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Abstract. In this study, a deterministic model for the transmission of cholera via fly vectors is derived and exam-

ined. We consider in detail the human population, vector/houseflies population, and the environmental reservoir.

The study splits the class of infected individuals into symptomatic and asymptomatic infected individuals and in-

corporates the exposed compartment in the vector population to build a system of ordinary differential equations.

Theoretically, the developed model is analysed by studying the stability of equilibrium points. The results of the

analysis shows that there exist a locally stable disease free equilibrium point, E0 when R0 < 1 and endemic equi-

librium, E∗ when R0 > 1. In an attempt to examine the effect of some parameters of the dynamic of the disease

sensitivity analysis is employed. Finally, numerical simulations are also performed to verify the analytic results.

The simulation study has revealed that reducing the rate of exposure to contaminated water and each infected

vector’s contribution to the aquatic environment is necessary to achieve a significant and effective control.

Keywords: infectious disease; mathematical model; basic reproduction number; stability analysis; numerical

simulation.
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1. INTRODUCTION

Globally, the spread of enteric diseases is a serious threat to humanity. Enteric diseases are

infections produced by bacteria or viruses that enter the body through the mouth or digestive
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tract. These infections are mainly brought on by consuming contaminated foods or liquids

[1]. Food-borne diseases are the major global public health concern, outpacing all other dis-

eases. Millions of individuals die from these diseases, and they have a significant negative

influence on the social well-being of communities [2]. More than 400,000 people died from

food-borne illnesses in 2015, according to a WHO report, with children under five accounting

for one-third of all deaths [3]. When treating an infected individual, medical institutions typ-

ically consume a sizable percentage of budgets in most countries, which directly affects such

countries ’ economies [4]. Cholera is a food-borne enteric disease caused by a bacterium (Vibrio

cholera). Globally, there are thought to be 1.6% to 3.5% cholera-related deaths and 1.3 to 4.0

million cases of the disease annually [5]. Food-borne diseases like cholera are more common

in developing countries due to lack of education, unhygienic conditions, poor drainage system

and abundance of carriers [6]. By promoting awareness of proper food storage practices and

enhancing environmental sanitation, the development of food-borne diseases can be curbed [4].

Food-borne diseases are also spread by vectors, sometimes referred to as carriers, such as

house flies, ticks, mites, etc. Some studies show that the common housefly, or flies in general,

can act as mechanical vectors of many kind of pathogens such as bacteria [7], protozoa [8],

and helminth eggs [9]. Cholera is also one of the vector-borne diseases which spread to human

population due to the presence of house flies [10]. Numerous sources have indicated an in-

creased risk of cholera during fly-filled periods of high fly density [7, 11]. It supports the notion

that flies are also a significant carrier of bacteria that cause cholera. It should be mentioned that

houseflies spread disease-causing germs to human food sources. Flies typically consume human

food, trash, animal excrement, etc. They have the ability to absorb food in two different forms:

liquid or solid, soluble in salivary gland secretions. House flies carry disease-causing germs on

their bodies and feet when they rest on domestic waste. These bacteria then find their way into

human food sources [12]. In essence, human food becomes contaminated when cholera-causing

germs are carried by flies and introduced into the food supply [13, 14]. Susceptible population

get infected with cholera as a result of eating this contaminated food [15]. Despite the lack

of direct human-housefly interaction, the environment’s housefly population nevertheless con-

tributes to the overall number of affected people [4]. Approximately one thousand vibrios per
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gram of stool are shed by the infected vector in their stool for only one day, according to certain

studies [16]. Thus, vectors (e.g. house flies) can play a crucial role in the transmission of the

cholera. The way house flies spread the cholera virus to people is by feeding, crawling on, and

laying their eggs on human food [17].

A number of mathematical models have been developed to understand the complex dynamics

of cholera [18, 19, 20, 21]. An environmental class for bacteria is included in the Susceptible

(S) -Infectious (I) - Recovered (R) - Bacterial concentration in contaminated water (B) type

model [18], which may be seen as the bacterial content in the water supply integrated into a

SIR model to create a combined human - environment epidemiological system. This model was

used to simulate the outbreaks in Zimbabwe and Haiti [22]. The Susceptible (S) - Symptomatic

infectious (I) - Asymptomatic infectious (I) - Recovered (R) - Hyperinfectious Bacterial con-

centration (B) - Lowinfectious Bacterial concentration (B) model was developed by extending

the SIRB model to include a hyperinfectious bacterial class and an asymptomatic infected hu-

man class [19]. Other Susceptible (S) - Symptomatic infectious (I) - Asymptomatic infectious

(I) - Recovered (R) - Bacterial concentration (B) model [20] and the Susceptible (S) - Partial im-

munity class (S) - Symptomatic infectious (I) - Asymptomatic infectious (I) - Recovered from

symptomatic infection (R) - Recovered from asymptomatic infection (R) - Bacterial concen-

tration (B) model [21] were developed with the intent of having to replace the hyperinfectious

bacterial class in the context of the SIIRBB model with person-to-person transmission and to

allow for the possibility that the ability to obtain partial immunity may influence long-term

cholera dynamics, respectively. The dynamics of cholera are also described mathematically

in [23], along with how prevention measures including vaccination, treatment, sanitation, and

awareness campaigns help keep the disease under control.

Many studies have been conducted in the past to investigate the dynamics of cholera trans-

mission, both directly through human-to-human contact and indirectly through the consumption

of contaminated water. However, the impact of fly vectors on the transmission of cholera dis-

eases has received less attention. Fly vectors are among the species with high growth rate that

are responsible for the worldwide spread of diseases like cholera [15]. Nowadays, food-borne

diseases are a major threat to developing nations and they mainly spread due to the presence
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of fly vectors (a kind of carrier). To understand the spread of these diseases, a mathematical

model considering the role of houseflies in cholera transmission dynamics proposed in [1]. A

single compartment is used in this mathematical model to represent an infected individual, and

the exposed vector population is not taken into consideration. However, it could be preferable

to split the infected individuals into asymptomatic and symptomatic infected individuals in or-

der to observe the contribution of vibrio cholerae to the environment from each compartment.

Since exposed vectors do not become infectious right away, adding the exposed compartment to

the vector population to the model makes it somewhat more realistic and aids in understanding

the dynamics of disease spread. In this study we extend the deterministic model developed in

[1], by splitting infected compartment into symptomatic infected and asymptomatic infected

individuals. Additionally, the exposed compartment is included in the vector population. The

model also assumes the division of the environment as contaminated and uncontaminated or

safe. Susceptible population will get infected from uncontaminated or safe environment as the

vectors can transmit the bacterial pathogen to this environment.

2. MODEL FORMULATION

We formulate the basic model for the dynamics of the houseflies-cholera model with two

host populations, the human (individuals) population (Nh) and the vector population (Nv). The

model also incorporates the indirect environmental transmission, and the dynamics of the con-

centration of free-living cholera vibrios in contaminated/unsafe and uncontaminated/safe envi-

ronments. The total human population (Nh) is subdivided into four compartments depending on

the epidemiological status of individuals namely; susceptible individuals Sh, symptomatic in-

fected individuals Ish, asymptomatic infected individuals Iah and recovered individuals Rh, and

then Nh = Sh(t)+ Ish(t)+ Iah(t)+Rh(t) at any given time t. Similarly the total vector population

(Nv) is subdivided into three compartments; susceptible vectors Sv, exposed vectors Ev and in-

fected vectors Iv and then Nv = Sv(t)+Ev(t)+ Iv(t) at any given time t. Bacterial concentrations

in contaminated/unsafe water C(t) and bacterial concentrations in non-contaminated/safe water

P(t) are the bacteria (pathogen) population. The housefly vector gets the infection from con-

taminated/unsafe environment then it transmits it to non-contaminated/safe environment. The

following assumptions are imposed in formulating the model:
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(1) There is neither immigration nor emigration; the population is closed.

(2) The contribution rate of shedding bacteria to the Vibrio cholera population in the aquatic

environment is ξ1 and ξ2, respectively, for both symptomatic infected humans (Ish) and

asymptomatic infected humans (Iah).

(3) The total human and vector population are constant.

(4) Human birth and death rates occur at different rates (i.e., bh and µh) respectively.

(5) Vectors’ birth and death rates occur at different rates (i.e., bv and µv) respectively.

(6) The population is homogeneously mixed i.e., each individual within the population is

susceptible to disease.

The schematic of the model is presented in Figure 1, and the description of model parameters

is in Table 1.
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FIGURE 1. Model flowchart showing the compartments.
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TABLE 1. Parameters and their descriptions of the model.

Parameter Description

bh Birth or recruitment rate by human

bv Birth or recruitment rate by vector

µh Natural human death rate

µv Natural vector death rate

β Rates of ingesting vibrios from the safe environment by human

k1 Concentration of the bacteria i.e. vibrio cholerae in pure/safe water

k2 Concentration of the bacteria i.e. vibrio cholerae in unsafe water

ξ1 Rate of shedding bacteria from Is(t) into the environment

ξ2 Rate of shedding bacteria from Ia(t) into the environment

α1 Rate of contribution to (Vibrio cholera) in the both environments by vectors

ε Modification parameter

d Disease induced death rate

γ1 Recovery rate of symptomatic infected individuals

γ2 Recovery rate of asymptomatic infected individuals

q Probability of new infected from Sh to be symptomatic

r Probability of new infected from Sh to be asymptomatic in which r = 1−q

ρ Infectious rate of a vector

λ1 Rates of ingesting vibrios from the non-contaminated/safe environment to vectors

λ2 Rates of ingesting vibrios from the contaminated/unsafe environment to vector

δ1 Vibrios net death rate in the contaminated/unsafe environment

δ2 Vibrios net death rate in the non-contaminated/safe environment

It is assumed that the susceptible individuals who contract disease at rate β acquire infection

with cholera due to the environment-to-human transmission represented by a logistic function.

The vector gets the infection from contaminated/unsafe environment then it transmits it to non-

contaminated/safe environment. Using the flowchart of the model framework (Figure 1), we

formulate the following ordinary differential equations (ODEs) for the model:

dSh

dt
= bhNh−

βPSh

k1 +P
−µhSh,(1)

dIsh

dt
=

qβPSh

k1 +P
− (µh +d + γ1)Ish,(2)

dIah

dt
=

rβPSh

k1 +P
− (µh + γ2)Iah,(3)

dRh

dt
= γ1Ish + γ2Iah−µhRh,(4)
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dSv

dt
= bvNv−

λ1PSv

k1 +P
− λ2CSv

k2 +C
−µvSv,(5)

dEv

dt
=

λ1PSv

k1 +P
+

λ2CSv

k2 +C
− (µv +ρ)Ev,(6)

dIv

dt
= ρEv−µvIv,(7)

dC
dt

= ξ1Ish +ξ2Iah +α1Iv−δ1C,(8)

dP
dt

= εα1Iv−δ2P.(9)

In the above Equations (1) to (9), we assume that each susceptible individual has an equal

chance of acquiring cholera through the recruitment rate bh and consuming water with Vibrio

cholera in the reservoir at the force of infection βP
k1+P and each susceptible vector has an equal

chance of acquiring cholera through the recruitment rate bv and consuming water with Vibrio

cholera in the reservoir at the force of infection λ1P
k1+P and λ2C

k2+C , where P
k1+P and C

k2+C are the

ratios of Vibrio cholera concentration and k1 and k2 are the concentrations of Vibrio cholera in

the water reservoir that will make a possibility of 50% of the susceptible population infected

[24].

3. MATHEMATICAL ANALYSIS OF THE MODEL

First, in order to assess the biological significance of the model, we establish the positivity

and boundedness of the solution. We then demonstrate that all solutions of Equations (1) to (9)

are positive for all t ≥ 0 and are drawn to that region.

3.1. Positivity and Boundedness of Solutions. In the following, we show that the so-

lutions of system Equations (1) to (9) are positive with the non-negative initial condi-

tions. We also, show that the feasible solutions are bounded in a region such that Φ =

(Sh, Ish, Iah,Rh,Sv,Ev, Iv,C,P) ∈ R9
+.

Theorem 3.1. The solutions (Sh(t), Ish(t), Iah(t),Rh(t),Sv(t),Ev(t), Iv(t),C(t),P(t)) of model of

Equations (1) to (9) are non-negative for all t > 0 with the non-negative initial conditions.

Proof. System of Equations (1) to (9) can be put into the matrix form:

X
′
= M(X),(10)
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where X = (Sh, Ish, Iah,Rh,Sv,Ev, Iv,C,P)T ∈ R9 and M(X) is given by

M(X) =



M1(X)

M2(X)

M3(X)

M4(X)

M5(X)

M6(X)

M7(X)

M8(X)

M9(X)



=



bhNh− βPSh
k1+P −µhSh

qβPSh
k1+P − (µh +d + γ1)Ish

rβPSh
k1+P − (µh + γ2)Iah

γ1Ish + γ2Iah−µhRh

bvNv− λ1PSv
k1+P −

λ2CSv
k2+C −µvSv

λ1PSv
k1+P + λ2CSv

k2+C − (µv +ρ)Ev

ρEv−µvIv

ξ1Ish +ξ2Iah +α1Iv−δ1C

εα1Iv−δ2P



.(11)

We have

dSh

dt
|Sh=0 = bhNh > 0,

dIsh

dt
|Ish=0 =

qβPSh

k1 +P
≥ 0,

dIah

dt
|Iah=0 =

rβPSh

k1 +P
≥ 0,

dRh

dt
|Rh=0 = γ1Ish + γ2Iah ≥ 0,

dSv

dt
|Sv=0 = bvNv > 0,
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dEv

dt
|Ev=0 =

λ1PSv

k1 +P
+

λ2CSv

k2 +C
≥ 0,

dIv

dt
|Iv=0 = ρEv ≥ 0,

dC
dt
|C=0 = ξ1Ish +ξ2Iah +α1Iv ≥ 0,

dP
dt
|P=0 = εα1Iv ≥ 0,

Therefore,

Mi(X)|Xi(t)=0,Xi ∈C9
+ ≥ 0, i = 1,2,3,4,5,6,7,8,9.(12)

Due to lemma 2 in [25], any solution of system of Equations (1) to (9) is such that X(t) ∈ R9
+

for all t ≥ 0. This completes the proof of Theorem 3.1.

Theorem 3.2. The solutions for the model system of Equations (1) to (9) are contained and

remain in the region Φ for all time t ≥ 0.

Proof. Consider the total human population

Nh(t) = Sh(t)+ Ish(t)+ Iah(t)+Rh(t)

its time derivative satisfies

dNh

dt
=

dSh

dt
+

dIsh

dt
+

dIah

dt
+

dRh

dt
.(13)

Substituting the derivatives from Equations (1) to (9) to Equation (13) we get

dNh(t)
dt

= bhNh−µhSh−µhIsh−µhIsh−µhIah−µhRh

= b̂h− (Sh(t)+ Ish(t)+ Iah(t)+Rh(t))µh−µhIsh

= b̂h−Nh(t)µh−µhIsh

≤ b̂h−Nh(t)µh

dNh(t)
dt

+Nh(t)µh ≤ b̂h.

The integration factor I.F = eµht . The solution becomes Nh(t) ≤ b̂h
µh

+Ce−µht , where C is the

constant. Then

lim
t→∞

Nh(t)≤
b̂h

µh
.
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Consider the total vector population

Nv(t) = Sv(t)+Ev(t)+ Iv(t)

its time derivative satisfies

dNv(t)
dt

=
dSv

dt
+

dEv

dt
+

dIv

dt
.(14)

Substituting the derivatives from Equations (1) to (9) to Equation (14) we get

dNv(t)
dt

= bvNv−µvSv−µvEv−µvIv

= b̂v− (Sv(t)+Ev(t)+ Iv(t))

= b̂v−Nv(t)µv

≤ b̂v−Nv(t)µv

dNv

dt
+Nv(t)µv ≤ b̂v.

The integration factor I.F = eµvt . The solution becomes Nv(t) ≤ b̂v
µv

+Ce−µvt , where C is the

constant. Then

lim
t→∞

Nv(t)≤
b̂v

µv
.

However, for the pathogen population the boundedness are shown as follows
dC
dt = ξ1Ish +ξ2Iah +α1Iv−δ1C , but Ish ≤ b̂h

µh
, Iah ≤ b̂h

µh
, and Iv ≤ b̂v

µv
. Then

dC
dt ≤ ξ1

b̂h
µh

+ξ2
b̂h
µh

+α1
b̂v
µv
−δ1C

By integrating this equation (I.F = eδ1t), we get this solution

C(t)≤ (ξ1+ξ2)b̂h
δ1µh

+ (α1)b̂v
δ1µv

+Aeδ1t , where A is a constant. Then lim
t→∞

C(t)≤ (ξ1 +ξ2)b̂h

δ1µh
+
(α1)b̂v

δ1µv
.

dP
dt = εα1Iv−δ2P , but Iv ≤ b̂v

µv
. Then

dP
dt ≤ εα1

b̂v
µv
−δ2P

By integrating this equation (I.F = eδ2t), we get this solution

P(t)≤ (εα1)b̂v
δ2µv

+Aeδ2t , where A is a constant. Then lim
t→∞

P(t)≤ (εα1)b̂v

δ2µv
.

Hence, we have that

0≤ Nh(t)≤ b̂h
µh
,0≤ Nv(t)≤ b̂v

µv
,0≤C(t)≤ (ξ1+ξ2)b̂h

δ1µh
+ (α1)b̂v

δ1µv
, and 0≤ P(t)≤ (εα1)b̂v

δ2µv
which im-

plies that Nh , Nv all other variables (Sh, Ish, Iah,Rh,Sv,Ev, Iv,C,P) of model Equations (1) to (9)

are bounded and all the solutions starting in Φ approach, enter or stay in Φ. This completes the

proof.
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3.2. Existence of the disease-free equilibrium. In this section, we analysed system of Equa-

tions (1) to (9) in order to obtain the equilibrium points of the system and its stability. Let

E =(S∗h, I
∗
sh, I
∗
ah,R

∗
h,S
∗
v ,E
∗
v , I
∗
v ,C

∗,P∗) be the steady-state of system of Equations (1) to (9). Then,

the equilibrium points are obtained by setting the right hand sides of system Equations (1) to (9)

to zero, that is;

bhNh−
βPSh

k1 +P
−µhSh = 0,

qβPSh

k1 +P
− (µh +d + γ1)Ish = 0,

rβPSh

k1 +P
− (µh + γ2)Iah = 0,

γ1Ish + γ2Iah−µhRh = 0,

bvNv−
λ1PSv

k1 +P
− λ2CSv

k2 +C
−µvSv = 0,(15)

λ1PSv

k1 +P
+

λ2CSv

k2 +C
− (µv +ρ)Ev = 0,

ρEv−µvIv = 0,

ξ1Ish +ξ2Iah +α1Iv−δ1C = 0,

εα1Iv−δ2P = 0.

The population will never be extinct as long as the human recruitment term bhNh and the house-

fly birth term bvNv are not zero. This implies that there is no trivial equilibrium point, thus

(S∗h, I
∗
sh, I
∗
ah,R

∗
h,S
∗
v ,E
∗
v , I
∗
v ,C

∗,P∗) 6= (0,0,0,0,0,0,0,0,0). The model system of Equations (1)

to (9) has a steady state in the absence of cholera disease, that is, I∗sh = I∗ah = S∗v = E∗v = I∗v .

Hence, the disease-free equilibrium (DFE) denoted as E0, of the model system Equations (1)

to (9) is given by

E0 = (S∗h, I
∗
sh, I
∗
ah,R

∗
h,S
∗
v ,E
∗
v , I
∗
v ,C

∗,P∗)

= (
bhNh

µh
,0,0,0,

bvNv

µv
,0,0,0,0).(16)

3.3. Reproduction number. In epidemiology, a key parameter is the basic reproduction num-

ber (sometimes called basic reproductive rate, basic reproductive ratio) denoted by R0, defined
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as the average number of secondary infectious cases transmitted by a single primary infectious

cases introduced into a whole susceptible population [26].

To compute R0, we use the next generation matrix approach as described in [27] and obtained

by taking the largest (dominant) eigenvalue value (spectral radius) of[
∂Fi(E0)

∂Xi

][
∂Vi(E0)

∂Xi

]−1

,(17)

where Fi is the rate of appearance of new infection in compartment i, Vi is the net transition be-

tween compartments, E0 is the disease free equilibrium and Xi stands for the terms in which the

infection is in progression. In an attempt to calculate R0 for system of Equations (1) to (9), we

start from the infected compartments for both populations; Ish, Iah,Ev, Iv,C,P and then followed

by the uninfected classes; Sh,Rh,Sv. The two populations thus give

dIsh

dt
=

qβPSh

k1 +P
− (µh +d + γ1)Ish,

dIah

dt
=

rβPSh

k1 +P
− (µh + γ2)Iah,

dEv

dt
=

λ1PSv

k1 +P
+

λ2CSv

k2 +C
− (µv +ρ)Ev,

dIv

dt
= ρEv−µvIv,

dC
dt

= ξ1Ish +ξ2Iah +α1Iv−δ1C,(18)

dP
dt

= εα1Iv−δ2P,

dSh

dt
= bhNh−

βPSh

k1 +P
−µhSh,

dRh

dt
= γ1Ish + γ2Iah−µhRh,

dSv

dt
= bvNv−

λ1PSv

k1 +P
− λ2CSv

k2 +C
−µvSv.

From Equation (18), we show the rate of appearance of new infections in compartments; Ish, Iah,

and Ev using the next generation matrix as
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f =



qβPSh
k1+P
rβPSh
k1+P

λ1PSv
k1+P + λ2CSv

k2+C

0

0

0


.(19)

Differentiating the matrix above, with respect to the model variables using Jacobian matrix

method at the disease-free equilibrium point E0, where Nh(t)≤ b̂h
µh

and Nv(t)≤ b̂v
µv

to get Jaco-

bian matrix;

F =



0 0 0 0 0 qβS∗h
k1

0 0 0 0 0 rβS∗h
k1

0 0 0 0 λ2S∗v
k2

λ1S∗v
k1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,(20)

where S∗h =
b̂h
µh

= bhNh
µh

andS∗v =
b̂v
µv

= bvNv
µv

.

Calculating the transfer of individuals out of the compartments of the system Equation (18) by

all other means, we have

v =



(µh +d + γ1) Ish

(µh + γ2) Iah

(µv +ρ)Ev

µvIv−ρEv

δ1C− [ξ1Ish +ξ2Iah +α1Iv]

δ2P− εα1Iv


.(21)
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Hence, the Jacobian matrix of V evaluated at E0 is given by

V =



a1 0 0 0 0 0

0 a2 0 0 0 0

0 0 a3 0 0

0 0 −ρ µv 0 0

−ξ1 −ξ2 0 −α1 δ1 0

0 0 0 −εα1 0 δ2


,(22)

where, a1 = µh+d+ γ1,a2 = µh+ γ2,a3 = µv+ρ . Using the next-generation matrix approach,

the basic reproduction number R0 of the model is computed as the spectral radius ρ
(
F×V−1)

of the next generation matrix, i.e.

R0 = ρ
(
F×V−1).

Now the expression for the basic reproduction number,R0 , becomes the sum of two quantities,

i.e.

R0 = R0h +R0v

where, quantities R0h =
√

α1ρbhβελ2(a1rξ2+a2qξ1)
K1K2a1a2δ1δ2

and R0v =
α1ρ(K1δ2λ2+K2δ1ελ1)

√
(bv)

3

K1K2δ1δ2

√
(a3µv)

3 are contri-

butions of the human and vector/houseflies infectious classes, respectively.

3.4. Global stability analysis of disease-free equilibrium (DFE). Lemma. The DFE sys-

tem of Equations (1) to (9) is locally asymptotically stable (LAS) whenever R0 < 1, and unstable

whenever R0 > 1.

This suggests that when R0 < 1 and the initial sizes of the host populations in the model are

in the DFE’s basin of attraction, the cholera can be eradicated from the community. However,

to guarantee that the disease will be eliminated independently of the initial sizes of host popula-

tions, the DFE must be global asymptotically stable (GAS) of the DFE when R0 < 1 as showing

in the following theorem.

Theorem 3.3. The DFE P0 system of Equations (1) to (9) is GAS if R0 < 1 in the compact set

Γ.

Proof. Using Castillo-Chavez theorem [28], model of Equations (1) to (9) can be written in

the form:
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dX
dt

= F(X ,Z),

dZ
dt

= G(X ,Z) = G(X ,0) = 0,(23)

where X and Z denote the uninfected and infected compartments respectively, that is, X =

(Sh,Rh,Sv) and Z = (Ish, Iah,Ev, Iv,C,P). We begin by showing condition i of Castillo-Chavez

theorem [28] as:

F(X ,0) =


bhNh−µhSh

−µhRh

bvNv−µvSv

 ,(24)

and solving these three ordinary differential equations gives

Sh(t) =
bhNh

µh
+S(0)e−µht ,

Rh(t) = R(0)e−µht ,

Sv(t) =
bvNv

µv
+S(0)e−µvt .

Thus, Sh(t)→ bhNh
µh

,Sv(t)→ bvNv
µv

, and Rh(t)→ 0 as t → ∞, regardless of the values of initial

conditions. Thus, P0 is globally asymptotically stable. Next, applying Castillo-Chavez theorem

[28] to our cholera model of Equations (1) to (9) to show condition ii:

G(X ,Z) =



qβPSh
k1+P − (µh +d + γ1)Ish

rβPSh
k1+P − (µh + γ2)Iah

λ1PSv
k1+P + λ2CSv

k2+C − (µv +ρ)Ev

ρEv−µvIv

ξ1Ish +ξ2Iah +α1Iv−δ1C

εα1Iv−δ2P


(25)
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and

A =



−(µh +d + γ1) 0 0 0 0 qβbhNh
K1µh

0 −(µh + γ2) 0 0 0 rβbhNh
K1µh

0 0 −(µv +ρ) 0 λ2bvNv
K2µv

λ1bvNv
K1µv

0 0 ρ −µv 0 0

ξ1 ξ2 0 α1 −δ1 0

0 0 0 εα1 0 −δ2


which is clearly an M-matrix. Meanwhile, we find

Ĝ(X ,Z) =



qβPbhNh
k1µh

− qβPSh
k1+P

rβPbhNh
k1µh

− rβPSh
k1+P

λ2bvNvC
k2µh

− λ2SvC
k2+C + λ1bvNvP

k1µv
− λ1SvP

k1+P

0

0

0


,

and since 0 ≤ Sh ≤ bhNh
µh

and 0 ≤ Sv ≤ bvNv
µv

, then it follows that Ĝ(X ,Z) ≥ 0. Thus P0 is GAS

whenever R0 < 1. This completes the proof.

3.5. Existence and stability of the endemic equilibrium Point. The endemic equi-

librium points of the model system of Equations (1) to (9) is given by E∗ =(
S∗h, I

∗
sh, I
∗
ah,
∗ ,S∗v ,E

∗
v , I
∗
v ,C

∗,P∗
)

with Ish 6= 0, Iah 6= 0,Ev 6= 0, Iv 6= 0,C 6= 0 and P 6= 0. It can

be obtained by equating the RHS of each equation of the model system Equations (1) to (9)

equal to zero, which exists for R0 > 1.

At equilibrium, dSh
dt = dIsh

dt = dIah
dt = dRh

dt = dSv
dt = dEv

dt = dIv
dt = dC

dt = P
dt = 0,we therefore equate

Equations (1) to (9) to zero.

S∗h =
bhNh

µh
− (µh+d+γ1)I∗sh

qµh

I∗sh =
bhNh−µhS∗h−(µh+γ2)I∗ah

µh+d+γ1

I∗ah =
bhNh−µhS∗h−(µh+d+γ1)I∗sh

µh+γ2

R∗h =
γ1I∗sh+γ2I∗ah

µh

S∗v =
bvNv
µv
− (µv+ρ)E∗v

µv
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E∗v = bvNv
µv+ρ

− µvS∗v
µv+ρ

I∗v =
ρE∗v
µv

C∗ = ξ1I∗sh+ξ2I∗ah+α1I∗v
δ1

P∗ = εα1I∗v
δ2

Stability of the endemic equilibrium can be proved by considering the Lyaponuv function de-

fined as;

L(S∗h, I
∗
sh, I
∗
ah,
∗ ,S∗v ,E

∗
v , I
∗
v ,C

∗,P∗) =
(

Sh−S∗h−S∗h ln
(

S∗h
Sh

))
+

(
Ish− I∗sh− I∗sh ln

(
I∗sh
Ish

))
+

(
Iah− I∗ah− I∗ah ln

(
I∗ah
Iah

))
+

(
Rh−R∗h−R∗h ln

(
R∗h
Rh

))
+

(
Sv−S∗v−S∗v ln

(
S∗v
Sv

))
+

(
Ev−E∗v −E∗v ln

(
E∗v
Ev

))
+

(
Iv− I∗v − I∗v ln

(
I∗v
Iv

))
+

(
C−C∗−C∗ ln

(
C∗

C

))
+

(
P−P∗−P∗ ln

(
P∗

P

))


The derivative of L along the solution of the system is directly;

L
dt

=

(
Sh−S∗h

Sh

)
dSh

dt
+

(
Ish− I∗sh

Ish

)
dIsh

dt
+

(
Iah− I∗ah

Iah

)
dIah

dt

+

(
Rh−R∗h

Rh

)
dRh

dt
+

(
Sv−S∗v

Sv

)
dSv

dt
+

(
Ev−E∗v

Ev

)
dEv

dt

+

(
Iv− I∗v

Iv

)
dIv

dt
+

(
C−C∗

C

)
dC
dt

+

(
P−P∗

P

)
dP
dt

L
dt

=

(
Sh−S∗h

Sh

)[
bhNh−

βPSh

k1 +P
−µhSh

]
+

(
Ish− I∗sh

Ish

)[
qβPSh

k1 +P
− (µh +d + γ1)Ish

]
+

(
Iah− I∗ah

Iah

)[
rβPSh

k1 +P
− (µh + γ2)Iah

]
+

(
Rh−R∗h

Rh

)
[γ1Ish + γ2Iah−µhRh]

+

(
Sv−S∗v

Sv

)[
bvNv−

λ1PSv

k1 +P
− λ2CSv

k2 +C
−µvSv

]
+

(
Ev−E∗v

Ev

)[
λ1PSv

k1 +P
+

λ2CSv

k2 +C
− (µv +ρ)Ev

]
+

(
Iv− I∗v

Iv

)
[ρEv−µvIv]+

(
C−C∗

C

)
[ξ1Ish +ξ2Iah +α1Iv−δ1C]

+

(
P−P∗

P

)
[εα1Iv−δ2P]
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By expansion and simplification;
L
dt = P−Q

where P are the positive terms and Q are the negative terms, such that;

P = bhNh−
βPS∗h
k1 +P

+µhS∗h +
qβPSh

k1 +P
+(µh +d + γ1)I∗sh

+
rβPSh

k1 +P
+(µh + γ2)I∗sh + γ1Ish + γ2Iah +µhR∗h

+bvNv−
λ1PS∗v
k1 +P

+
λ2CS∗v
k2 +C

+µvS∗v +
λ1PSv

k1 +P

+
λ2CSv

k2 +C
+(µv +ρ)E∗v +ρEv +µvI∗v +ξ1Ish

+ξ2Iah +α1Iv +δ1C∗+ εα1Iv +δ2P∗

Q =− βPSh

k1 +P
−µhSh−

bhNhS∗h
Sh

− (µh +d + γ1)Ish−
qβPShI∗sh
(k1 +P)I∗sh

−(µh + γ2)Iah−
rβPShI∗ah
(k1 +P)I∗ah

−µhRh−
γ1IshR∗h

Rh
−

γ2IahR∗h
Rh

−λ1PSv

k1 +P
− λ2CSv

k2 +C
−µvSv−

bvNvS∗v
Sv

− (µv +ρ)Ev

− λ1SvPE∗v
(k1 +P)Ev

− λ2SvCE∗v
(k2 +C)Ev

−µvIv−
ρEvI∗v

Iv
−δ1C

−ξ1IshC∗

C
− ξ2IahC∗

C
− α1IvC∗

C
−δ2P− εα1IvP∗

P

If P < Q, then dL
dt ≤ 0.dL

dt = 0 if and only if Sh = S∗h, Ish = I∗sh, Iah = I∗ah,Rh = R∗h,Sv = S∗v ,Ev =

E∗v , Iv = I∗v ,C =C∗,andP = P∗.

The largest invariant set in (Sh, Ish, Iah,Rh,Sv,Ev, Iv,C,P) ∈Θ : dL
dt = 0 is a singleton of E∗,

where E∗ is the endemic equilibrium. This implies that the endemic equilibrium is globally

asymptotically stable [29, 30].

4. SENSITIVITY ANALYSIS

Sensitivity analysis is employed to ascertain the role that model parameters have in the spread

of disease. In relation to the model parameters, we compute the sensitivity indices of the basic

reproductive number R0. With the use of these indices, we can determine the relative importance

of each parameter for the spread of the disease and how to focus on intervention efforts. Since
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errors are frequently made in data collection and assumed model parameter values, sensitivity

analysis is primarily used to characterize how robustly a model forecasts to parameter values

[31]. Here, we quantify the changes in the model parameters by doing a sensitivity analysis of

the basic reproductive number, R0. Now from this, we can identify the parameters that have a

high impact on the basic reproduction number and on the spread of disease. Sensitivity indices

allow us to quantify how much a state variable changes in relation to a changing parameter.

Sensitivity analyses can be performed in a variety of methods, and the results yield sensitivity

rankings that vary slightly [32]. The normalized forward sensitivity index, commonly known as

elasticity, was employed. The ratio of the relative change in the R0 to the relative change in the

parameter is the normalized forward sensitivity index of a variable with regard to a parameter

[32, 33]. The normalized forward sensitivity index of R0 with a parameter P is defined as

follows:

SR0
P =

(
∂R0

∂P

)
×
(

P
R0

)
.(26)

The values shown in Table 3 for the parameters are considered baseline values and are utilized

to evaluate the sensitivity indices of specific parameters that are accountable for the spread of

cholera. Therefore, the following Table 2 lists the sensitivity indices showing the contribution

of each parameter to the basic reproduction number (R0) given that the reproduction number is

less than unity.

From the above Table 2, it has been noted that these parameters have either positive or neg-

ative effects on the basic reproduction number (R0). We can observe that the parameters bv,

α1, ρ , and λ2 respectively have the most positive influence on R0. This means that the increase

of these parameters while keeping other parameters constant will increase the value of the ba-

sic reproduction number (R0) leading to an increase of the spread of cholera diseases and vice

versa. For example, SR0
α1 = 0.8293 means that increasing (or decreasing) α1 by 10% increases

(or decreases) the value of R0 by 8.3%. We likewise observe that the parameters k2, δ1, δ2, and

k1 respectively have the most negative impact on R0. This implies that the increase of these

parameters while keeping the other constant will decrease the value of the basic reproduction

number (R0), meaning that they will decrease the endemicity of the cholera diseases in the

population and vice versa.
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TABLE 2. Sensitivity indices of R0 with respect to the model parameters.

Parameter Sensitivity Index (+ve/-ve)

bh 0.0412

bv 1.2294

µh -0.0026

µv -0.0068

β 0.0905

k1 -0.1009

k2 -0.8034

ξ1 0.0849

ξ2 0.0313

α1 0.8293

ε 0.0911

d -0.0075

γ1 -0.0008

γ2 -0.0107

q 0.0849

r 0.0313

ρ 0.6950

λ1 0.0026

λ2 0.1490

δ1 -0.4161

δ2 -0.3602

5. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we perform a numerical simulation of model system Equations (1) to (9)

to confirm our analytical results and to illustrate the asymptotic behaviour of the model. The

systems of differential equations were solved over a specific period of time period using Range-

Kutta method embedded in MATLAB. The parameter values used in the simulations are found

in the Table 3 with the following initial conditions:Nh(0) = 10,000, Sh(0) = 9,935, Ish(0) = 15,
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Iah(0) = 50, Rh(0) = 0, C(0) = 7000, P(0) = 2000, Nv(0) = 25,000, Sv(0) = 24,400, Ev(0) =

400, Iv(0) = 200.

TABLE 3. Values for parameters of the cholera model.

Parameter Base line value(R0 < 1) Base line value(R0 > 1) Reference

bh 10 day−1 10 day−1 [34]

bv 1.066 day−1 1.066 day−1 Assumed

µh 0.005 year−1 0.005 year−1 [35]

µv 0.189 day−1 0.189 day−1 [36]

β 0.2143 day−1 0.2143 day−1 [37]

k1 500 cells/day 500 cells/day Assumed

k2 500 cells/day 500 cells/day [35]

ξ1 20 cell/ml per day 100 cell/ml per day [38]

ξ2 20 cell/ml per day 100 cell/ml per day Assumed

α1 12 cells mL−1d−1 per vector 12 cells mL−1d−1 per vector [1]

ε 0.4 0.89 Assumed

d 0.015 0.015 [34]

γ1 0.14 per day 0.14 per day [39]

γ2 0.5 per day 0.5 per day [39]

q 0.7 0.7 [24]

r 0.3 0.3 [24]

ρ 0.8 0.95 Assumed

λ1 0.1 0.57 Assumed

λ2 0.9 0.99 Assumed

δ1 0.4 day−1 0.4 day−1 [40]

δ2 0.4 day−1 0.4 day−1 Assumed

Population dynamics

We examine the population dynamics for both human and vector population with constant

parameter values as shown in Figure 2 and Figure 3, respectively. We observe in Figure 2(a - c)

that at disease-free equilibrium, the system converges and is globally stable whenever R0 < 1.

This implies that the population is eradicated and also evidence to Theorem 3.3. On the other

hand, in Figure 3(a - c), the disease-free equilibrium of the system becomes unstable as R0 > 1.
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FIGURE 2. Population Dynamics for R0 = 0.75
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FIGURE 3. Population Dynamics for R0 = 1.46

Effects of the values λ1 and λ2 (rates of ingesting vibrios from the non-contaminated/safe

environment to vectors and rates of ingesting vibrios from the contaminated/unsafe envi-

ronment to vector)

It can be seen from Figure 4 (a - b) that the effect of varying the values of λ1 affects the

exposed and infected vector populations positively with more effect in exposed vector popu-

lation which is something predictable. On the other hand, the impact of increasing the value

of λ2 on the exposed vector population occurs after some time. In addition, after ingesting a
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sufficient dose of Vibrio cholera vibrios by vectors then the infection starts to persist and hence

the cholera transmission can become endemic. Consequently, the basic reproductive number is

significantly increased over unity and hence this will affect the vector population (Figure 4 (c -

d)).
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FIGURE 4. Effects of increasing or decreasing values of λ1 and λ2

6. CONCLUSION

We developed a compartmental model for cholera transmission involving the human host, fly

vectors, and the environmental reservoir. The human host divided into four classes: suscepti-

ble, symptomatic infected, asymptomatic infected, recovered. The vector population divided
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into three classes: susceptible, exposed, infected vectors and the environmental reservoir di-

vided the environment into contaminated and uncontaminated sub-environments according to

the concentration of Vibrio cholera. We established that the model is epidemiologically feasible

and well-posed and we also showed the existence of the disease-free equilibrium. Furthermore,

we employed the next generation matrix technique to derive the reproduction number R0. We

proved that the model has two equilibrium points; the disease-free equilibrium which is locally

asymptotically stable whenever R0 < 1, unstable otherwise giving rise to the existence of the

endemic equilibrium for R0 > 1. We performed the sensitivity analysis on the reproductive

number, R0. Our analyses revealed that the parameters birth or recruitment rate by vector, rate

of contribution to Vibrio cholera in the aquatic environment, infectious rate of a vector, and

the ingesting vibrios rate from aquatic environment by vectors have a highly positive influence

on the reproduction number. Concentration of the bacteria i.e. Vibrio cholera in aquatic en-

vironment, and death rate of vibrios in aquatic environment are also highly sensitive over the

reproduction number. This suggests that eradicating vector populations and disinfecting the

aquatic environment is the most effective control method. We implemented and carried out

the numerical simulations to confirm the theoretical analysis and explored more patterns of dy-

namical behaviours of our model. Numerical simulations were also used to examine the effect

of the parameters of the model. The results showed that rates of ingesting vibrios from the

safe environment by human and rates of ingesting vibrios from the contaminated/unsafe envi-

ronment to vector have positive effects in disease transmission as the increase in their values

contributes significantly to the spread of the cholera infections in the system. Consequently,

the rate of exposure to contaminated water and the contribution of each infected vector to the

aquatic environment must be decreased to achieve meaningful and effective control.

ACKNOWLEDGMENTS
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