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Abstract: In this paper, we propose the alternative methods to estimate the smoothing parameter which is used on the 

Exponential Smoothing Methods. The present study is focused on estimating one smoothing parameter in the Single 

Exponential Smoothing (SES) Forecasting Method. This research provides an algorithm to estimate the smoothing 

parameter utilizing the 3rd order Lagrange polynomial interpolation and cubic spline interpolation. Furthermore, this 

study is provided by an example of the use of these methods. The results from these proposed alternative methods for 

estimating the optimal parameter are then compared to the results obtained from the Excel solver. This research shows 

that the estimation result of the smoothing parameter in SES with cubic spline interpolation is able to produce a better 

estimation than the 3rd order Lagrange polynomial interpolation and Excel solver. 
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1. INTRODUCTION 

The Exponential Smoothing Method is widely used in forecasting in various industries [6], 

including pharmaceuticals ([17], [20]), healthcare [16], gas cylinders [1], and freight forwarding 

[11]. This method gives more weight to recent observations than the previous ones ([13], [15]). 

There are various Exponential Smoothing Methods depending on pattern of the data, i.e., trend, 

seasonal, or mix of trend - seasonal [6]. The methods are Single, Double, and Triple Exponential 

Smoothing. The challenge when dealing with the Exponential Smoothing Forecasting Method is 

the estimation of the parameter. This research focuses on the Single Exponential Smoothing (SES) 

which is a forecasting method used on data that has no trend and seasonality ([2], [7]). In this 

problem, there is only one smoothing parameter which is denoted by 𝛼 [9]. 

Determining the optimal smoothing parameter 𝛼  in the Single Exponential Smoothing 

Method can be done in several ways, among them are trial and error ([8], [9], [14]), a mathematical 

model by Mu'azu [12], and Golden Section Search ([10], [18]). The trial-and-error method uses a 

variety of different α values, usually choosing 𝛼 = 0.1, 0.2, 0.3, … , 0.9  and uses 𝛼  which 

produces the smallest forecasting error [6]. The disadvantage of this method is that there is a 

possibility of α values used do not cover the optimal values of α. 

Mu'azu [12] tried to propose a heuristic method for estimating the α parameter in the Single 

Exponential Smoothing Method, resulting in the formula 𝛼 =
𝑛−1

3𝑛
  where 𝑛  is the number of 

observations in data. The weakness of this method, as shown by [15], if 𝑛 approaches the infinity, 

then 𝛼 = lim
𝑛→∞

𝑛−1

3𝑛
=

1

3
 . Meanwhile, if 𝑛 = 2  which is the smallest possible value for 𝑛 , then 

𝛼 =
1

6
. The consequence of aforementioned cases of 𝑛 is that the range of 𝛼 that can be yielded 

by Mu’azu’s method are within the interval [
1

6
,

1

3
). Meanwhile, the Single Exponential Smoothing 

Method allows 𝛼 ∈ (0,1) so that Mu’azu’s method is not able to produce 𝛼 values within the 

interval (0,
1

6
)  and [

1

3
, 1) .  Hence, there is a possibility that the optimal value of smoothing 

parameter α lies outside of these possible intervals.  

Apart from that, the Golden Section Search Method is a method that solves one-variable Non-

Linear Programming (NLP) problem in the form of maximization or minimization of 𝑓(𝑥) with 
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constraints 𝑎 < 𝑥 < 𝑏  ([4], [10]). This method reduces the boundary of region 𝑥  iteratively 

until a maximum or minimum value is obtained or a stopping criterion is reached such as a stop 

tolerance value [10]. Therefore, iterative approach of this method takes time and less efficient. 

The three methods that have been discussed have their own weaknesses. Therefore, this study 

suggests an alternative solution in determining the optimal α parameter in the Single Exponential 

Smoothing Method by using Lagrange polynomial interpolation and cubic spline interpolation. In 

the present study, the Lagrange polynomial interpolation is focused on the 3rd order so that the 

degree of polynomial resulting from the interpolation is the same as the degree of polynomial from 

cubic spline interpolation. The same degree of polynomial used in these two proposed methods 

allows the fair comparison of the results obtained. 

In term of the validity, this research uses the Mean Squared Error (MSE) as an indicator of the 

feasibility of forecasting results obtained. Hyndman et al. [9] mentioned that the use of MSE to 

optimize the value of the smoothing parameter 𝛼 in the Single Exponential Smoothing Method 

is customary because MSE is a smooth function of 𝛼 . The smooth function nature of MSE 

motivates the estimation of MSE using interpolation. Furthermore, the interpolated MSE is used 

to determine the optimal 𝛼, i.e., 𝛼 ∈ (0, 1) which produces the smallest value in the obtained 

interpolation function. For comparison, the value of 𝛼 obtained from the method in this study 

will be compared with the value of 𝛼 obtained from solver in the Excel software, which is an 

add-in program that is a versatile optimization modeling system [5]. 

The purpose of this study is to explore the estimation of parameter 𝛼  in the Single 

Exponential Smoothing Method with 3rd order Lagrange polynomial interpolation and cubic spline 

interpolation and compare the results with Excel solver by paying attention to the MSE obtained. 

The method initiated in this study is applied to data on the purchase of Pumpitor capsules at RS 

Dewi Sri Karawang. Pumpitor capsule contains Omeprazole which is a proton pump inhibitor used 

to treat diseases associated with gastroesophageal reflux disease (GERD), such as ulcers, gastric 

acid hypersecretion, and helps heal tissue damage and ulcers caused by stomach acid and 

Helicobacter pylori bacterial infection [19]. 

This article is presented in the following order. In Section 2, the materials and research method 

are presented, namely the 3rd order Lagrange polynomial interpolation, cubic spline interpolation, 
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and the steps conducted in this research. Furthermore, the identification of data patterns, the 

algorithm for estimating the α parameter with the 3rd order Lagrange polynomial interpolation and 

cubic spline are summarized in Section 3. The discussion is completed with a comparison of the 

smoothing parameter estimation results from the two methods with the Excel solver results. The 

article is closed with a brief conclusion and some suggestions for future research. 

 

2. MATERIALS AND METHODS 

2.1. 𝒏th Order Lagrange Polynomial Interpolation 

𝑛th order Lagrange polynomial interpolation is given by the following theorem from [3]. 

Theorem 2.1.1. If 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛  are 𝑛 + 1  distinct numbers and 𝑓  is a function whose 

values are given at these numbers, then a unique polynomial 𝑃(𝑥) of degree at most 𝑛 exists 

with 𝑓(𝑥𝑘) = 𝑃(𝑥𝑘), for each 𝑘 = 0, 1, 2, … , 𝑛. The polynomial 𝑃(𝑥) is given by 

𝑃(𝑥) = 𝑓(𝑥0)𝐿𝑛,0(𝑥) + ⋯ + 𝑓(𝑥𝑛)𝐿𝑛,𝑛(𝑥) = ∑ 𝑓(𝑥𝑘)𝐿𝑛,𝑘(𝑥)

𝑛

𝑘=0

 (1) 

where for each 𝑘 = 0, 1, 2, … , 𝑛, 

𝐿𝑛,𝑘(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥1) ⋯ (𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘+1) ⋯ (𝑥 − 𝑥𝑛)

(𝑥𝑘 − 𝑥0)(𝑥𝑘 − 𝑥1) ⋯ (𝑥𝑘 − 𝑥𝑘−1)(𝑥𝑘 − 𝑥𝑘+1) ⋯ (𝑥𝑘 − 𝑥𝑛)
= ∏

(𝑥 − 𝑥𝑖)

(𝑥𝑘 − 𝑥𝑖)

𝑛

𝑖=0
𝑖≠𝑘

. (2) 

Based from Theorem 2.1.1, the following corollary is obtained by using 𝑛 = 3. The corollary is 

also known as 3rd order Lagrange polynomial interpolation. 

Corollary 2.1.2. If 𝑥0, 𝑥1, 𝑥2, 𝑥3 are 4 distinct numbers and 𝑓 is a function whose values are 

given at these numbers, then a unique polynomial 𝑃(𝑥) of degree at most 3 exists with 𝑓(𝑥𝑘) =

𝑃(𝑥𝑘), for each 𝑘 = 0, 1, 2, 3. The polynomial 𝑃(𝑥) is given by 

𝑃(𝑥) = 𝑓(𝑥0)𝐿3,0(𝑥) + ⋯ + 𝑓(𝑥3)𝐿3,3(𝑥) = ∑ 𝑓(𝑥𝑘)𝐿3,𝑘(𝑥)

3

𝑘=0

 (3) 

where for each 𝑘 = 0, 1, 2, 3, 

𝐿3,𝑘(𝑥) =
(𝑥 − 𝑥0) ⋯ (𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘+1) ⋯ (𝑥 − 𝑥3)

(𝑥𝑘 − 𝑥0) ⋯ (𝑥𝑘 − 𝑥𝑘−1)(𝑥𝑘 − 𝑥𝑘+1) ⋯ (𝑥𝑘 − 𝑥3)
= ∏

(𝑥 − 𝑥𝑖)

(𝑥𝑘 − 𝑥𝑖)

3

𝑖=0
𝑖≠𝑘

. (4) 
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2.2. Cubic Spline Interpolation 

Cubic spline interpolation is done by creating a cubic spline interpolant by using the following 

definition from [3]. 

Definition 2.2.1. Given a function 𝑓 defined on [𝑎, 𝑏] and a set of nodes 𝑎 = 𝑥0 < 𝑥1 < ⋯ <

𝑥𝑛 = 𝑏, a cubic spline interpolant 𝑆 for 𝑓 is a function that satisfies the following conditions: 

(a)    𝑆(𝑥) is a cubic polynomial, denoted 𝑆𝑗(𝑥), on the subinterval [𝑥𝑗 , 𝑥𝑗+1] for each 𝑗 =

0,1, … , 𝑛 − 1; 

(b)    𝑆𝑗(𝑥𝑗) = 𝑓(𝑥𝑗) and 𝑆𝑗(𝑥𝑗+1) = 𝑓(𝑥𝑗+1) for each 𝑗 = 0, 1, … , 𝑛 − 1; 

(c)    𝑆𝑗+1(𝑥𝑗+1) = 𝑆𝑗(𝑥𝑗+1) for each 𝑗 = 0, 1, 2, … , 𝑛 − 2; 

(d)    𝑆𝑗+1
′ (𝑥𝑗+1) = 𝑆𝑗

′(𝑥𝑗+1) for each 𝑗 = 0, 1, 2, … , 𝑛 − 2; 

(e)    𝑆𝑗+1
′′ (𝑥𝑗+1) = 𝑆𝑗

′′(𝑥𝑗+1) for each 𝑗 = 0, 1, 2, … , 𝑛 − 2; 

(f)    One of the following sets of boundary conditions is satisfied: 

(i) 𝑆′′(𝑥0) = 𝑆′′(𝑥𝑛) = 0 (natural (or free) boundary); 

(ii) 𝑆′(𝑥0) = 𝑓′(𝑥0) and 𝑆′(𝑥𝑛) = 𝑓′(𝑥𝑛) (clamped boundary). 

2.3 Research Method 

This study is conducted by comparing the performance of estimating the 𝛼 parameter in the 

Single Exponential Smoothing Method from the 3rd order Lagrange polynomial interpolation and 

cubic spline interpolation. The following are the steps taken in this research: 

Step 1: Inputting time series data that will be used in this research. 

Step 2: Performing stationarity test with Augmented Dickey-Fuller test on the data. If the data 

is stationary, go to step 4. If the data is not stationary, go to step 3. 

Step 3: Performing the difference on the data and return to step 2. 

Step 4: Estimating the parameter 𝛼 in the Single Exponential Smoothing Method with the 

3rd order Lagrange polynomial and cubic spline interpolation. From this step, the 

optimal 𝛼 is obtained from each estimation. 

Step 5: Comparing the MSE generated by using 𝛼 from step 4 with the MSE generated by 

the optimal 𝛼 from the Excel solver. 

Step 6: Interpretating the results from the comparison done in step 5. 
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3. RESULTS AND DISCUSSION 

3.1. Data Pattern Identification 

The parameter 𝛼 will be determined by utilizing the MSE value obtained from each different 

and equidistant use of 𝛼 so as to obtain a set of points (𝛼, MSE) where these points will be 

interpolated by the 3rd order Lagrange polynomial interpolation and cubic spline. Next, the critical 

point that produces the smallest value in the function obtained from each interpolation is 

determined. This critical point is the optimal 𝛼 parameter. Forecasting will also be carried out 

using an Excel solver whose results are compared with the results of the 3rd order Lagrange 

polynomial interpolation and cubic spline. 

The data used in this study are secondary data on monthly purchases of Pumpitor capsules at 

Dewi Sri Karawang Hospital, Indonesia, from 2019 to 2021. The data used in the Single 

Exponential Smoothing Method must be stationary. Thus, it is necessary to check the stationarity 

of the data to be forecast. The p-value result obtained from the augmented Dickey-Fuller test on 

the data is 0.3703 ≥ 0.05 so it is concluded that this data is not stationary. For this reason, the 

data needs to be differenced so that it can be applied to the Single Exponential Smoothing 

Forecasting Method. 

After differencing process, the p-value obtained from the augmented Dickey-Fuller test is 

0.01102 < 0.05 . It means the differenced data is stationary and can be used in the Single 

Exponential Smoothing Forecasting Method. The monthly purchase data and differencing results 

are presented in Table 1. 
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Table 1. Monthly Purchase Data of Pumpitor Capsule Medicine at Dewi Sri Karawang Hospital, 

Indonesia, and Differencing Results 

tth Time 
Purchase 

(Capsule) 
Difference tth Time 

Purchase 

(Capsule) 
Difference 

0 4400  18 4600 1260 

1 5880 1480 19 2860 -1740 

2 4700 -1180 20 2560 -300 

3 1640 -3060 21 5400 2840 

4 5160 3520 22 3800 -1600 

5 4400 -760 23 3220 -580 

6 5100 700 24 5380 2160 

7 5980 880 25 4260 -1120 

8 4280 -1700 26 2780 -1480 

9 6800 2520 27 7120 4340 

10 4420 -2380 28 5320 -1800 

11 6100 1680 29 2380 -2940 

12 4440 -1660 30 3800 1420 

13 2820 -1620 31 3780 -20 

14 3360 540 32 4460 680 

15 1500 -1860 33 4800 340 

16 3620 2120 34 1800 -3000 

17 3340 -280 35 5540 3740 

To illustrate the differences, the data and differencing results are presented in graphical form 

in Figure 1.  
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Next, a set of points (𝛼, MSE) is required to be interpolated. Therefore, forecasting is carried 

out with the Single Exponential Smoothing Method to obtain MSE with the following steps: 

1. Suppose 𝛼  is the smoothing parameter to be used in the Single Exponential Smoothing 

Method, 𝑋  is the secondary data of monthly purchases of Pumpitor capsules at Dewi Sri 

Karawang Hospital from 2019 to 2021 with 𝑋𝑡  is the data from 𝑋  at time 𝑡 , 𝑛  is the 

amount of data in 𝑋, and 𝐹𝑡 is the forecasting value at time 𝑡. 

2. Set 𝐹1 = 𝑋1. 

3. Obtain 𝐹𝑡 with the formula 

𝐹𝑡+1 = 𝐹𝑡 + 𝛼(𝑋𝑡 − 𝐹𝑡), ∀𝑡 = 1, 2, 3, … , 𝑛 − 1 (5) 

4. Calculate the MSE of the forecast with the formula 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑋𝑡 − 𝐹𝑡)2

𝑛

𝑡=1

 (6) 

In order to see the sensitivity of the estimation to the number of points used in the 3rd order 

Lagrange polynomial interpolation and cubic spline, several interpolations were carried out by 

selecting many points as many as 3𝑧 + 1, 𝑧 ∈ ℤ+ because the interpolation involved was 3rd order 

Lagrange polynomial interpolation. In this study, 13, 22, and 103 sets of points were explored. The 

value of the 𝛼  parameter used during interpolation includes 0 and 1 despite the Single 

Exponential Smoothing Method only allows 𝛼 values in (0,1) such that the interpolation result 

can represent the overall MSE in the interval (0,1). 

3.2. Estimation of 𝜶 Parameter Using 3rd Order Lagrange Polynomial Interpolation 

The mathematical algorithm of 𝛼 parameter estimation using 3rd order Lagrange polynomial 

interpolation is as follows: 

1. Suppose 𝑛 is many different values of 𝛼 to be used for estimation with 𝑛 = 3𝑧 + 1, 𝑧 ∈

ℤ+. Perform estimation with 𝑛 = 13, 𝑛 = 22, dan 𝑛 = 103. 

2. Obtain 𝛼𝑖 with the formula 

𝛼𝑖 =
𝑖 − 1

𝑛 − 1
, ∀𝑖 = 1, 2, 3, … , 𝑛 (7) 

3. Define 𝑓(𝑥)  as the MSE obtained from forecasting using the Single Exponential 

Smoothing Method with 𝛼 equal to 𝑥. 

4. Obtain 𝑓(𝛼𝑖) for all 𝑖 = 1, 2, 3, … , 𝑛. 
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5. Construct the function 𝑝𝑗(𝑥) which is a 3rd order Lagrange polynomial interpolant of the 

form 

𝑝𝑗(𝑥) = ∑ 𝑓(𝛼𝑘)𝐿3(𝑗−1)+4,𝑘(𝑥)

3(𝑗−1)+4

𝑘=3(𝑗−1)+1

 (8) 

where 

𝐿3(𝑗−1)+4,𝑘(𝑥) = ∏
(𝑥 − 𝛼𝑖)

(𝛼𝑘 − 𝛼𝑖)

3(𝑗−1)+4

𝑖=3(𝑗−1)+1
𝑖≠𝑘

 (9) 

on interval [𝛼3(𝑗−1)+1, 𝛼3(𝑗−1)+4]  for all 𝑗 = 1, 2, 3, … ,
𝑛−1

3
 . Lagrange polynomial 

interpolation of order 3 will produce a polynomial function of degree at most 3, so 𝑝𝑗(𝑥) 

can be written in the form of 

𝑝𝑗(𝑥) = 𝑎𝑗 + 𝑏𝑗𝑥 + 𝑐𝑗𝑥2 + 𝑑𝑗𝑥3 (10) 

 

6. Derive 𝑝𝑗(𝑥) from Equation 10, we get 

𝑝𝑗
′(𝑥) = 𝑏𝑗 + 2𝑐𝑗𝑥 + 3𝑑𝑗𝑥2 (11) 

𝑝𝑗
′(𝑥) is a polynomial function with degree up to 2, therefore this function has at most 2 

real roots. Since there are 
𝑛−1

3
 functions obtained from the fifth step, we will obtain at 

most 
2(𝑛−1)

3
 real roots. 

7. Obtain real roots 𝑥𝑟 from 𝑝𝑗
′(𝑥) for all 𝑗 = 1, 2, 3, … ,

𝑛−1

3
 with 𝑟 = 1, 2, 3, … , 𝑠 where 

𝑠 ≤
2(𝑛−1)

3
. 𝑥𝑟 alongside 𝛼𝑎 for all 𝑎 = 1, 4, 7, 10, … , 𝑛 (𝛼𝑎 are the endpoints for each 

interpolant 𝑝𝑗(𝑥)) are critical points from 𝑝𝑗(𝑥) for all 𝑗 = 1, 2, 3, … ,
𝑛−1

3
. 

8. Pick 𝑥optimal that conforms 

𝑓(𝑥optimal) = min{𝑓(𝛼𝑎)|𝑎 = 1, 4, 7, … , 𝑛} ∪ {𝑓(𝑥𝑟)}𝑟=1
𝑠  (12) 
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If 𝑥optimal = 0 , then the optimal 𝛼  is lim
𝛼→0+

𝛼 . If 𝑥optimal = 1 , then the optimal 𝛼  is 

lim
𝛼→1−

𝛼. If 𝑥optimal ≠ 0 and 𝑥optimal ≠ 1, then 𝑥optimal is the optimal 𝛼. Stop algorithm. 

 

(a) 𝑛 = 13 

 

(b) 𝑛 = 22 

 

(c) 𝑛 = 103 

Figure 2. Plot of the 3rd Order Lagrange Polynomials with 𝑛 points 

The interpolation results of the three sets of point (𝛼, MSE) by applying the aforementioned 

algorithm are shown in Figure 2. From those figures, it can be observed that if the more points are 

used, the closer the interpolant is to the overall MSE value. The optimal parameter estimation 

results by using the 3rd order Lagrange polynomial interpolation can be seen in Table 2. 
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Table 2. Parameter Estimation Results by Using the 3rd Order Lagrange Polynomial Interpolation 

and Its MSE 

𝒏 𝜶 MSE 

13 0.106 4703376.466 

22 0.075 4689771.731 

103 0.084 4685699.423 

 

 The algorithm for 𝛼 parameter estimation using 3rd order Lagrange polynomial interpolation 

can be represented as a flowchart shown in Figure 3. 

 

 

 

Figure 3. Flowchart of Estimation Using 3rd Order Lagrange Polynomial Interpolation 
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3.3. Estimation of 𝜶 Parameter using Cubic Spline Interpolation 

The mathematical algorithm of 𝛼 parameter estimation using cubic spline interpolation is as 

follows: 

1. Suppose 𝑛 is many different values of 𝛼 to be used for estimation with 𝑛 = 3𝑧 + 1, 𝑧 ∈

ℤ+. Perform estimation with 𝑛 = 13, 𝑛 = 22, dan 𝑛 = 103. 

2. Obtain 𝛼𝑖 with the formula 

𝛼𝑖 =
𝑖 − 1

𝑛 − 1
, ∀𝑖 = 1, 2, 3, … , 𝑛 (13) 

3. Define 𝑓(𝑥)  as the MSE obtained from forecasting using the Single Exponential 

Smoothing Method with 𝛼 equal to 𝑥. 

4. Obtain 𝑓(𝛼𝑖) for all 𝑖 = 1, 2, 3, … , 𝑛. 

5. Construct a cubic spline interpolant 𝑆 for 𝑓 by determining the cubic polynomial 

𝑆𝑗(𝑥) = 𝑎𝑗 + 𝑏𝑗(𝑥 − 𝛼𝑗) + 𝑐𝑗(𝑥 − 𝛼𝑗)
2

+ 𝑑𝑗(𝑥 − 𝛼𝑗)
3
 (14) 

on interval [𝛼𝑗 , 𝛼𝑗+1]  for every 𝑗 = 1, 2, 3, … , 𝑛 − 1  that satisfies the conditions 

mentioned in Definition 2.2.1. Since 𝑓′(𝑥0) and 𝑓′(𝑥𝑛) is unknown, we use the natural 

boundary variant of cubic spline interpolation. 𝑆 is a piecewise function that consists of 

𝑆𝑗(𝑥) with 𝑗 = 1, 2, 3, … , 𝑛 − 1. 

6. Derive 𝑆𝑗(𝑥) from Equation 14 for all 𝑗 = 1, 2, 3, … , 𝑛 − 1, we get 

𝑆𝑗
′(𝑥) = 𝑏𝑗 + 2𝑐𝑗(𝑥 − 𝛼𝑗) + 3𝑑𝑗(𝑥 − 𝛼𝑗)

2
 (15) 

on interval [𝛼𝑗 , 𝛼𝑗+1]  for all 𝑗 = 1, 2, 3, … , 𝑛 − 1 . 𝑆′(𝑥)  is a piecewise function that 

consists of 𝑆𝑗
′(𝑥)  with 𝑗 = 1, 2, 3, … , 𝑛 − 1 . Since 𝑆′(𝑥)  contains at most 𝑛 − 1 

quadratic polynomials, 𝑆′(𝑥) has 2(𝑛 − 1) real roots. 

7. Obtain real roots 𝑥𝑘  from 𝑆′(𝑥)  with 𝑘 = 1, 2, 3, … , 𝑠  where 𝑠 ≤ 2(𝑛 − 1) . 𝑥𝑘 

alongside 0 and 1 are the critical points of 𝑆(𝑥). 

8. Pick 𝑥optimal that conforms 

𝑓(𝑥optimal) = min{𝑓(0), 𝑓(1)} ∪ {𝑓(𝑥𝑟)}𝑟=1
𝑠  (16) 
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If 𝑥optimal = 0 , then the optimal 𝛼  is lim
𝛼→0+

𝛼 . If 𝑥optimal = 1 , then the optimal 𝛼  is 

lim
𝛼→1−

𝛼. If 𝑥optimal ≠ 0 and 𝑥optimal ≠ 1, then 𝑥optimal is the optimal 𝛼. Stop algorithm. 

 

(𝑎) 𝑛 = 13 

 

(b) 𝑛 = 22 

 

(c) 𝑛 = 103 

Figure 4. Plot of Cubic Spline Interpolant With 𝑛 points 

As with the 3rd order Lagrange polynomial interpolation, Figure 4 shows that the more points 

used, the closer the interpolant is to the overall MSE value. The optimal parameter estimation 

results of cubic spline interpolation can be seen in Table 3. 
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Table 3. Parameter Estimation Results by Using the Cubic Spline Interpolation and Its MSE 

𝒏 𝜶 MSE 

13 0.106 4704468.611 

22 0.072 4693735.900 

103 0.084 4685699.417 

 

The algorithm for 𝛼 parameter estimation using cubic spline interpolation can be represented 

as a flowchart shown in Figure 5. 

 

Figure 5. Flowchart of Estimation Using Cubic Spline Interpolation 
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3.4. Comparison of 𝜶 Values Obtained  

The MSE obtained from each method is used as a benchmark for measuring the effectiveness 

of each method in estimating 𝛼. The following is the value of 𝛼 along with the MSE of each 

method that has been done which is summarized in Table 4. 

Table 4. Estimation Results of 𝛼 and MSE from Each Method Along with Excel Solver 

𝑛 Method 𝛼 MSE 

13 3rd Order Lagrange Polynomial Interpolation 0.106 4703376.446 

Cubic Spline Interpolation 0.106 4704468.611 

22 3rd Order Lagrange Polynomial Interpolation 0.075 4689771.731 

Cubic Spline Interpolation 0.072 4693735.900 

103 3rd Order Lagrange Polynomial Interpolation 0.084 4685699.423 

Cubic Spline Interpolation 0.084 4685699.417 

- Excel Solver 0.084 4685699.423 

 

Table 4 shows that the more points used, both in the 3rd order Lagrange polynomial 

interpolation and cubic spline interpolation, the smaller the MSE value. Interestingly, the 𝛼 

parameter estimation results from cubic spline interpolation using 103 points are better than the 𝛼 

parameter estimation results from both Excel Solver and 3rd Order Lagrange Polynomial 

Interpolation with an MSE difference of 0.006. The 𝛼 values presented in Table 4 are rounded to 

4 digits hence the α values from cubic spline interpolation using 103 points and the Excel solver 

look the same. In detail, the α values obtained from cubic spline interpolation using 103 points and 

from the Excel solver are 0.0843224147 and 0.084317840359577, respectively. 

 

4. CONCLUSIONS AND FUTURE RESEARCH 

The 3rd order Lagrange polynomial interpolation and cubic spline can be used to estimate the 

smoothing parameter 𝛼  in the Single Exponential Smoothing Method. The 𝛼  parameter 

estimation results from the 3rd order Lagrange polynomial interpolation and cubic spline are 

sensitive to the number of points used. The 3rd order Lagrange polynomial interpolation produces 

an optimal 𝛼 estimate similar to the Excel solver when a sufficient number of points are used. 

However, with the same number of points, cubic spline interpolation is able to produce better 
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optimal 𝛼 estimates than the Excel solver. 

To explore the findings of this research, it is necessary to study the minimum number of points 

to estimate 𝛼 with cubic spline interpolation so that it can be generally applicable to the case of 

forecasting with the Single Exponential Smoothing Method and the use of multivariate 

interpolation to estimate the smoothing parameters in Double Exponential Smoothing and Triple 

Exponential Smoothing. 
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