψ5(x)≥ 0, for x ∈Ω

We acknowledge that the self-contained nature of the model (2) involves dynamics within its

boundaries, yet there is an absence of emigration. Consequently, the homogeneous Neumann

boundary conditions with no-flux are applied.

(4)
∂S
∂ν

=
∂V
∂ν

=
∂E
∂ν

=
∂ I
∂ν

=
∂R
∂ν

= 0, for x ∈ ∂Ω,

with ∂

∂ν
denotes the outward normal derivative on ∂Ω, where Ω is a bounded domain in Rn.

Here, the densities of susceptible, vaccinated, latent, infected and recovered individuals at

time t and spatial location x are denoted by S(t,x), V (t,x), E(t,x), I(t,x) and R(t,x), respec-

tively.

The rest of this paper is structured as follows: In section 2, we give some preliminaries about

fractional calculus. In section 3, we determine the basic reproduction number and the existence

of the equilibria. In section 4, we discuss the local and global stability of model system at the

disease-free and endemic equilibrium points. In section 5, we illustrate our theoretical results

by numerical simulation.
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TABLE 1. The parameters description used in model

Parameter The physical interpretation

Λ Recruitment rate

β Transmission rate

η The vaccination rate coefficient

µ Natural death rate

δ The rate at which exposed individuals become infectious

ω The rate of losing immunity

γ The recovery rate

d Death rate due to the disease

a The proportion constant related to susceptible individuals

b The proportion constant related to infectious individuals

di i = S,V,E, I,R Diffusion rate of S,V,E, I and R respectively

2. PRELIMINARIES

In this section, we present the definition of Caputo fractional-order derivative, and some

useful lemmas are recalled for next analysis.

Definition 2.1. ([25]). The fractional integral of order α for a function f (t) is defined as

Iα f (t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds,

where t ≥ 0, α > 0, Γ(.) is the gamma function, Γ(t) =
∫

∞

0 xt−1e−xdx.

Definition 2.2. ([25]). The Caputo fractional derivative of order α for the function f (x) ∈

C n([0,∞),R) is defined by

CDα
t f (t) =

1
Γ(n−α)

∫ t

0

f (n)(s)
(t− s)α−n+1 ds,

where t ≥ 0, and n is a positive integer such that n−1≤ α < n.

Furthermore, when 0 < α < 1,

CDα
t f (t) =

1
Γ(1−α)

∫ t

0

f ′(s)
(t− s)α

ds.
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Definition 2.3. ([25]). The Mittag-Leffler type function with one parameter is defined as follows

Eα(z) =
∞

∑
n=0

zn

Γ(nα +1)
, α > 0, z ∈ C.

Lemma 2.4. ([28]). Let Ψ be a positive function defined by Ψ(y) = y− ln(y)− 1, y > 0 and

y(t) ∈ R+∗ is a continuous differentiable function for all α ∈ [0,1] and t > 0,

CDα
t

[
y∗Ψ

(
y(t)
y∗

)]
6

(
1− y∗

y(t)

)
CDα

t y(t), y∗ ∈ R∗+.

3. BASIC REPRODUCTION NUMBER AND EXISTENCE OF EQUILIBRIUM

In this section, we will examine the presence of both the disease-free equilibrium and the

endemic equilibrium within the framework of model (2). Given that the equation for R operates

independently of the other equations, we can establish the following subsystem.

(5)



CDα
t S(t,x) = dS∆S(t,x)+Λ− βSI

1+aS+bI
− (η +µ)S(t,x)+ωV (t,x),

CDα
t V (t,x) = dV ∆V (t,x)+ηS(t,x)− (ω +µ)V (t,x),

CDα
t E(t,x) = dE∆E(t,x)+

βSI
1+aS+bI

− (δ +µ)E(t,x),

CDα
t I(t,x) = dI∆ I(t,x)+δE(t,x)− (γ +d +µ)I(t,x),

It is easy to check that model (5) always has the disease-free equilibrium P0 = (S0,V 0,0,0),

where

S0 =
(ω +µ)Λ

µ(η +ω +µ)
and V 0 =

ηΛ

µ(η +ω +µ)
.

To investigate the presence and distinctiveness of the endemic equilibrium, denoted as P∗ =

(S∗,V ∗,E∗, I∗), we initiate our analysis by examining the fundamental reproductive number,

R0, of model (5). indeed, This quantity is recognized as the expected average number of new

infection cases created by an average infectious individual (over their period of infectivity)

within a population that is entirely composed of susceptible individuals. To calculate basic

reproduction number we will use the method presented in [27] given by Van Den Driessche and

Watmough.
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Let X = (S,V,E, I)T . So model (5) can be written as CDα
t X = F (X)−V (X), where

F (X) =



0

0

βSI
1+aS+bI

0


, V (X) =



Λ− (η +µ)S+ωV

ηS− (ω +µ)V

−(δ +µ)E

δE− (γ +d +µ)I


The transition matrix V and the new infection matrix F , which are the Jacobian of F and V

evaluated at P0 respectively, are provided by

F =

 0 βS0

1+aS0

0 0

 , V =

 −(δ +µ) 0

δ −(γ +d +µ)

 ,

so spectral radius of the next generation matrix −FV−1 can be found as,

ρ(−FV−1) =
δβΛ(ω +µ)

(δ +µ)(γ +d +µ)(µ(η +ω +µ)+aΛ(ω +µ))
.

Hence, the fundamental reproductive number R0, for model (5) can be determined as follows:

(6) R0 =
δβΛ(ω +µ)

(δ +µ)(γ +d +µ)(µ(η +ω +µ)+aΛ(ω +µ))
.

If R0 > 1, the system (5) has a unique endemic equilibrium point P∗ = (S∗,V ∗,E∗, I∗) with,

S∗ =
(ω +µ)(δΛ− (δ +µ)(γ +d +µ)I∗)

δ µ(η +ω +µ)
.

V ∗ =
ηS∗

ω +µ
.

E∗ =
(γ +d +µ)I∗

δ
.

I∗ =
δΛ[µ(η +ω +µ)+aΛ(ω +µ)](R0−1)

R0µ(δ +µ)(γ +d +µ)(η +ω +µ)(R0−1)+bΛδ µ(η +ω +µ)
.
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3.1. Sensitivity analysis of R0. When a virus spreads rapidly it becomes important to find

ways to control it, i.e., to increase or decrease certain parameters that affect the infection’s

ability to propagate. Sensitivity analysis is one method to evaluate each parameter’s impact for

the spread of disease.

To reduce the disease, we specifically employ the definition of the sensitivity index, which

provides the significance of the variable related with each model parameter [6].

Definition 3.1. The R0 sensitivity index with respect to x is defined by

(7) ϒ
R0
x =

∂R0

∂x
x

R0
.

One may determine whether a parameter increases (positive sign) or decreases (negative sign)

the value of R0 based on the sign of each index.

To compute the sensitivity index for R0 in relation to the parameters of the model, we will

use the expression of R0 provided in (6).

ϒ
R0
β

= 1.

ϒ
R0
Λ

=
µ(η +ω +µ)

µ(η +ω +µ)+aΛ(ω +µ)
.

ϒ
R0
δ

=
µ

δ +µ
.

ϒ
R0
d =

−d
γ +d +µ

.

ϒ
R0
γ =

−γ

γ +d +µ
.

ϒ
R0
µ = µ

[
µη

(ω +µ)(µ(η +ω +µ)+aΛ(ω +µ))
− γ +d +δ +2µ

(δ +µ)(γ +d +µ)
− η +ω +µ

µ(η +ω +µ)+aΛ(ω +µ)

]
.

ϒ
R0
ω =

ηµω

(ωµ)(µ(η +ω +µ)+aΛ(ω +µ))
.

ϒ
R0
a =

−Λa(ω +µ)

µ(η +ω +µ)+aΛ(ω +µ)
.

ϒ
R0
η =

−µη

µ(η +ω +µ)+aΛ(ω +µ)
.

We observe that R0 is increasing with β , Λ, δ and ω while it is decreasing with d, γ , a and η

but we cannot say anything about other parameter µ .

4. STABILITY ANALYSIS OF THE EQUILIBRIA
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4.1. Local stability of the disease free equilibrium. In this section, we will discuss the sta-

bility of the disease-free equilibrium P0 of the model (2).

Theorem 4.1. If R0 ≤ 1 the disease free equilibrium point P0 is locally asymptotically stable.

Proof. In the presence of diffusion, the stability of P0 reduces to applying [8, Theorem 1] to

the linearizing operator L = D∆ + A. Note that A is the Jacobian matrix evaluated at the

equilibrium point.

The equilibrium point P0 = ( (ω+µ)Λ
µ(η+ω+µ) ,

ηΛ

µ(η+ω+µ) ,0,0) satisfies



0 = dS∆S+Λ− βS∗I∗
1+aS∗+bI∗ − (η +µ)S∗+ωV ∗,

0 = dV ∆V +ηS∗− (ω +µ)V ∗,

0 = dE∆E + βS∗I∗
1+aS∗+bI∗ − (δ +µ)E∗,

0 = dI∆ I +δE∗− (γ +d +µ)I∗,

with Neumann boundaries

∂S
∂ν

=
∂V
∂ν

=
∂E
∂ν

=
∂ I
∂ν

= 0 for x ∈ ∂Ω.

The linearizing operator may be given as follows:

L (P0) =



dS∆− (η +µ) ω 0 −βS0

1+aS0

η dV ∆− (ω +µ) 0 0

0 0 dE∆− (δ +µ) βS0

1+aS0

0 0 δ dI∆− (γ +d +µ)


.

Let (λi)i denotes the indefinite sequence of positive eigenvalues for the Laplacian operator ∆

over Ω, with Neumann boundary conditions defined by 0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ ·· · ≤↗+∞,
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see [4]. The stability of P0 depends on the eigenvalues of the matrices

Ji(P0) =



−dSλi− (η +µ) ω 0 −βS0

1+aS0

η −dV λi− (ω +µ) 0 0

0 0 −dEλi− (δ +µ) βS0

1+aS0

0 0 δ −dIλi− (γ +d +µ)


.

The associated characteristic equation can be expressed as follows:

det(Ji(P0)−XI) = [X2 + p1X + p2][X2 + p3X + p4],

with

p1 = δ + γ +d +2µ +λi(dE +dI)

p2 = (δ +µ)(γ ++. µ)(1−R0)+λidI(δ +µ)+λidE(γ +d +µ)+λ
2
i dEdI

p3 = η +ω +2µ +λidS +λidV

p4 = µ(η +ω +µ)+λidV (η +µ)+λidS(ω +µ)+λ
2
i dSdV .

All of the coefficients pi, i = 1,2,3,4 of the characteristic equation are positive since R0 ≤ 1.

Then, the application of the Routh-Hurwitz Theorem confirms that all the roots X have negative

real parts, signifying that |arg(X)|> π

2 > απ

2 . Then, we conclude the local asymptotic stability

of P0. �

4.2. Global stability of the disease free equilibrium. In this section, we investigate the

global stability of the disease-free equilibrium P0 for system (5) by constructing proper Lya-

punov function.

Theorem 4.2. If R0 ≤ 1, then the disease free equilibrium P0 is globally asymptotically stable.

Proof. Let W1 be the positive function defined by

W1(t,x) =
∫

Ω

[
δ

(δ +µ)(γ +d +µ)
E(t,x)+

1
γ +d +µ

I(t,x)
]

dx.



GLOBAL BEHAVIOUR OF A TIME FRACTIONAL ORDER SPATIOTEMPORAL EPIDEMIC MODEL 11

The fractional derivative of order α in the sense of Caputo of W1 is given by

CDα
t W1(t,x) =

∫
Ω

[
δ

(δ +µ)(γ +d +µ)
CDα

t E(t,x)+
1

γ +d +µ

CDα
t I(t,x)

]
dx

=
∫

Ω

δ

(δ +µ)(γ +d +µ)

(
βSI

1+aS+bI
− (δ +µ)E(t,x)

)
dx

+
∫

Ω

1
γ +d +µ

(δE(t,x)− (γ +d +µ)I(t,x))dx

+
∫

Ω

(
δ

(δ +µ)(γ +d +µ)
dE∆E(t,x)+

1
γ +d +µ

dI∆ I(t,x)
)

dx

According to Green’s formula and the boundary conditions, we have∫
Ω

(
δ

(δ +µ)(γ +d +µ)
dE∆E(t,x)+

1
γ +d +µ

dI∆ I(t,x)
)

dx = 0.

Then,

CDα
t W1(t,x) =

∫
Ω

(
δ

(δ +µ)(γ +d +µ)

βSI
1+aS+bI

− I
)

dx

≤
∫

Ω

(
δ

(δ +µ)(γ +d +µ)

βS0

1+a1S0 −1
)

I dx

≤
∫

Ω

(R0−1) I dx

If R0≤ 1, then CDα
t W1≤ 0 for all S,V,E, I,R> 0: Let M0 =

{
(S,V,E, I,R) :C Dα

t W1 = 0
}
={

P0}. Then by LaSalle’s invariance principle [14], P0 is globally asymptotically stable once

R0 ≤ 1. �

4.3. Global stability of the endemic equilibrium.

Theorem 4.3. If R0 > 1, the endemic equilibrium point P∗ is globally asymptotically stable.

Proof. Consider the positive function defined by

W2(t,x) =
∫

Ω

[
S∗Ψ

(
S(t,x)

S∗

)
+V ∗Ψ

(
V (t,x)

V ∗

)
+E∗Ψ

(
E(t,x)

E∗

)
+

δ +µ

δ
I∗Ψ

(
I(t,x)

I∗

)]
dx.

The fractional derivative of order α in the sense of Caputo of W2 is given by

CDα
t W2(t,x)≤

∫
Ω

[(
1− S∗

S(t,x)

)
CDα

t S(t,x)+
(

1− V ∗

V (t,x)

)
CDα

t V (t,x)+
(

1− E∗

E(t,x)

)
CDα

t E(t,x)

+
δ +µ

δ

(
1− I∗

I(t,x)

)
CDα

t I(t,x)
]
dx
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≤
∫

Ω

(
dS∆S(t,x)+dV ∆V (t,x)+dE∆E(t,x)+

δ +µ

δ
dI∆ I(t,x)

)
dx

−
∫

Ω

(
S∗

S(t,x)
dS∆S(t,x)+

V ∗

V (t,x)
dV ∆V (t,x)+

E∗

E(t,x)
dE∆E(t,x)+

δ +µ

δ

I∗

I(t,x)
dI∆ I(t,x)

)
dx

+
∫

Ω

(
1− S∗

S

)(
Λ− βSI

1+aS+bI
−ηS−µS+ωV

)
dx

+
∫

Ω

(
1− V ∗

V

)
(ηS−ωV −µV )dx

+
∫

Ω

(
1− E∗

E

)(
βSI

1+aS+bI
− (δ +µ)E

)
dx

+
∫

Ω

δ +µ

δ

(
1− I∗

I

)
(δE− (γ +d +µ)I)dx

According to Green’s formula and the boundary conditions, we have∫
Ω

(
dS∆S(t,x)+dV ∆V (t,x)+dE∆E(t,x)+

µ +δ

δ
dI∆ I(t,x)

)
dx = 0,

and

−
∫

Ω

dSS∗
∆S(t,x)
S(t,x)

dx =−dSS∗
∫

Ω

‖∇S(t,x)‖2

S(t,x)2 dx.

−
∫

Ω

dVV ∗
∆V (t,x)
V (t,x)

dx =−dVV ∗
∫

Ω

‖∇V (t,x)‖2

V (t,x)2 dx.

−
∫

Ω

dEE∗
∆E(t,x)
E(t,x)

dx =−dEE∗
∫

Ω

‖∇E(t,x)‖2

E(t,x)2 dx.

−
∫

Ω

dII∗
∆ I(t,x)
I(t,x)

dx =−dII∗
∫

Ω

‖∇I(t,x)‖2

I(t,x)2 dx.

At the endemic equilibrium we have

Λ =
β1S∗I∗

1+aS∗+bI∗
+ηS∗+µS∗−ωV ∗,

ηS∗ = (ω +µ)V ∗,

(δ +µ)E∗ =
βS∗I∗

1+aS∗+bI∗
,

E∗ =
γ +d +µ

δ
I∗.

Then

CDα
t W2(t,x)

≤−
∫

Ω

[
dSS∗
‖∇S(t,x)‖2

S(t,x)2 +dVV ∗
‖∇V (t,x)‖2

V (t,x)2 +dEE∗
‖∇E(t,x)‖2

E(t,x)2 +
δ +µ

δ
dII∗
‖∇I(t,x)‖2

I(t,x)2

]
dx
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+
∫

Ω

((
1− S∗

S

)[
βS∗I∗

1+aS∗+bI∗
+ηS∗+µS∗−ωV ∗− βSI

1+aS+bI
−ηS−µS+ωV

]
+

(
1− V ∗

V

)
(ηS−ωV −µV )+

(
1− E∗

E

)(
βSI

1+aS+bI
− (δ +µ)E

)
+

(
1− I∗

I

)(
(δ +µ)E− (δ +µ)(γ +d +µ)

δ
I
))

dx

≤−
∫

Ω

[
dSS∗
‖∇S(t,x)‖2

S(t,x)2 +dVV ∗
‖∇V (t,x)‖2

V (t,x)2 +dEE∗
‖∇E(t,x)‖2

E(t,x)2 +
δ +µ

δ
dII∗
‖∇I(t,x)‖2

I(t,x)2

]
dx

+
∫

Ω

[−µ

S
(S−S∗)2 +

βS∗I∗

1+aS∗+bI∗
+µV ∗− S∗

S
βS∗I∗

1+aS∗+bI∗
−µV ∗

S∗

S
+ωV ∗+µV ∗

+
βS∗I

1+aS+bI
−ωV

S∗

S
−µV −ωV ∗

S
S∗

V ∗

V
−µV ∗

S
S∗

V ∗

V
+ωV ∗+µV ∗

− E∗

E
βSI

1+aS+bI
+(δ +µ)E∗− (δ +µ)E∗

I
I∗
− (δ +µ)E

I∗

I
+(δ +µ)E∗

]
dx

≤−
∫

Ω

[
dSS∗
‖∇S(t,x)‖2

S(t,x)2 +dVV ∗
‖∇V (t,x)‖2

V (t,x)2 +dEE∗
‖∇E(t,x)‖2

E(t,x)2 +
δ +µ

δ
dII∗
‖∇I(t,x)‖2

I(t,x)2

]
dx

+
∫

Ω

[−µ

S
(S−S∗)2 +µV ∗

(
3− S∗

S
− V

V ∗
− SV ∗

S∗V

)
+ωV ∗

(
2− SV ∗

S∗V
− S∗V

SV ∗

)
+

βS∗I∗

1+aS∗+bI∗

(
3− S∗

S
− EI∗

E∗I
− I

I∗

)
+

βS∗I
1+aS+bI

(
1− SE∗

S∗E

)]
dx

Since the arithmetic mean is always less than the geometric mean then:

3− S∗

S
− V

V ∗
− SV ∗

S∗V
≤ 0,

2− SV ∗

S∗V
− S∗V

SV ∗
≤ 0,

3− S∗

S
− EI∗

E∗I
− I

I∗
≤ 0,

and

1− SE∗

S∗E
≤ 0.

Therefore,

CDα
t W2(t,x)≤ 0.

Further, we can conclude that CDα
t W2(t,x) = 0 if S = S∗, V = V ∗, E = E∗ and I = I∗, thus by

the principle of LaSalle invariance [14], if R0 > 1 the endemic equilibrium point P∗ is globally

asymptotically stable.

�
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5. NUMERICAL SIMULATION

In this section, we provide graphical representations that validate our theoretical discoveries.

To numerically integrate the system (2)-(3), we employ forward finite difference approximations

to discretize the time-fractional derivative and centered finite difference schemes to approach the

Laplacian operator in one-dimensional space. Furthermore, we consider the domain Ω= [0,15].

This approach yields a high level of accuracy with a time order of 2−α and a spatial order of

2, as detailed in [21].

5.1. Numerical Simulation for R0 ≤ 1. In this simulation, we consider the parameter val-

ues: Λ = 25, β = 0.0354, µ = 0.2, δ = 0.3, ω = 0.02, η = 0.4, γ = 0.056, a = 0.8, b = 0.4,

d = 0.1× 10−5 and dS = dV = dE = dI = dR = 0.0000005. Based on these parameter val-

ues, we have R0 = 0.1 ≤ 1 and P0 = (44.35,80.64,0,0,0). For the initial conditions we take

(S(0,x),V (0,x),E(0,x), I(0,x),R(0,x)) = (100,10,0,6,0).

FIGURE 1. The dynamics of the system (2) showing the stability of the free

equilibrium P0 for α = 1.
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FIGURE 2. The dynamics of the system (2) showing the stability of the free

equilibrium P0 for α = 0.95.

FIGURE 3. The dynamics of the system (2) showing the stability of the free

equilibrium P0 for α = 0.87.
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FIGURE 4. The dynamics of the system (2) for x fixed and α = 0.87,0.95,1 in

the case R0 ≤ 1.

In the figures (1), (2) and (3) we observe that the spatio-temporal dynamics convergence

toward the free equilibrium P0 for different values of α = 1,0.95,0.87. So according to analysis

result, P0 is a globally asymptotically stable. In Figure (4), we have fixed the space variable

x to show the effect of the order α along the dynamics of the solution. We notice that all the

solutions are globally asymptotically stable for different values of α not just for α = 1. We

also notice that the solution for α = 1 quickly converges to the equilibrium point P0. Because

fractional derivatives capture reality effectively, we can conclude that it takes more time for the

epidemic to become stable.

5.2. Numerical Simulation for R0 > 1. In this simulation, we consider the parameter values:

Λ = 25, β = 0.254, µ = 0.6, δ = 0.5, ω = 0.22, η = 0.02432, γ = 0.003, a = 0.04, b = 0.02,

d = 0.1× 10−5 and dS = dV = dE = dI = dR = 0.0000005. Based on these parameter values,

we have R0 = 2.95 > 1 and P∗ = (6.83,0.202,0.078,15.66,0.078). For the initial conditions

we take (S(0,x),V (0,x),E(0,x), I(0,x),R(0,x)) = (100,10,0,6,0).
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FIGURE 5. The dynamics of the system (2) showing the stability of the endemic

equilibrium P∗ for α = 1.

FIGURE 6. The dynamics of the system (2) showing the stability of the endemic

equilibrium P∗ for α = 0.95.



18 FATIMA CHERKAOUI, KHALID HILAL, ABDELAZIZ QAFFOU

FIGURE 7. The dynamics of the system (2) showing the stability of the endemic

equilibrium P∗ for α = 0.87.

FIGURE 8. The dynamics of the system (2) for x fixed and α = 0.87,0.95,1 in

the case R0 > 1.
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In the figures (5), (6) and (7) we observe that the spatio-temporal dynamics convergence

toward the endemic equilibrium P∗ for different values of α = 0.87,0.95,1. So according

to analysis result, P∗ is a globally asymptotically stable. which means biologically that the

infection persists. In Figure (8), we have fixed the space variable x to show the effect of the

order α along the dynamics of the solution.

CONCLUSION

In this paper, we have focused on analyzing the qualitative behavior of fractional order SV EIR

model with diffusion and Beddington-DeAngelis incidence rate. First, we have determined the

basic reproduction number R0 which plays a crucial role in shaping and influencing the overall

global dynamics of our proposed model. After proving the existence of the two equilibrium

points for the model, namely the free equilibrium denoted as P0 and the endemic equilibrium

P∗, we proceeded to confirm local stability of the disease free equilibrium P0 and the global

stability of the disease free equilibrium P0 and the endemic equilibrium P∗ by utilizing the

Lyapunov function method. Based on our theoretical analysis, we were able to establish the

stability of the equilibria not only for the case of the integer derivative (α = 1) but also for the

entire range of 0<α ≤ 1. This finding reaffirms the universality and applicability of our system.

It’s important to emphasize that global asymptotic stability is observed across a spectrum of α

values, and it’s not limited to just α = 1. In addition, it’s noteworthy that the solution for

α = 1 exhibits a rapid convergence towards the equilibrium point. This interesting numerical

experiment leads us to the conclusion that the fractional derivative order significantly influences

the speed of convergence towards the equilibrium point. This effect can be attributed to the

inherent memory characteristics associated with fractional derivatives. We conclude then that

the fractional derivative order describe reality well since the epidemic takes a longer duration

to be stable.
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